Сплав на основе алюминия


 


Владельцы патента RU 2468106:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" (RU)

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в авиационной промышленности. Сплав на основе алюминия содержит, мас.%: литий 1,7-1,9, магний 4,0-4,4, скандий 0,14-0,16, цирконий 0,09-1,1, при соотношении скандий/цирконий=1,4-1,6, алюминий - остальное. Предложенный состав сплава обеспечивает достижение низкой плотности в сочетании с высокой прочностью и пластичностью, что позволяет достигать степени удлинения свыше 1000% при повышенных температурах и изготавливать детали сложной формы в режиме сверхпластической формовки. 1 табл., 1 пр.

 

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в авиационной и космической промышленности.

Алюминиевые сплавы системы Al-Li-Mg характеризуются пониженной плотностью и относительно высокой прочностью, что позволяет создавать аэрокосмическую технику с меньшей массой, а это дает возможность экономии горючего, увеличения грузоподъемности и улучшения других характеристик летательных аппаратов. Однако их широкому использованию в авиакосмическом строении препятствует ряд нерешенных проблем, к которым относятся низкая термическая стабильность, ограниченная технологическая пластичность и невысокие служебные свойства в крупнозернистом состоянии. Это затрудняет производство из них целого ряда деталей планера самолета требуемого качества. Повышение технологической пластичности позволит как прокатывать тонкие листы из этих материалов, так и изготавливать из этих листов сложные по конфигурации детали методом пневмоформовки в состоянии сверхпластичности (СП).

Известен сплав АА01420, предназначенный для изготовления деталей самолетов - преимущественно для малонагруженных деталей и содержащий, мас.%: 4,0-7,0 магний, 1,5-2,6 литий, 0,2-1,0 марганец, 0,05-0,3 цирконий, алюминий - остальное [1]. Удельный модуль (упругости) этого сплава лучше, чем у серийных сплавов, но его удельные прочности только сравнимы с широко используемой 2000 серией алюминиевых сплавов (например, сплав 2124), так что экономия веса может быть обеспечена только за счет применения критической жесткости [2].

Недостатком этого сплава являются низкие показатели сверхпластической деформации. Кроме того, недостаточная удельная прочность ограничивает возможность использовать этот сплав для конструкций летательных аппаратов, для которых прочностные характеристики являются основными.

Известен сплав с химическим составом, мас.%: 2,1-2,9 литий, 3,0-5,5 магний, 0,2-0,7 медь, алюминий - остальное, предназначенный для высоконагруженных деталей самолета и для деталей, работающих в условиях криогенных температур. Сплав обладает средним уровнем прочностных свойств, а недостатком его является низкая пластичность в термоупрочненном состоянии (относительное удлинение 3,1-5,1%) и невысокая коррозионная стойкость [3].

Наиболее близким к предлагаемому изобретению является сплав на основе алюминия, предназначенный для силовых авиационных конструкций, в том числе сварных деталей крыла и фюзеляжа. Он применяется для изготовления деталей сложной формы в режиме сверхпластической формовки и содержит, мас.%: 1,9-2,3 лития, 4,5-6,0 магния, 0,025-0,1 скандия, 0,09-0,15 циркония, алюминий - остальное [4].

Недостатки этого сплава заключаются в следующем:

- низкий уровень как прочности, так и пластичности;

- высокое содержание Mg приводит к тому, что при нагреве под закалку до 450°С в сплаве с высоким содержанием магния не удается полностью растворить S1-фазу. Соответственно, чтобы не допустить присутствия существенной объемной доли S1-фазы после закалки, что приводит к частичному растворению упрочняющей δ'-фазы, при старении проводят нагрев под закалку до температур 490°С. Такая высокая температура закалки приводит к образованию поверхностного слоя, обедненного литием, что отрицательно сказывается на надежности конструкций из этого материала.

Задачей предлагаемого изобретения является разработка сплава системы Al-Li-Mg, обладающего низкой плотностью и сочетающего в себе комбинацию высокой прочности и пластичности.

Для решения поставленной задачи предлагается сплав на основе алюминия, содержащий литий, магний, скандий, цирконий, причем он содержит следующее соотношение компонентов, мас.%: литий 1,7-1,9, магний 4,0-4,4, скандий 0,14-0,16, цирконий 0,09-0,1, при соотношении скандий/цирконий=1,4-1,6, необходимое для когерентности границ частиц Аl3(Sc, Zr) с матрицей, алюминий - остальное.

Предложенный сплав отличается от прототипа тем, что содержит следующее соотношение компонентов, мас.%:

литий 1,7-1,9
магний 4,0-4,4
скандий 0,14-0,16
цирконий 0,09-0,1
алюминий остальное

при этом соотношение скандий/цирконий = 1,4-1,6.

Предлагаемый химический состав сплава обеспечивает достижение низкой плотности и сочетание комбинации высокой прочности и пластичности, высоких удлинений (свыше 1000%), что позволит изготавливать детали сложной формы в режиме сверхпластической формовки.

В составе сплава компоненты проявляют себя следующим образом.

Каждый процент литья снижает удельный вес алюминиевых сплавов на 3%, повышает модуль упругости на 6% и обеспечивает в сплавах значительный эффект упрочнения после закалки и искусственного старения. Литий растворяется в алюминии в значительных количествах (5,2% макс.). Добавка магния и лития позволяет получить материал с пониженным удельным весом и повышенным модулем упругости также приводит к образованию тройной фазы Al2LiMg, вызывающей твердорастворное упрочнение сплава. Цирконий является антирекристаллизатором и модификатором, измельчающим зерно. Добавки циркония незначительно влияют на механические свойства и коррозионную стойкость, а также приводят к измельчению зерна и повышению температуры рекристаллизации сплава. Небольшая добавка скандия повышает прочностные характеристики сплава. Но уже при этом количестве он может создавать с алюминием метастабильную фазу Al2Zr со структурой L12, β'-фаза. Скандий является самым сильным модификатором зеренной структуры сплава. Алюминиевые сплавы, легированные одновременно скандием и цирконием, обладают хорошей комбинацией прочности и пластичности, поскольку в них формируются наночастицы фазы Аl3(Zr,Sc) с когерентными границами.

Пример осуществления

Выплавку сплава проводят в тигельных печах под флюсом.

Сплав подвергается упрочняющей термической обработке. Отливки помещают в печь, нагретую до температуры 450°С в печи с выдержкой 2 часа, затем закаливают в масло. После чего проводят искусственное старение при температуре 120°C с выдержкой в течение 5 часов и охлаждением с печью.

Сплавы системы Al-Li-Mg являются термообрабатываемыми алюминиевыми сплавами. Особенности термической обработки алюминий-литиевых сплавов связаны с наличием основной упрочняющей фазы δ' (Al3Li) с упорядоченным строением и обусловлены морфологией распада твердого раствора, природой выделяющих фаз и соотношением их объемной доли. Количество фазовых составляющих в зависимости от вида и режима термообработки в алюминий-литий-магниевых сплавах изменяется в широких пределах. Основные фазы, которые могут выделяться на границах зерен и в матрице в сплавах системы Al-Li-Mg в процессе термообработки - S1 (Al2LiMg), δ' (Аl3Li), Al3(Sc,Zr). Количество δ'-фазы в различных промышленных алюминий-литиевых сплавах может изменяться от 2 до 9% в зависимости от режима старения.

Высокая прочность достигается в том случае, если по объему зерен гомогенно выделяется δ'-фаза с когерентными границами. Причем весь Li должен быть переведен в твердый раствор при нагреве под закалку до предплавильной температуры.

Распад твердого раствора сплава системы Al-Li-Mg происходит с образованием (наряду с δ'-фазой) выделений двух типов: 1 - тонких пластинчатых фаз на границах зерен; 2 - компактных частиц, которые по мере развития старения прежде всего образуются на границах зерен и на межфазных границах нерастворенных частиц. Согласно диаграмме состояния этими частицами, очевидно, является стабильная S1-фаза. Образование и рост тонких и компактных частиц S1-фазы приводят к обеднению прилегающих участков матрицы магнием и литием с растворением метостабильной δ'-фазы. Это обуславливает появление обедненных литием зон, свободных от выделения δ'-фазы около границ зерен и у частиц S1-фазы в зерне. По мере достижения равновесного состояния, например при 200-250°С, δ'-фаза полностью растворяется.

Полученный сплав подвергли испытаниям с определением временного сопротивления (σB), относительного удлинения (δ) при комнатной температуре. Результаты испытаний полученного и известных сплавов приведены в таблице. Сравнительный состав сплавов приведен в таблице.

Таблица 1
Компоненты Содержание в составе, мас.%
Изобретение [3] [1] [2]
Литий 1,7-1,9 1,9-2,3 1,5-2,6 2,1-2,9
Магний 4,0-4,4 4,5-6,0 4,0-7,0 3,0-5,5
Скандий 0,14-0,16 0,025-0,1 - -
Цирконий 0,09-0,1 0,09-0,15 0,05-0,3 -
- - Mn 0,2-1,0 Сu 0,2-0,7
Алюминий Остальное Остальное Остальное Остальное
Предел прочности при растяжении, МПа 540 440 450-500 506-541
Удлинение относительное после разрыва 15 9 6 3,1-5,1

Данные таблицы показывают, что предлагаемый сплав имеет по сравнению с прототипом [3] повышение прочностных характеристик на 100 МПа и увеличение пластичности на 6% при комнатной температуре. В сравнении с аналогами [1, 2] прочностные характеристики изменяются незначительно, однако пластичность гораздо выше. Кроме того, у аналогов в заданном интервале проявляется нестабильность механических свойств по сравнению с предлагаемым сплавом, где механические свойства в заданном интервале не изменяются и составляют 540 МПа и 15%.

В предложенном сплаве занижено содержание лития и магния, что приводит к гомогенному выделению δ'-фазы в матрице и достаточному количеству образования S1-фазы, которое не приводит к растворению метостабильной δ'-фазы.

Таким образом, термически упрочняемые полуфабрикаты и изделия из предлагаемого сплава обладают уникальным сочетанием прочности и пластичности при комнатной температуре.

Предлагаемый химический состав сплава обеспечивает сохранение низкой плотности и достижение сочетания высокой прочности и пластичности, соответственно это позволит достигать высоких удлинений при повышенных температурах (свыше 1000%), что позволит изготавливать детали методом пневмоформовки в состоянии сверхпластичности для авиационной и космической промышленности.

Источники информации

1. Патент СВ №1172736, опубл. 03.12.1969.

2. Алиева С.Г. Промышленные алюминиевые сплавы: Справ. Изд. / С.Г.Алиева, М.Б.Альтман, С.М.Амбарцумян и др. - М.: Металлургия, 1984. - 528 с.

3. Патент US №4584173, публ. 22.04.1986.

4. Авиационные материалы: Справочник в 12-ти томах. - 7-е изд., перераб. и доп./ Под общ. ред. Е.Н.Каблова. - М.: ВИАМ, 2009. - 170 с.

Сплав на основе алюминия, содержащий литий, магний, скандий, цирконий, отличающийся тем, что он содержит следующее соотношение компонентов, мас.%: литий 1,7-1,9, магний 4,0-4,4, скандий 0,14-0,16, цирконий 0,09-1,1, при соотношении скандий/цирконий=1,4-1,6, алюминий - остальное.



 

Похожие патенты:
Изобретение относится к цветной металлургии и может быть применено при получении сплавов системы алюминий-свинец. .

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, используемым для сварных конструкций в судостроении, авиакосмической технике и транспортном машиностроении.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала, преимущественно для токопроводящих и теплопроводных элементов конструкции в авиакосмической технике, судостроении, криогенном машиностроении и других отраслях промышленности.

Изобретение относится к области металлургии сплавов на основе алюминия, в частности к сварочным материалам, предназначено для изготовления сварочной проволоки для сварки плавлением конструкций из деформируемого термически неупрочняемого сплава системы Al-Mg-Sc.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, предназначенным для использования в качестве конструкционного материала в различных областях техники: судостроении, авиакосмической и нефтегазодобывающей промышленности.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных конструкций теплообменников космических летательных аппаратов, получаемых методами высокотемпературной пайки.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для теплообменников системы терморегулирования космических летательных аппаратов.

Изобретение относится к литейному и прокатному производству. .

Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры, ступеней погружного насоса для нефтегазового комплекса, деталей радиаторов отопления и др
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением

Изобретение относится к производству алюминиевых сплавов, в частности алюминиевых сплавов, содержащих обладающий высокой реакционной способностью магний. При приготовлении алюминиевого сплава, содержащего Mg, к расплаву сплава добавляют Са, Sr и Ва в таком количестве, чтобы содержание кальция составляло 0,001-0,5 мас.%, а их соотношение находилось в пределах, заключенных между линиями, соединяющими пять точек на фиг.1: точку Е (Са: 28 ат.%, Sr: 0 ат.%, Ва: 72 ат.%), точку F (Са: 26 ат.%, Sr: 30 ат.%, Ва: 44 ат.%), точку G (Са: 54 ат.%, Sr: 46 ат.%, Ва: 0 ат.%), точку Н (Са: 94 ат.%, Sr: 6 ат.%, Ва: 0 ат.%), точку I (Са: 78 ат.%, Sr: 0 ат.%, Ва: 22 ат.%), при исключении соотношений на образованных между указанными точками линиях. Способ позволяет ингибировать потери от окисления расплава сплава без использования Be, способного наносить ущерб здоровью человека. 3 н. и 3 з.п. ф-лы, 11 табл., 2 ил., 5 пр.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов, упрочненных нанодисперсными частицами. Упрочняющие нанодисперсные частицы оксида циркония вводят в расплав на основе сплава алюминий-магний. Расплав кристаллизуют в поле центрифуги с коэффициентом гравитации 150-200 g и времени жизни расплава 8-10 сек/кг. Обеспечивается получение градиентного материала с пространственно неоднородной структурой и высокими свойствами. 2 з.п. ф-лы, 1 табл., 1 пр.
Сплав на основе алюминия предназначен для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах. Сплав содержит, в мас.%: цинк 6,6-7,4, магний 3,2-4,0, медь 0,8-1,4, скандий 0,12-0,30, цирконий 0,06-0,20, бериллий 0,0001-0,005, кобальт 0,05-0,15, никель 0,35-0,65, железо 0,25-0,65, алюминий - остальное. Техническим результатом изобретения является повышение прочности при сохранении пластичности и пониженной плотности сплава. 3 табл., 1 пр.

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов и в качестве конструкционного материала. Сплав, содержит, мас.%: магний 5,6-6,3; титан 0,01-0,03; бериллий 0,0001-0,005; цирконий 0,05-0,12; скандий 0,18-0,3; марганец 0,3-0,6; группу элементов, включающую железо и кремний 0,05-0,2; никель 0,01-0,05; кобальт 0,01-0,05; алюминий - остальное, при этом отношение суммарного содержания железа, никеля и кобальта к содержанию кремния равно или больше единицы. Техническим результатом является повышение прочностных характеристик материала. 1 пр., 2 табл.
Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения. Сплав содержит, мас.%: цинк 6,0-8,0; магний 3,4-4,2; медь 0,8-1,3; скандий 0,07-0,15; цирконий 0,08-0,12; бериллий 0,0005-0,004; церий 0,01-0,15; титан 0,02-0,08; кремний 0,01-0,15; железо 0,01-0,15; водород 0,05-0,35 см3/100 г металла; неизбежные примеси из группы Mn, Cr, V, Mo, Li, Ag, K, Na, O в суммарном количестве не более 0,10; алюминий - остальное, при соотношении между содержанием магния и цинка от 0,53 до 0,57. Техническим результатом изобретения является повышение уровня прочности сплавов системы Al-Zn-Mg-Cu с пониженной плотностью и разовых изделий, выполненных из них. 2 н.п. ф-лы, 1 пр., 2 табл.

Изобретение относится к области обработанных прецизионным точением деталей, полученных из выдавленных продуктов типа прутков, стержней, брусков, или даже труб из деформируемого алюминиевого сплава для прецизионного точения. Сплав имеет следующий состав, мас.%: 0,8<Si<1,5, предпочтительно 1,0≤Si<1,5; 1,0<Fe<1,8, предпочтительно 1,0<Fe≤1,5; Cu <0,1; Mn <1, предпочтительно <0,6; Mg 0,6-1,2, предпочтительно 0,6-0,9; Ni <3,0%, предпочтительно 1,0-2,0; Cr <0,25%; Ti <0,1%; другие элементы <0,05 каждый и 0,15 в сумме, остальное - алюминий. Объектом изобретения является также деталь, полученная прецизионным точением из такого выдавленного продукта, как определено выше. Изобретение направлено на улучшение обрабатываемости резанием сплавов на основе алюминия с содержанием кремния, не превышающим 1,5 %. 2 н. и 5 з.п. ф-лы, 3 пр., 3 табл., 3 ил.
Изобретение относится к металлургии деформируемых термически неупрочняемых алюминиевых сплавов, предназначенных для использования в качестве конструкционного материала в виде деформируемых полуфабрикатов в морской и авиакосмической технике, транспортном и химическом машиностроении, в т.ч. в криогенной технике, например судах-газовозах для перевозки сжиженных при низких температурах газов. Способ включает получение слитка из алюминиевого сплава, содержащего магний и скандий, методом полунепрерывного литья, гомогенизирующий отжиг при температуре 300-360°C продолжительностью до 8 часов, механическую обработку слитка, нагрев литых заготовок под прокатку при 340-380°C до 8 часов, горячую прокатку с получением листа или плиты и последующий отжиг при температуре 380-440°C до 4 часов. Способ обеспечивает получение высоких механических свойств при комнатной и низких (криогенных) температурах. 1 пр., 1 табл.
Наверх