Способ определения локальных дефектов ферромагнитных канатов двойной свивки

Изобретение относится к области неразрушающего контроля. Технический результат - уменьшение погрешности контроля локальных дефектов, ферромагнитного каната двойной свивки. Сущность: участок стального каната двойной свивки продольно намагничивают до состояния, близкого к насыщению. С помощью катушек, расположенных в межполюсном пространстве в зоне основного намагнивающего потока, определяют электродвижущую силу, возникающую при перемещении контролируемого объекта относительно катушек. Этот сигнал обрабатывают при помощи дискретного преобразования Фурье, ширину окна которого устанавливают равной двум диаметрам каната. Полученную амплитудно-частотную характеристику сглаживают и определяют наличие двух локальных максимумов. Если отношение локальных максимумов составляет 10 и более, то фиксируют наличие локального дефекта. Порядковый номер гармоники n, которая разделяет области определения локальных максимумов, определяют по формуле , где f - частота дискретизации сигнала; D - диаметр каната. Сдвиг окна осуществляют на половину его ширины с целью компенсации возможности попадания дефекта на край окна. 1 з.п. ф-лы.

 

Изобретение относится к области неразрушающего контроля ферромагнитных канатов двойной свивки.

Известен способ обнаружения локальных дефектов протяженных ферримагнитных объектов (Патент РФ 22044129 А, G01N 27/83. Заявлено 17.12.1999 г. Опубликовано 10.05.2003 г.), заключающийся в продольном намагничивании участка контролируемого объекта до состояния, близкого к насыщению, с помощью намагничивающего узла с полюсами, обращенными к контролируемому объекту, и измерении параметра магнитного поля в межполюсном пространстве у поверхности контролируемого объекта. Измерение параметра магнитного поля производят, по крайней мере, в одной паре точек межполюсного пространства, лежащих на линии параллельной оси контролируемого объекта, сигналы о параметре магнитного поля в этих точках вычитают друг из друга и по полученной первой разности сигналов судят о наличии локальных дефектов.

Недостатком данного способа является большая погрешность контроля эксплуатируемого ферромагнитного каната двойной свивки вследствие высокой зашумленности сигнала из-за его сложной геометрии конструкции и наличия различных ферромагнитных вкраплений в смазке, расположенной на поверхности.

Известен способ неразрушающего магнитного контроля протяженных ферромагнитных изделий, а именно обнаружения локальных дефектов, в частности стальных канатов (патент США 4659991, МПК G01N 27/82). Согласно этому способу участок контролируемого объекта продольно намагничивают до состояния, близкого к насыщению, и с помощью катушек, расположенных в межполюсном пространстве в зоне основного намагнивающего потока, определяют электродвижущую силу при движении контролируемого объекта относительно катушек. Этот сигнал интегрируется, усиливается, пропускается через фильтр высоких частот, выпрямляется и сравнивается с заданной величиной.

Недостатком данного способа является большая погрешность контроля эксплуатируемого каната двойной свивки вследствие высокой зашумленности сигнала из-за его сложной геометрии конструкции и наличия различных ферромагнитных вкраплений в смазке, расположенной на поверхности.

Задачей изобретения служит уменьшение погрешности контроля локальных дефектов ферромагнитного каната двойной свивки.

Поставленная задача решается с помощью способа, заключающегося в том, что участок стального каната двойной свивки продольно намагничивают до состояния, близкого к насыщению, и с помощью катушек, расположенных в межполюсном пространстве в зоне основного намагничивающего потока, определяют электродвижущую силу, возникающую при перемещении каната относительно катушек. Сигнал, снятый с катушек, обрабатывают с помощью дискретного преобразования Фурье, ширину окна которого устанавливают равной двум диаметрам каната, полученную амплитудно-частотную характеристику сглаживают и определяют наличие двух локальных максимумов, если отношение локальных максимумов составляет 10 и более, то фиксируют наличие локального дефекта. Порядковый номер гармоники n, которая разделяет области определения локальных максимумов, определяют по формуле , где f - частота дискретизации сигнала; D - диаметр каната. Сдвиг окна осуществляют на половину его ширины с целью компенсации возможности попадания дефекта на край окна.

При проведении контроля стального каната двойной свивки проверяемый участок продольно намагничивают до состояния, близкого к насыщению, и с помощью катушек, расположенных в межполюсном пространстве в зоне основного намагнивающего потока, определяют электродвижущую силу, возникающую при перемещении контролируемого объекта относительно катушек. Полученный сигнал обрабатывают при помощи дискретного преобразования Фурье, ширину окна которого устанавливают равной двум диаметрам каната. Полученную амплитудно-частотную характеристику сглаживают и анализируют. Сглаженную амплитудно-частотную характеристику разделяют на две области, границей которых является гармоника с порядковым номером n, который определяются по формуле , где f - частота дискретизации сигнала; D - диаметр каната. В случае если в каждой из областей присутствует характерный максимум, то на данном участке каната фиксируют наличие локального дефекта, в противном случае - отсутствие дефекта. После чего для проведения контроля осуществляют перемещение на следующий участок стального каната двойной свивки на расстояние не менее диаметра каната.

Положительный эффект от применения данного способа заключается в повышении вероятности обнаружения локальных дефектов стальных канатов двойной свивки, тем самым способствуя повышению эффективности их браковки.

1. Способ определения локальных дефектов ферромагнитных канатов двойной свивки, заключающийся в том, что участок стального каната двойной свивки продольно намагничивают до состояния, близкого к насыщению, и с помощью катушек, расположенных в межполюсном пространстве в зоне основного намагничивающего потока, определяют электродвижущую силу, возникающую при перемещении каната относительно катушек, отличающийся тем, что сигнал, снятый с катушек, обрабатывают с помощью дискретного преобразования Фурье, ширину окна которого устанавливают равной двум диаметрам каната, полученную амплитудно-частотную характеристику сглаживают и определяют наличие двух локальных максимумов, если отношение локальных максимумов составляет 10 и более, то фиксируют наличие локального дефекта.

2. Способ определения локальных дефектов ферромагнитных канатов двойной свивки по п.1, отличающийся тем, что порядковый номер гармоники n, которая разделяет области определения локальных максимумов, определяют по формуле , где f - частота дискретизации сигнала; D - диаметр каната.



 

Похожие патенты:

Изобретение относится к области автоматизации сварочных процессов, в частности к датчикам положения сварочного электрода относительно стыка. .
Изобретение относится к области разработки способов метрологической поверки, настройки и калибровки измерителей износа стальных проволочных канатов, в частности магнитных дефектоскопов.

Изобретение относится к области неразрушающего контроля, в частности к внутритрубной дефектоскопии, и может быть использовано для контроля технического состояния стенок труб непосредственно в процессе транспортировки поставляемого по трубе жидкого или газообразного продукта, например газа по магистральному газопроводу.

Изобретение относится к области магнитной дефектоскопии в промышленности и на транспорте, в частности может быть использовано в целях обнаружения избыточных изгибных напряжений в рельсовом пути, в металлических профилях промышленных конструкций, трубопроводах и других протяженных деталей и объектов, непосредственно при их эксплуатации.

Изобретение относится к области строительства и предназначено для диагностирования трубопроводов и других стальных пустотелых сооружений. .

Изобретение относится к области геофизических исследований скважин, а именно к комплексным средствам для изучения технического состояния обсадных колонн и насосно-компрессорных труб нефтегазовых скважин методами профилеметрии и дефектоскопии.

Изобретение относится к области неразрушающего контроля, в частности к устройствам для внутритрубной диагностики состояния стенок труб газо-, нефте-, продуктопроводов, и может быть использовано при диагностике действующих газопроводов.

Изобретение относится к области неразрушающего контроля и может быть использовано для обнаружения дефектов потери металла и растрескиваний в стенках труб при проведении переизоляции трубопроводов.

Изобретение относится к области контрольно-измерительной техники и может быть использовано при контроле эксплуатационных колонн нефтяных и газовых скважин

Изобретение относится к области неразрушающего контроля качества изделий и предназначено для дефектоскопии стальных прядных канатов

Изобретение относится к области железнодорожного транспорта, а именно к способам определения неровностей и других дефектов рельсового пути

Изобретение относится к области неразрушающего контроля качества стальных канатов

Изобретение относится к неразрушающему контролю и может быть использовано для выявления подповерхностных дефектов в ферромагнитных объектах. Сущность изобретения заключается в том, что в предлагаемом способе контролируемый объект намагничивают постоянным магнитным полем, возбуждают с помощью вихретокового преобразователя на контролируемом участке вихревые токи, регистрируют вносимое в вихретоковый преобразователь напряжение U _ в н и по нему судят о наличии дефектов, и согласно изобретению путем изменения параметра Р, регулирующего воздействие постоянного магнитного поля на контролируемый объект, плавно изменяют напряженность Н постоянного магнитного поля от минимальной величины до максимальной, регистрируют максимум Uмax амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н и величину соответствующего ему значения параметра Р, а параметры дефекта оценивают по совокупности значений Uмах и Р. Технический результат - повышение чувствительности и информативности контроля. 2 з.п. ф-лы, 3 ил.

Изобретение относится к железнодорожному транспорту и может быть использовано для контроля технического состояния колесной пары железнодорожного транспорта при его движении по рельсовому пути. Согласно способу после наезда колеса (9) на стык (4) в колесе начинает распространяться круговая волна, которая проходя по колесу (9), вызывает появление акустической волны, исходящей от колеса и регистрируемой датчиком (1). Датчик преобразует акустическую волну в электрический сигнал. При отсутствии трещин длительность и частота сигнала будут иметь определенное значение. В случае наличия трещины в колесе указанные параметры изменятся - длительность и частота уменьшатся, что будет свидетельствовать о недопустимости дальнейшей эксплуатации этого колеса. Затем колесо (9) начнет катиться по участку (5), протяженность которого в данном случае равна половине длины окружности колеса, на котором с помощью акустических датчиков осуществляется проверка качества поверхности катания. В результате упрощается конструкция осуществляющего контроль устройства, повышаются эксплуатационные характеристики, снижается энергопотребление. 7 з.п. ф-лы, 3 ил.

Предлагаемое техническое решение относится к способам бесконтактной внетрубной диагностики стальных нефтяных труб, применяемых при транспортировке нефти трубопроводным способом, в том числе, малого и среднего диаметра (100-500 мм), а также при дефектоскопии стальных и чугунных металлоконструкций. Техническим результатом изобретения является повышение точности способа трассирования, снижение энергоемкости устройства, а также повышение производительности труда оператора при использовании предлагаемого способа и устройства. Сущность изобретения состоит в использовании новой навигационной системы, включающей узел датчиков, который состоит из двух групп. Каждая группа включает три однокомпонентных датчика, причем одноименные оси датчиков параллельны, тогда как оси датчиков каждой из групп ортогональны, причем оси двух датчиков в каждой из групп параллельны друг другу и направлению движения и расположены в горизонтальной плоскости. При этом измерение компонент переменного магнитного поля производят непрерывно, на основе измеренных компонент вычисляют углы поворота и наклона узла датчиков, а также величину отступа узла датчиков от проекции оси трубопровода. Команды оператору выдают в виде речевых указаний на известном оператору языке на основе сравнения сигналов, соответствующих углам поворота и наклона, а также величинам отступов, по заранее определенным пороговым значениям этих сигналов. Информацию о техническом состоянии трубопровода получают на основе отношений ортогональных компонент, измеренных вдоль горизонтальной и вертикальной осей в каждой из групп. 2 н. и 2 з.п.ф-лы, 3 ил.

Изобретение относится к способам бесконтактной внетрубной диагностики стальных нефтяных труб, применяемых при транспортировке нефти трубопроводным способом, в том числе малого и среднего диаметра (100-500 мм), а также при дефектоскопии стальных и чугунных металлоконструкций. Технический результат: повышение точности определения траектории залегания трубопровода, обнаружения, геометризации и ранжирования дефектов металла и изоляции. Сущность: в способе диагностики в качестве датчиков поля используют, по меньшей мере, 18 однокомпонентных датчиков постоянного магнитного поля, осуществляют компенсацию влияния на результаты измерений флуктуации постоянного магнитного поля Земли. Математическую обработку измерений проводят на основе суммы и разности сигналов соосных компонент поля. В качестве математической обработки используют тензорную обработку матрицы градиентов, составленной на основе результатов измерений, с получением линейных, квадратичных и кубических инвариантов и вычисления компонент магнитных моментов аномалий дефектов, полученных на основе решения системы уравнений. При обработке измерений исключают из обработки интервалы записи измерений, превышающие время действия перегрузок, определяемое по превышению амплитуд пороговых значений измеряемых сигналов. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к внутритрубной дефектоскопии и может быть использовано для обнаружения отверстий в трубопроводах. Сущность: инструмент содержит соединенные между собой блок питания (1), позиционирующий и управляющий блок (2) и блок магнитных датчиков (3). Блок магнитных датчиков выполнен в виде постоянных магнитов, расположенных радиально в короне датчиков с возможностью взаимодействовать своим магнитным полем с датчиками Холла (302). Функция инструмента заключается в его прохождении через трубопровод по всей его длине, контролируя толщину этого трубопровода и обнаруживая любое отверстие по пути прохождения и, в соответствии с полученными данными, устанавливая расстояние, на котором расположены отверстия, начиная от исходной точки, время в момент обнаружения, а также положение по окружности трубопровода. Все измерения являются частью онлайнового процесса, выполняемого по мере движения инструмента через трубопровод. В конце выполнения процесса информация может быть загружена в компьютер, где она становится доступной для использования и для принятия соответствующих решений относительно целостности трубопровода. 2 табл., 36 з.п. ф-лы, 10 ил.

Изобретение относится к бесконтактной диагностике металлических труб в процессе эксплуатации. Сущность: способ включает определение места и глубины залегания трубопровода на исследуемом участке, установку вдоль оси трубопровода, по крайней мере, двух идентичных датчиков для измерения напряженности (тангенциальной составляющей) магнитного поля, синхронную запись изменения напряженности магнитного поля, вызванного блуждающими токами, сравнительную обработку информации от всех датчиков и диагностическое заключение. Устройство содержит, по крайней мере, два идентичных датчика для установки вдоль оси трубопровода, определяющих напряженность магнитного поля, средство для привязки на местности, средство определения глубины залегания трубопровода, средство синхронизации включения и работы датчиков, средство записи изменения напряженности магнитного поля, вызванного блуждающими токами, и обработки данных. Технический результат: упрощение поиска мест коррозии на трубопроводе, повышение точности локализации повреждений. 2 н. и 10 з.п. ф-лы, 8 ил., 11 табл.
Наверх