Способ получения регенеративного продукта

Изобретение относится к способам получения химических веществ, используемых в изолирующих дыхательных аппаратах и в системах регенерации воздуха, в частности к способам получения регенеративных продуктов на основе супероксида металла. Способ получения регенеративного продукта включает взаимодействие раствора пероксида водорода (H2O2) и гидроксида калия (КОН). Полученный щелочной раствор пероксида водорода наносят на пористую волокнистую матрицу. Дегидратацию жидкой фазы на матрице осуществляют в вакууме или при атмосферном давлении. Взаимодействие исходных компонентов осуществляют таким образом, чтобы температура в зоне синтеза не превышала 20°С. Дегидратацию осуществляют в вакууме в две стадии: при температуре от минус 10 до плюс 20°С в течение 10-20 мин, далее при температуре 20-160°С в течение 0,5-2,0 ч. При атмосферном давлении дегидратацию осуществляют в потоке осушенного и декарбонизованного воздуха или инертного газа также в две стадии: продув воздухом или инертным газом при комнатной температуре в течение 10-30 мин, последующий продув воздухом или инертным газом при температуре 140-220°С в течение 0,5-1,0 ч. Способ обеспечивает получение регенеративного продукта на пористой матрице с улучшенными эксплуатационными характеристиками за счет образования частиц супероксида металла в виде нано- и микрокристаллов. 3 ил., 6 пр., 2 табл.

 

Изобретение относится к способам получения химических веществ, используемых в изолирующих дыхательных аппаратах и в системах регенерации воздуха, в частности к способам получения регенеративных продуктов на основе супероксида металла.

Известен способ получения продукта для регенерации воздуха [Патент РФ 2225241, МПК A62D 9/00, 2004 г.], по которому регенеративный продукт получают путем взаимодействия растворов пероксида водорода (Н2О2) и гидроксида калия (КОН), нанесения полученного щелочного раствора пероксида водорода на индифферентную пористую волокнистую матрицу с последующей дегидратацией жидкой фазы на матрице. При этом используют раствор пероксида водорода концентрацией от 50 до 85% и раствор гидроксида калия с концентрацией 50-60% или твердый КОН. Мольное соотношение исходных компонентов Н2О2/КОН в растворе составляет 1,5÷2,0. Смешение исходных компонентов производят таким образом, чтобы температура в зоне синтеза не превышала 45°С (предпочтительно не выше 10°С). Дегидратацию пропитанной полученным раствором пористой волокнистой матрицы осуществляют либо сушкой в вакууме при 30-150°С или в потоке осушенного декарбонизированного воздуха либо инертного газа при атмосферном давлении при температуре 60-200°С. Конечный продукт представляет собой пластины пористой волокнистой матрицы с закрепленными частицами супероксида калия.

Однако этот способ не позволяет получить продукт с требуемыми характеристиками по степени его отработки по диоксиду углерода, по выделению активного кислорода, при этом в составе изделия полученный этим способом регенеративный продукт работает нестабильно. Это обусловлено тем, что в известном способе частицы супероксида металла высаждаются на стекловолокне в виде микро- и макрокристаллов различного размера, образуя хаотично расположенные на волокнах агломераты кристаллов различного размера, что препятствует равномерному проникновению газовоздушной смеси регенерируемого воздуха и протеканию реакции взаимодействия кристаллов супероксида металла с диоксидом углерода и влагой регенерируемого воздуха по всему объему регенеративного продукта. В результате ухудшаются эксплуатационные характеристики регенеративного продукта.

Задачей изобретения является улучшение эксплуатационных характеристик регенеративного продукта.

Техническим результатом изобретения является повышение степени отработки регенеративного продукта и возможность регулирования скорости выделения кислорода.

Технический результат достигается изобретением, согласно которому в способе получения регенеративного продукта, включающем взаимодействие раствора пероксида водорода (H2O2) и гидроксида калия (КОН), нанесение полученного щелочного раствора пероксида водорода на пористую волокнистую матрицу и последующую дегидратацию жидкой фазы на матрице в вакууме или при атмосферном давлении, взаимодействие исходных компонентов осуществляют таким образом, чтобы температура в зоне синтеза не превышала 20°С, а дегидратацию осуществляют в вакууме в две стадии: при температуре от минус 10 до плюс 20°С в течение 10-20 мин, далее при температуре 20-160°С в течение 0,5-2,0 ч или при атмосферном давлении в потоке осушенного и декарбонизованного воздуха или инертного газа в две стадии: продув воздухом при комнатной температуре в течение 10-30 мин, последующий продув воздухом или инертного газа при температуре 140-220°С в течение 0,5-1,0 ч.

Такой способ обеспечивает получение регенеративного продукта, имеющего максимально развернутую поверхность, высокую газопроницаемость, легко доступную (практически к каждому кристаллу супероксида калия) к взаимодействию с парами воды и диоксидом углерода, что обеспечивает его высокую реакционную способность и полное выделение активного кислорода.

Это обусловлено тем, что в результате изменения температурных условий взаимодействия исходных компонентов и режимов дегидратации частицы супероксида металла осаждаются на поверхности и в порах пористой волокнистой матрицы в виде нано- и микрокристаллов.

Способ получения регенеративного продукта осуществляется следующим образом. Готовят раствор дипероксогидрата пероксида калия, для чего раствор пероксида водорода концентрацией от 50 до 95% смешивают с раствором гидроксида калия концентрацией 50-60% в мольном соотношении H2O2/КОН=1,2-2,2. Гидроксид калия можно использовать и в твердом виде. Для предотвращения разложения пероксидных продуктов при смешении исходных компонентов и образования нано- и микрокристаллов супероксида калия гидроксид калия в твердом виде или в виде раствора добавляют с такой скоростью в раствор пероксида водорода, чтобы температура в зоне реакции находилась в диапазоне 0-20°С, предпочтительно температура составляет 3-10°С. Приготовленный раствор пероксогидрата пероксида калия содержит 14,0-18,0% пероксидного кислорода в зависимости от исходной концентрации пероксида водорода. Полученный таким образом раствор наносят на пористую волокнистую матрицу (например, стекломаты, стеклобумагу, иглопробивные войлоки из полиарамидных, полиамидных полимеров и т.п.), инертную к пероксиду водорода. Пропитанную раствором пероксогидрата пероксида калия пористую волокнистую матрицу дегидратируют в вакууме в две стадии: при температуре 10-20°С в течение 10-20 мин, при температуре 20-140°С - 0,5-2,0 ч или при атмосферном давлении в потоке осушенного и декарбонизованного воздуха или инертного газа в две стадии: продув воздухом или инертным газом комнатной температуры в течение 20-40 мин, последующий продув воздухом или инертным газом до температуре 140°С в течение 0,5-1,0 ч.

Получают пластины с нано- и микрокристаллами супероксида калия, равномерно распределенными на волокнах и в порах волокнистой матрицы. Полученный регенеративный продукт анализируют на содержание активного кислорода и диоксида углерода с последующим пересчетом, соответственно, на массовую долю супероксида и карбоната металла.

Пример 1. Готовят раствор дипероксогидрата пероксида калия, для чего 95%-ный раствор пероксида водорода смешивают с раствором гидроксида калия концентрацией 51% в мольном соотношении H2O2/КОН=1,2. При этом гидроксид калия в твердом виде вводят в раствор пероксида водорода с такой скоростью, чтобы температура в зоне реакции составляла 3-10°С. Температуру в зоне реакции регистрируют обычным способом, например термопарой. Наносят 10-12 мл приготовленного раствора пероксогидрата пероксида калия матрицу из стекловолокна (ТУ 10-04-16-50-87). Пропитанную раствором дипероксогидрата пероксида калия матрицу сушат в вакууме в две стадии: при температуре от минус 10 до плюс 20°С в течение 10-20 мин, далее при температуре 20-160°С в течение 0,5-1,2 ч.

Полученный регенеративный продукт содержит 34,1% активного кислорода и 1,5% диоксида углерода.

Пример. 2. Готовят раствор, дипероксогидрата пероксида калия, для чего 70%-ный раствор пероксида водорода смешивают с твердым гидроксидом калия в мольном соотношении H2O2/КОН=1,8. При этом гидроксид калия в твердом виде вводят в раствор пероксида водорода с такой скоростью, чтобы температура в зоне реакции составляла 3-10°С. Наносят 15-17 мл приготовленного раствора пероксогидрата пероксида калия матрицу из стеклобумаги (ТУ 6-11-529-80). Пропитанную раствором дипероксогидрата пероксида калия матрицу сушат в вакууме в две стадии: при температуре от минус 5 до плюс 18°С в течение 10-20 мин, далее при температуре 20-180°С в течение 0,5-1,0 ч.

Полученный регенеративный продукт содержит 34,3% активного кислорода и 1,2% диоксида углерода.

Пример 3. Готовят раствор дипероксогидрата пероксида калия, для чего 50%-ный раствор пероксида водорода смешивают с твердым гидроксидом калия в мольном соотношении H2O2/КОН=2,2. При этом гидроксид калия в твердом виде вводят в раствор пероксида водорода с такой скоростью, чтобы температура в зоне реакции составляла 5-20°С. Наносят 20-22 мл приготовленного раствора пероксогидрата пероксида калия на матрицу из стекловолокна (ТУ 10-04-16-50-87). Пропитанную раствором дипероксогидрата пероксида калия матрицу сушат в вакууме в две стадии: при температуре 10-15°С в течение 10-20 мин, далее при температуре 30-140°С 1,5 ч.

Полученный регенеративный продукт содержит 33,8% активного кислорода и 1,5% диоксида углерода.

Пример 4. Исходный раствор дипероксогидрата пероксида калия готовят как в примере 1. Наносят 10-12 мл приготовленного раствора пероксогидрата пероксида калия на матрицу из стекловолокна (ТУ 10-04-16-50-87). Пропитанную раствором дипероксогидрата пероксида калия матрицу сушат при атмосферном давлении в потоке осушенного и декарбонизованного воздуха в две стадии: продув воздухом комнатной температуры в течение 10-20 мин, последующий продув воздухом, нагретым до температуре 180°С в течение 0,75 ч.

Полученный регенеративный продукт содержит 30,6% активного кислорода и 1,6% диоксида углерода.

Пример 5. Исходный раствор дипероксогидрата пероксида калия готовят как в примере 3. Наносят 20-25 мл приготовленного раствора пероксогидрата пероксида калия на матрицу из стекловолокна (ТУ 10-04-16-50-87).

Пропитанную раствором дипероксогидрата пероксида калия матрицу сушат при атмосферном давлении в потоке осушенного и декарбонизованного воздуха в две стадии: продув воздухом комнатной температуры в течение 10-20 мин, последующий продув воздухом, нагретым до температуры 220°С в течение 1,0 ч.

Полученный регенеративный продукт содержит 31,3% активного кислорода и 1,8% диоксида углерода.

Пример 6. Исходный раствор дипероксогидрата пероксида калия готовят как в примере 1. Наносят 17-21 мл приготовленного раствора пероксогидрата пероксида калия на матрицу из стекловолокна (ТУ 10-04-16-50-87).

Пропитанную раствором дипероксогидрата пероксида калия матрицу сушат при атмосферном давлении в потоке инертного газа (азота или гелия в зависимости от наличия) в две стадии: продув газом комнатной температуры в течение 10-20 мин, последующий продув газом, нагретым до температуры 220°С, в течение 1,0 ч.

Полученный регенеративный продукт содержит 32,6% активного кислорода и 1,4% диоксида углерода.

Проведены физико-химические исследования образцов регенеративного продукта, полученного по изобретению и по патенту РФ 2225241.

Строение регенеративного продукта исследовано методом сканирующей электронной микроскопии. Электронно-микроскопические изображения поверхности образцов регенеративного продукта на пористой матрице получены на сканирующем электронном микроскопе Neon фирмы Carl Zeiss Group и представлены на фиг.1, фиг.2 и фиг.3.

фиг.1 - фотография сегмента пластины регенеративного продукта по пат. РФ 2225241, полученная с помощью сканирующего электронного микроскопа Neon фирмы Carl Zeiss при увеличении Mag=300×20 µm;

фиг.2 - фотография общего вида пластины регенеративного продукта по изобретению, полученная с помощью сканирующего электронного микроскопа Neon фирмы Carl Zeiss при увеличении Mag=30,12 К×200 µm;

фиг.3 - фотография пластины регенеративного продукта по изобретению, полученная с помощью сканирующего электронного микроскопа Neon фирмы Carl Zeiss нанокристаллы надпероксида калия на стекловолокне при увеличении Mag=22,58 К×200 nm.

Испытание регенеративного продукта по определению времени защитного действия проводят в динамической трубке и регенеративном патроне изолирующего дыхательного аппарата.

Испытание регенеративного продукта в динамической трубке проведены при следующих условиях:

- объемная скорость подачи диоксида углерода (соответствующая концентрации его в газовоздушной смеси 4% по объему) - 0,28-0,29 л/мин;

- объемная скорость газовоздушной смеси 7,0-7,35 л/мин;

- удельная скорость газовоздушной смеси 0,6 дм3/см2 мин;

- температура газовоздушной смеси 23±0,5°С;

- относительная влажность газовоздушной смеси при температуре 23±0,5°С - 93-98%;

- масса продукта 38 г;

- форма продукта квадратные пластинки размером примерно 5х5 мм и толщиной 1-2 мм.

Испытания регенеративного продукта проведены до достижения концентрации в газовоздушной смеси за слоем регенеративного продукта, равной 2,0% диоксида углерода или 21,5% кислорода.

При этих же условиях для сравнения были проведены испытания регенеративного продукта по пат. РФ 2225241. Результаты испытания представлены в таблице 1.

Таблица 1
Номер примера Время защитного действия, мин
1 23
2 19
3 22
4 21
5 20
6 22
Регенеративный продукт по пат. РФ 2225241 17,5

Испытание регенеративного продукта в регенеративном патроне изолирующего дыхательного аппарата проведены на установке "Искусственные легкие" фирмы Auergesellschaft в соответствии с Европейским стандартом EN 401 при следующих условиях:

- объем патрона 300-400 см3;

- легочная вентиляция 35±1 дм3/мин;

- объемная скорость подачи диоксида углерода (соответствующая концентрации его в газовоздушной смеси 4,5% по объему) 1,43±0,008 дм3/мин.

При этих же условиях для сравнения были проведены испытания регенеративного продукта по пат. РФ 2225241. Результаты испытания представлены в таблице 2.

Таблица 2
Номер примера Количество поглощенного диоксида углерода, дм3/кг
1 185,4
2 163,9
3 190,6
4 152,1
5 166,4
6 151,8
Регенеративный продукт по пат. РФ 2225241 140,3

На представленных на фиг.1, фиг.2 и фиг.3 фотографиях видно, что на пористой волокнистой матрице формируются частицы надпероксида калия, синтезированного из растворов пероксогидрата пероксида калия, при этом размер кристаллов супероксида калия по изобретению составляет менее 200 нм (см. фиг.2 и фиг.3). Размер кристаллов супероксида калия по пат. РФ 2225241 составляет более 20 мкм (фиг.1).

Как видно из представленных в таблице 1 данных, регенеративный продукт, получаемый по изобретению, имеет более высокую реакционную способность по диоксиду углерода в сравнении с регенеративным продуктом по пат. РФ 2225241.

Как видно из представленных в таблице 2, регенеративный продукт, получаемый по изобретению, имеет более высокую реакционную способность по диоксиду углерода в сравнении с регенеративным продуктом по пат. РФ 2225241.

Сорбционная активность регенеративного продукта по заявляемому способу увеличивается примерно на 7-40% по сравнению с регенеративным продуктом, полученным по пат. РФ 2225241.

Способ получения регенеративного продукта по изобретению позволяет получить регенеративный продукт на пористой матрице с улучшенными эксплуатационными характеристиками за счет образования частиц супероксида металла в виде нано- и микрокристаллов.

Способ получения регенеративного продукта, включающий взаимодействие раствора пероксида водорода (Н2O2) и гидроксида калия (КОН), нанесение полученного щелочного раствора пероксида водорода на пористую волокнистую матрицу и последующую дегидратацию жидкой фазы на матрице в вакууме или при атмосферном давлении, отличающийся тем, что взаимодействие исходных компонентов осуществляют таким образом, чтобы температура в зоне синтеза не превышала 20°С, а дегидратацию осуществляют в вакууме в две стадии: при температуре от минус 10 до плюс 20°С в течение 10-20 мин, далее при температуре 20-160°С в течение 0,5-2,0 ч или при атмосферном давлении в потоке осушенного и декарбонизованного воздуха или инертного газа в две стадии: продув воздухом или инертным газом при комнатной температуре в течение 10-30 мин, последующий продув воздухом или инертным газом при температуре 140-220°С в течение 0,5-1,0 ч.



 

Похожие патенты:

Изобретение относится к способу получения продуктов для регенерации воздуха на основе надпероксида калия, используемых в системах жизнеобеспечения человека (СЖО) на химически связанном кислороде.

Изобретение относится к составам химических веществ, используемых в изолирующих дыхательных аппаратах на химически связанном кислороде, и может быть использовано в производстве продуктов для регенерации воздуха на основе надпероксида калия.
Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в индивидуальных дыхательных аппаратах на химически связанном кислороде.

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в и индивидуальных дыхательных аппаратах на химически связанном кислороде.
Изобретение относится к способам получения продуктов для регенерации воздуха на основе надпероксида калия, используемых в системах жизнеобеспечения человека (СЖО) на химически связанном кислороде.

Изобретение относится к составам химических веществ, используемых в изолирующих дыхательных аппаратах на химически связанном кислороде, в частности к составам пусковых брикетов, генерирующих кислород.

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в и индивидуальных дыхательных аппаратах на химически связанном кислороде.

Изобретение относится к способам получения химических веществ, используемых в изолирующих дыхательных аппаратах на химически связанном кислороде. .

Изобретение относится к способам получения химических веществ, используемых в изолирующих дыхательных аппаратах на химически связанном кислороде, и может быть использовано в производстве продуктов для регенерации воздуха.

Изобретение относится к составам химических веществ, используемых в изолирующих дыхательных аппаратах на химически связанном кислороде, и может быть использовано в производстве продуктов для регенерации воздуха на основе надпероксида калия.

Изобретение относится к способу получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в индивидуальных дыхательных аппаратах на химически связанном кислороде. Способ получения продукта для регенерации воздуха заключается во взаимодействии стабилизированного сульфатом магния раствора пероксида водорода и гидроксидов натрия и калия с последующей дегидратацией полученного щелочного раствора пероксида водорода распылением его в токе сушильного агента. В щелочной раствор пероксида водорода после добавления гидроксида натрия перед добавлением гидроксида калия вводят галогениды щелочных металлов при мольном соотношении гидроксид калия/галогенид щелочного металла, равном 15-105. В качестве галогенида щелочного металла используют хлориды калия или натрия или их смесь. Изобретение обеспечивает продукт для регенерации воздуха, который обладает улучшенными кинетическими параметрами процесса поглощения диоксида углерода и обеспечивает большее время защитного действия при его эксплуатации в системах жизнеобеспечения человека. 1 ил., 7 пр., 1 табл.
Изобретение относится к способам получения продуктов для регенерации воздуха, используемых в системах жизнеобеспечения человека. Способ получения продукта для регенерации воздуха заключается во взаимодействии стабилизированного сульфатом магния раствора пероксида водорода и гидроксидов лития и калия с последующей дегидратацией полученного щелочного раствора пероксида водорода распылением его в токе сушильного агента. При этом в раствор пероксида водорода после его смешения с сульфатом магния и гидроксидом лития перед добавлением гидроксида калия вводят галогениды щелочных металлов при мольном соотношении гидроксид калия/галогенид щелочного металла, равном 15÷105. В качестве галогенида щелочного металла используют хлориды лития, натрия, калия или их смесь. Продукт для регенерации воздуха, полученный по изобретению, имеет более высокую динамическую емкость по диоксиду углерода на единицу массы и обеспечивает большее время защитного действия при его эксплуатации в системах жизнеобеспечения человека. 1 з.п. ф-лы, 1 табл., 5 пр.
Изобретение относится к области физиологии подводного плавания и может быть использовано с целью создания условий для жизнедеятельности подводников в период автономных походов подводных лодок (ПЛ). Способ создания условий для жизнедеятельности человека в специальном гермообъекте ВМФ включает использование не поддерживающей горения умеренно гипоксической кислородно-азотной среды с содержанием кислорода 16±1% и контролем ее параметров, с целью повышения работоспособности подводников в отсеках ПЛ повышают давление газовой среды до 120 кПа, при этом парциальное давление кислорода поддерживают на умеренно гипоксическом уровне 18,6-19,8 кПа, а парциальное давление азота на уровне 100,2-101,4 кПа. Эффективное повышение работоспособности подводников при длительном пребывании в условиях умеренной гипербарической гипоксии достигается за счет активизации процессов адаптации и увеличения функциональных резервов организма. Повышение безопасности проведения декомпрессии подводников при 10-15 мин линейном снижении давления до атмосферного с одновременной вентиляцией отсеков воздухом достигается за счет уменьшения пересыщения организма азотом, обусловленного снижением парциального давления азота в среде по сравнению с прототипом до уровня 100,2-101,4 кПа.

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в индивидуальных дыхательных аппаратах на химически связанном кислороде. Способ получения продукта для регенерации воздуха заключается во взаимодействии стабилизированного сульфатом магния раствора пероксида водорода и гидроксидов натрия и калия с последующим нанесением полученного щелочного раствора пероксида водорода на индифферентную пористую волокнистую матрицу и дегидратацией жидкой фазы на матрице. В стабилизированный сульфатом магния щелочной раствор пероксида водорода после добавления гидроксидов натрия и калия вводят галогениды щелочных или щелочно-земельных металлов при мольном соотношении гидроксид калия/галогенид щелочного металла равном 13-115. При этом в качестве галогенидов щелочных или щелочно-земельных металлов используют хлориды лития, натрия, калия, магния, кальция или их смесь. Продукт обладает улучшенными эксплуатационными характеристиками при его использовании в системах жизнеобеспечения человека. 1 з.п. ф-лы, 1 ил., 1 табл., 9 пр.
Изобретение относится к способам получения продуктов для регенерации воздуха, используемых как в коллективных системах регенерации воздуха, так и в индивидуальных дыхательных аппаратах на химически связанном кислороде. Способ получения продукта для регенерации воздуха заключается во взаимодействии стабилизированного сульфатом магния раствора пероксида водорода и гидроксидов натрия и калия с последующей дегидратацией полученного щелочного раствора пероксида водорода распылением его в токе сушильного агента. В щелочной раствор пероксида водорода после добавления гидроксидов натрия и калия вводят галогениды щелочноземельных металлов при мольном соотношении гидроксид калия/галогенид щелочного металла, равном 14-110. При этом в качестве галогенидов щелочноземельных металлов используют хлориды кальция или магния или их смесь. При эксплуатации продукта для регенерации воздуха, полученного по изобретению, в составе систем жизнеобеспечения человека отношение скорости процесса хемосорбции диоксида углерода и скорости процесса выделения кислорода (а следовательно, и коэффициент регенерации) имеет значение, близкое к оптимальному. За счет этого продукт для регенерации воздуха обеспечивает большее время защитного действия при его эксплуатации в системах жизнеобеспечения человека. 1 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к составам химических веществ, используемых в изолирующих дыхательных аппаратах на химически связанном кислороде, и может быть использовано в производстве продуктов для регенерации воздуха на основе надпероксида калия. Продукт для регенерации воздуха имеет следующий состав, мас.%: надпероксид калия 88; сульфат магния 6-10; диоксид кремния, синтезированный из хризотилового асбеста, 6-2. Регенеративный продукт данного состава обеспечивает высокое поглощение диоксида углерода и равномерное выделение кислорода на единицу массы на протяжении всего времени работы продукта в патроне изолирующего дыхательного аппарата, а также высокую степень отработки при его эксплуатации в изолирующем дыхательном аппарате по сравнению с аналогами за счет улучшения условий диффузии паров воды и диоксида углерода в объем гранул продукта. Это позволяет увеличить время защитного действия изолирующего дыхательного аппарата при тех же массогабаритных характеристиках. Кроме того, изолирующий дыхательный аппарат, снаряженный предложенным регенеративным продуктом, при эксплуатации имеет более низкую температуру циркулирующего воздуха на вдохе и значительно меньшее аэродинамическое сопротивление дыханию пользователя. Это обеспечивает более комфортные условия для пользователя и позволяет существенно расширить круг лиц, которые могут пользоваться данными дыхательными аппаратами. 3 ил., 2 табл., 5 пр.

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых в системах жизнеобеспечения человека при создании локальных дыхательных атмосфер. Способ получения продукта для регенерации воздуха заключается во взаимодействии раствора пероксида водорода и гидроксида калия с последующим нанесением полученного щелочного раствора пероксида водорода на индифферентную пористую волокнистую матрицу и дегидратацию жидкой фазы на матрице. В исходный раствор пероксида водорода перед добавлением гидроксида калия последовательно вводят сульфат магния и галогениды щелочных металлов. Галогениды щелочных металлов, в качестве которых используют фторид калия, хлориды лития, натрия, калия или их смеси, вводят в жидкую фазу через 5÷10 минут после добавления сульфата магния. Способ получения продукта для регенерации воздуха обеспечивает снижение на единицу конечной продукции исходного сырья (пероксида водорода) и энергии, необходимой для испарения воды на стадии дегидратации. 8 пр., 2 табл.
Наверх