Способ извлечения золота из минерального сырья


 


Владельцы патента RU 2475547:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") (RU)

Изобретение относится к гидрометаллургии благородных металлов, а именно к способу извлечения золота из минерального сырья. Способ включает агломерацию минерального сырья, выщелачивание золота и последующее извлечение золота из раствора. Перед выщелачиванием ведут фракционное разделение минерального сырья с получением шламовой фракции и основного объема крупнофракционного агломерированного минерального сырья. Шламовую фракцию подвергают фотокаталитическому кюветному выщелачиванию смешанными щелочным гипохлоритным и солянокислым растворами. Из основного объема крупнофракционного агломерированного минерального сырья проводят выщелачивание золота стадийно растворами, подаваемыми через перфорированные трубы. Первоначально выщелачивание ведут в пенетрационном режиме концентрированным цианидным раствором. Затем после периода выстаивания в диффузионном режиме выщелачивание ведут посредством подачи через перфорированные трубы воды и сжатого воздуха или слабого раствора цианидов. Техническим результатом изобретения является повышение эффективности за счет повышения извлечения золота и сокращения времени выщелачивания. 1 пр.

 

Изобретение относится к гидрометаллургии цветных и благородных металлов, а именно к гидрометаллургической переработке техногенных минеральных образований, и предназначено для извлечения промышленно ценных металлов.

Известен способ переработки эфелей и песков техногенных золотосодержащих россыпей, включающий рудоподготовку, выщелачивание раствором реагентов, выстаивание и извлечение золота, причем перед выщелачиванием золото концентрируют в придонной части кюветы потоками воды (см. патент RU №2112061, МПК С22В 11/00, опубл. 27.05.1998).

Эффективность данного способа недостаточно велика за счет переработки большого объема минерального сырья, значительных затрат времени и расхода реагента для выщелачивания.

Наиболее близким к заявляемому является способ извлечения золота из минерального сырья, включающий агломерацию минерального сырья, выщелачивание золота и последующее извлечение золота из раствора (см. патент RU №2268317, МПК С22В 11/00, опуб. 20.01.2006).

Недостатком данного способа является недостаточно высокая эффективность за счет низкого извлечения золота из неизбежно формирующихся при агломерации шламообразующих фракций, заполняющих поровое пространство, фильтрационного режима перемещения потока выщелачивающего раствора при преимущественно диффузионном режиме проникновения растворенного кислорода в микротрещины и поры окатышей и самих минеральных частиц, содержащих дисперсное золото.

Техническим результатом предлагаемого изобретения является повышение эффективности извлечения золота из минеральных образований.

Технический результат достигается тем, что способ извлечения золота из минерального сырья, включающий агломерацию минерального сырья, выщелачивание золота и последующее извлечение золота из раствора, отличается тем, что перед выщелачиванием ведут фракционное разделение минерального сырья с получением шламовой фракции и основного объема крупнофракционного агломерированного минерального сырья, шламовую фракцию подвергают фотокаталитическому кюветному выщелачиванию смешанными щелочным гипохлоритным и солянокислым растворами, а из основного объема крупнофракционного агломерированного минерального сырья проводят выщелачивание золота стадийно через перфорированные трубы: первоначально в пенетрационном режиме концентрированным цианидным раствором, затем, после периода выстаивания, в диффузионном режиме посредством подачи через перфорированные трубы дополнительной воды и сжатого воздуха или слабого раствора цианидов.

Отличительными признаками предлагаемого способа является то, что перед выщелачиванием производят фракционирование агломерированной (окомкованной) минеральной массы с выделением шламовой фракции и кюветном фотокаталитическом выщелачивании из нее золота смешиваемыми щелочным гипохлоритным и солянокислым растворами, выщелачивание золота из основных объемов крупнофракционного агломерированного минерального сырья производят цианидными растворами, подаваемыми в него постадийно через перфорированные трубы: первоначально в пенетрационном режиме, затем, после периода выстаивания, в диффузионном режиме, посредством подачи через перфорированные трубы дополнительной воды и сжатого воздуха. В результате этого из шламовой фракции формируемыми при облучении ультрафиолетовыми лампами активными компонентами хлоридных растворов (радикалами ОН*, ClO* и включающими их гидратированными ион-радикальными кластерами) осуществляется интенсивное (за счет ускоренного проникновение внутрь двойного электрического слоя) окисление поверхности минеральных частиц, содержащих дисперсное золото и его комплексообразование с активным хлором, а интенсивное выщелачивание золота из крупнофракционных окатышей происходит за счет ускоренной диффузии цианидов в минеральную матрицу за счет высокого градиента их концентраций на границе раздела фаз на стадии пенетрационного режима, набухания окатышей и появления в них микротрещин за счет осмотического давления воды, содержащейся в окатышах, эффекта движения концентрированного раствора и непрерывной подачи кислорода со сжатым воздухом на стадии перехода к диффузионному режиму движения реагента.

Таким образом, указанная совокупность отличительных признаков позволяет повысить эффективность способа выщелачивания золота за счет увеличения полноты извлечения и сокращения времени перехода золота в рабочий раствор, объемов переработки минерального сырья и экономии реагентов.

Способ осуществляется следующим образом.

Минеральная масса, содержащая золото, преимущественно тонкое и дисперсное, смешивается с водой (преимущественно активированной в электрохимическом или фотоэлектрохимическом реакторе), цементом и известью для ее агломерации. После чего агломерированную массу пропускают через сита или виброгрохот для отделения шламового класса размерами порядка - 1 мм. Далее шламовый класс помещают в кювету, в которую подают раствор щелочного гипохлорита натрия (калия, кальция) и одновременно низкоконцентрированный раствор соляной кислоты, полученный ее разбавлением технической водой или, преимущественно, путем мембранного электролиза солянокислого раствора добавлением в получаемый анолит соляной кислоты либо серной кислоты и хлорида натрия. Непосредственно после формирования активной пульпы с взаимодействующими реагентами, включают ультрафиолетовые лампы, устанавливаемые над поверхностью кюветы и облучают ее УФ-светом в диапазоне 180-300 нанометров, чем обеспечивают фотокаталитический синтез активных компонентов хлоридных растворов (радикалов ОН*, СlO* и включающих их гидратированных ион-радикальных кластеров), осуществляющих интенсивное (за счет ускоренного проникновения внутрь двойного электрического слоя) окисление поверхности минеральных частиц, содержащих дисперсное золото и его комплексообразование с активным хлором. Основную крупнофракционную часть минеральной агломерированной массы засыпают в кювету с гидроизолированными стенками и днищем и установленными в ней перфорированными пластиковыми трубами. После этого подают в нее через эти трубы небольшим количеством сжатого воздуха или кислорода концентрированный накислороженный цианидный раствор в пенетрационном режиме. Далее пропитанную концентрированным раствором минеральную массу выдерживают 2-5 суток, обеспечивая постепенную ее пропитку им и проникновение в минеральную матрицу в диффузионном режиме цианидов и кислорода. После чего подают в кювету через трубы накислороженную воду или слабый раствор цианидов с одновременным нагнетанием сжатого воздуха. При этом происходит интенсивный массообмен между твердой и жидкой фазами системы. На этой стадии растворенное ранее золото, сконцентрированное в пленочной и поровой воде, диффундирует в основную часть формируемого раствора обычной концентрации и перемещается с его потоком. В завершении происходит откачка аэрированного раствора через трубы и его обратная подача в кювету, до достижения максимальной концентрации в рабочем растворе золота. После чего раствор с выщелоченным золотом подается на сорбционные колонны.

Пример конкретного осуществления способа.

Способ осуществлялся на хвостохранилище, сформированном из сбросных продуктов переработки Новоширокинского месторождения золото-свинцово-цинковых (полиметаллических) руд.

Хвосты обогащения, содержащие золото в количестве 1.1 г/т совместно с цементом, известью и накислороженной водой с добавлением 1 г/л соды, прошедшей обработку в фотоэлектрохимическом реакторе, подвергали агломерации. После окомкования во вращающейся печи, минеральную массу подавали в барабанный грохот, где отделяли фракцию - 1 мм. Эту фракцию помещали в кювету и одновременно подавали на нее раствор щелочного 5%-ного гипохлорита натрия и низкоконцентрированный раствор соляной кислоты, полученный путем мембранного электролиза солянокислого раствора с добавлением в получаемый анолит серной кислоты из расчета 10 г/л и хлорида натрия. Непосредственно после формирования активной пульпы с взаимодействующими реагентами, включали установленные на внутренней стороне устанавливаемых над кюветой балок ультрафиолетовые лампы ДРТ-240, облучая ее УФ-светом в диапазоне 180-300 нанометров. Основную крупнофракционную массу засыпали фронтальным погрузчиком в кювету длиной 30 м, высотой (глубиной) 2 м и шириной 5 м, с гидроизолированными стенками и днищем и установленными в ней перфорированными пластиковыми трубами диаметром 25 мм. После этого подавали в нее через эти трубы сжатый воздух из расчета 1 м3/чac, накислороженный цианидный раствор (3 г/л) в пенетрационном режиме из расчета 50 л/м3*чac. Далее пропитанную концентрированным раствором минеральную массу выдерживали 3 суток, обеспечивая постепенную ее пропитку им и проникновение в минеральную матрицу в диффузионном режиме цианидов и кислорода. После чего подавали в кювету через трубы накислороженную воду (500 л/м3*час) с одновременным нагнетанием сжатого воздуха 10 м3/час. В завершении производили 5 циклов откачки и закачки аэрированного раствора через трубы, до достижения концентрации в рабочем растворе золота в количестве 3 мг/л. После чего раствор с выщелоченным золотом подавался на сорбционные колонны с активированным углем. Концентрация золота на угле составила 5 мг/г. Далее уголь отправлялся на десорбцию. Обеззолоченный раствор направляли на выщелачивание в следующей кювете.

Способ извлечения золота из минерального сырья, включающий агломерацию минерального сырья, выщелачивание золота и последующее извлечение золота из раствора, отличающийся тем, что перед выщелачиванием ведут фракционное разделение минерального сырья с получением шламовой фракции и основного объема крупнофракционного агломерированного минерального сырья, шламовую фракцию подвергают фотокаталитическому кюветному выщелачиванию смешанными щелочным гипохлоритным и солянокислым растворами, а из основного объема крупнофракционного агломерированного минерального сырья проводят выщелачивание золота стадийно растворами, подаваемыми через перфорированные трубы, первоначально выщелачивание ведут в пенетрационном режиме концентрированным цианидным раствором, затем после периода выстаивания в диффузионном режиме выщелачивание ведут посредством подачи через перфорированные трубы воды и сжатого воздуха или слабого раствора цианидов.



 

Похожие патенты:
Изобретение относится к области металлургии и горного дела, в частности к способу извлечения золота из лежалых хвостов намывных хвостохранилищ. .
Изобретение относится к цветной металлургии, в частности к способам извлечения золота из гравитационных концентратов. .

Изобретение относится к области гидрометаллургии, в частности к способу кондиционирования цианидсодержащих оборотных растворов при переработке золотомедистых руд с извлечением золота и меди, регенерацией цианида и организацией оборотного водоснабжения.

Изобретение относится к области цветной металлургии, в частности к способу переработки упорного сульфидного золотосодержащего сырья. .

Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано в горнообогатительной промышленности. .
Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано, в частности, для извлечения золота из глинистых руд методом кучного выщелачивания.

Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано для извлечения золота из медистой золотосодержащей руды. .

Изобретение относится к гидрометаллургическим методам извлечения золота из минерального сырья, в частности к способу бактериального окисления сульфидных золотосодержащих концентратов перед сорбционно-цианистыми процессами.

Изобретение относится к гидрометаллургическим методам извлечения золота из сульфидных концентратов с предварительным бактериальным окислением. .

Изобретение относится к области металлургии благородных металлов, в частности к гидрометаллургической переработке концентратов, содержащих благородные, цветные металлы и сульфиды.

Изобретение относится к цветной металлургии и предназначено для извлечения золота из упорной арсенопирит-пирротиновой руды

Изобретение относится к гидрометаллургии благородных металлов, в частности к извлечению благородных металлов из цианистых растворов и/или пульп по угольно-сорбционной технологии

Изобретение относится к гидрометаллургии золота и может быть использовано для переработки золотосодержащих руд, концентратов, промпродуктов, шламов и хвостов
Изобретение относится к способу извлечения дисперсного золота из упорных руд и техногенного минерального сырья

Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано для извлечения золота из хвостов золотоизвлекательных установок, перерабатывающих углистые сорбционно-активные руды и продукты обогащения. Способ извлечения золота из хвостов цианирования углистых сорбционно-активных руд и продуктов обогащения включает фильтрацию пульпы из хвостов на фильтр-прессах с возвратом фильтрата в цикл цианирования или на обезвреживание. Перед фильтрацией пульпу нагревают и фильтрацию проводят при температуре 70-130°C и давлении 0,2-0,6 МПа. После фильтрации кек на фильтре промывают предварительно нагретыми оборотными цианистыми растворами либо водой при температуре 70-130°C и давлении 0,2-0,6 МПа. Основной и промывной фильтраты объединяют, охлаждают и извлекают золото сорбцией или цементацией. Техническим результатом является дополнительное извлечение золота из хвостов цианирования углистых сорбционно-активных руд и продуктов обогащения. 1 ил., 2 табл., 2 пр.

Изобретение относится к способу переработки золотосодержащих руд с примесями ртути. Способ включает измельчение исходного материала, цианидное выщелачивание с получением продуктивного раствора золота с примесями ртути, введение сульфидсодержащего реагента для осаждения ртути, сорбцию золота на активированный уголь с возвратом оборотного цианидного раствора на выщелачивание, десорбцию золота и электролиз золота из десорбата. Сульфидсодержащий реагент вводят в виде водного раствора смеси сульфида натрия и окиси кальция при их массовом соотношении 4,3-4,4 на 900-1100 массовых частей оборотного цианидного раствора. После выделения ртути в виде труднорастворимого осадка суспензию разделяют с получением осветленного раствора, из которого проводят сорбцию золота на активированный уголь. Техническим результатом является практически полное отделение ртути без отрицательного влияния на сорбцию золота. 3 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к комбинированному способу кучного выщелачивания золота из упорных сульфидных руд. Способ включает сооружение непроницаемого основания, отсыпку штабеля руды, монтаж систем орошения выщелачивающих и сбора продукционных растворов, окисление сульфидной минерализации и последующее цианирование руды. При этом окисление сульфидной минерализации инициируют подачей раствора кислоты в сооруженный рудный штабель до значения величины рН в интервале 4,0-8,0, при этом в качестве окислителя используют гипохлорит кальция или гипохлорит натрия. Техническим результатом является повышение степени извлечения золота. 2 табл., 2 пр.

Изобретение относится к способу переработки сульфидных концентратов, содержащих благородные металлы. Способ включает смешивание концентрата с карбонатом натрия, карбонатом кальция, продуктом на основе оксида железа и углеродистым восстановителем. Затем ведут плавку шихты, разделение продуктов плавки штейна и шлака и регламентированное охлаждение расплава штейна. Охлажденный штейн в слитке выдерживают на воздухе до полного измельчения саморассыпанием. Измельченный штейн выщелачивают в воде. Осадок обжигают в среде кислородсодержащего газа. Полученный огарок выщелачивают в воде с последующим отделением раствора от нерастворимого остатка, который выщелачивают в щелочной среде в присутствии цианидов щелочных металлов. Полученный после отделения кек направляют на плавку совместно с исходным сульфидным концентратом, а водный и цианистый растворы от выщелачивания огарка перерабатывают с извлечением благородных металлов. Техническим результатом является повышение извлечения благородных металлов. 4 табл., 1 пр.
Изобретение относится к области гидрометаллургии благородных металлов. Способ извлечения золота из руд и концентратов включает загрузку в реактор предварительно измельченного исходного сырья и его обработку раствором цианида с циркуляцией пульпы и диспергированием путем подачи сжатого воздуха. При этом процесс обработки пульпы проводят с использованием двухлучевого оппозитного гидроакустического излучателя с оппозитным веерным излучением широкополосных с непрерывным спектром акустических колебаний и веерного распыления в рабочем объеме реактора облаков микропузырьков воздуха, активно засасываемого в зону разрежения, создаваемого излучателем. Техническим результатом изобретения является интенсификация процесса извлечения золота из руд и концентратов. 2 пр.
Изобретение относится к металлургии цветных и благородных металлов, в частности к извлечению золота из концентратов. Способ включает стадийное цианистое выщелачивание золота, на первой из которых измельченный исходный материал при перемешивании выщелачивают оборотным цианистым раствором. Из продукта первой стадии выделяют классификацией песковую фракцию. На второй стадии песковую фракцию выщелачивают в цианистом растворе с концентрацией NaCN 0,5-2 г/л. При этом растворы, полученные на второй стадии, направляют для выщелачивания исходного материала. Золото извлекают из растворов выщелачивания первой стадии. Кеки выщелачивания первой и второй стадий смешивают со связующим и пористым наполнителем, смесь гранулируют, складируют в виде штабеля и дополнительно извлекают золото из штабеля кучным выщелачиванием. В качестве пористого наполнителя используют золу сжигания каменных углей в количестве 5-10% от массы кеков. Кучное выщелачивание золота проводят обеззолоченным раствором с содержанием 0,1-0,5 г/л NaCN. Продуктивный раствор с кучного выщелачивания подкрепляют цианидом и направляют на стадию выщелачивания песковой фракции. Техническим результатом является повышение суммарного извлечения золота из концентратов на 4-5%. 2 з.п. ф-лы, 1 табл., 1 пр.
Наверх