Тепловой пункт системы отопления и горячего водоснабжения

Изобретение относится к области теплофикации и может использоваться в системах централизованного теплоснабжения и горячего водоснабжения зданий. Тепловой пункт системы отопления и горячего водоснабжения содержит подающий и обратный трубопроводы тепловой сети, являющиеся подающим и обратным трубопроводами системы отопления, трубопровод холодной воды и трубопровод горячей воды, теплообменник-водонагреватель системы горячего водоснабжения, перемычку, обратный клапан, трехходовой регулирующий клапан с датчиком температуры, установленный на обратном трубопроводе отопления, при этом прямой и обратный трубопроводы отопления соединены с теплообменником-водонагревателем через трехходовой регулирующий клапан. Перемычка подсоединена к участкам обратного трубопровода системы отопления и снабжена регулятором перепуска, обратный клапан установлен на обратном трубопроводе отопления перед трехходовым регулирующим клапаном, в качестве датчика трехходового регулирующего клапана использован датчик температуры, установленный на трубопроводе горячей воды, а соотношение диаметров трубопровода, соединяющего подающий трубопровод отопления и первый вход трехходового регулирующего клапана, и обратного трубопровода системы отопления, подсоединенного ко второму входу трехходового регулирующего клапана, находится в пределах 0,3≤D10/D2≤1,3, где D10 - диаметр трубопровода, соединяющего подающий трубопровод отопления и первый вход трехходового регулирующего клапана; D2 - диаметр обратного трубопровода системы отопления, соединенного со вторым входом трехходового регулирующего клапана. В качестве теплообменника-водонагревателя использован теплообменник пластинчатого типа. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области теплофикации и может использоваться в системах централизованного теплоснабжения и горячего водоснабжения зданий.

Известен способ теплоснабжения абонентов (SU №139418, кл. F24D 7/00, опубл. 1961), включающий совмещенную подачу тепла для отопления и горячего водоснабжения по двухтрубной тепловой сети, при этом применяют специальный график температур сетевой воды и устанавливают на вводах последовательно проточные теплообменники с регуляторами температур на +60° при открытой и на +70° при закрытой схемах горячего водоснабжения.

Известна система централизованного теплоснабжения (SU №1455155, кл. F24D 3/08, опубл. 1989), содержащая прямой и обратный трубопроводы теплосети, к первому из которых параллельно подключены трубопроводы с установленным на одном смесительным устройством системы отопления, соединенным посредством подмешивающего трубопровода, снабженного обратным клапаном, с обратным трубопроводом теплосети, а на другом последовательно-обратным клапаном, регулятором расхода и смесительным устройством подогревателя горячего водоснабжения, снабженного подмешивающим трубопроводом, причем подмешивающий трубопровод смесительного устройства подогревателя горячего водоснабжения подключен к подмешивающему трубопроводу смесительного устройства системы отопления перед обратным клапаном и снабжен регулятором расхода, установленным после соединения с упомянутым трубопроводом.

Основным недостатком аналога является недостаточная эффективность использования тепла обратной воды системы отопления, а также сложность конструктивного исполнения, в частности, известная система централизованного теплоснабжения содержит два регулятора расхода с датчиками.

Наиболее близким к заявленному является известное техническое решение, относящееся к тепловому пункту (RU №2372561, кл. F24D 19/00, опубл. 2009), содержащему подающий трубопровод тепловой сети и обратный трубопровод той же сети с установленными на них соответственно второй и первой ступенями водоподогревателя, подающий трубопровод системы отопления, перемычку с обратным клапаном, трубопровод холодной и трубопровод горячей воды, трехходовой клапан отопления с погодным регулятором, имеющим датчик температуры наружного воздуха и датчик температуры теплоносителя в трубопроводе системы отопления, а также обратный трубопровод системы отопления с насосом, присоединенный одновременно через первый вход трехходового клапана отопления и первую ступень водоподогревателя к обратному трубопроводу тепловой сети и через насос и перемычку к подающему трубопроводу системы отопления. Трубопровод холодной воды через первую ступень водоподогревателя соединен с входом его второй ступени. Выход второй ступени водоподогревателя подключен ко второму входу трехходового клапана отопления, а на трубопровод горячей воды установлен смесительный клапан прямого действия, к первому и второму входу которого по нагреваемой воде присоединены соответственно вход и выход второй ступени водоподогревателя.

Недостатком данного технического решения также является сложность технического выполнения известного теплового пункта, связанная с наличием двухступенчатой системы водонагрева, то есть использованием двух теплообменников, наличием двух трехходовых клапанов, нескольких датчиков, значительное количество соединительных трубопроводов и арматуры, что ведет к удорожанию системы и ее монтажа, к сложности обслуживания системы с двумя теплообменниками. Кроме того, в теплообменнике первой ступени ГВС двухступенчатой схемы расход греющего теплоносителя на практике в несколько раз превосходит расход нагреваемого теплоносителя, что ведет к значительному увеличению размеров.

Технической задачей предлагаемого изобретения является значительное упрощение выполнения системы отопления и горячего водоснабжения с одновременным достижением режима сопоставимых расходов греющей и нагреваемой сред и, соответственно, сопоставимых потерь напора в теплообменнике, а также экономия площадей размещения оборудования теплового пункта.

Поставленная задача решена тем, что тепловой пункт системы отопления и горячего водоснабжения содержит подающий и обратный трубопроводы тепловой сети, являющиеся подающим и обратным трубопроводами системы отопления, трубопровод холодной воды и трубопровод горячей воды, теплообменник-водонагреватель системы горячего водоснабжения, перемычку, обратный клапан, трехходовой регулирующий клапан с датчиком температуры, установленный на обратном трубопроводе отопления, при этом прямой и обратный трубопроводы отопления соединены с теплообменником-водонагревателем через трехходовой регулирующий клапан, а перемычка подсоединена к участкам обратного трубопровода системы отопления и снабжена регулятором перепуска, обратный клапан установлен на обратном трубопроводе отопления перед трехходовым регулирующим клапаном, в качестве датчика трехходового регулирующего клапана использован датчик температуры, установленный на трубопроводе горячей воды, а соотношение диаметров трубопровода, соединяющего подающий трубопровод отопления и первый вход трехходового регулирующего клапана, и обратного трубопровода системы отопления, подсоединенного ко второму входу трехходового регулирующего клапана, находится в пределах

0,3≤D10/D2≤1,3, где

D10 - диаметр трубопровода, соединяющего подающий трубопровод отопления и первый вход трехходового регулирующего клапана,

D2 - диаметр обратного трубопровода системы отопления, соединенного со вторым входом трехходового регулирующего клапана.

В тепловом пункте системы отопления и горячего водоснабжения в качестве теплообменника-водонагревателя использован теплообменник пластинчатого типа.

Сущность изобретение поясняется чертежом, представленным на фиг.1. Тепловой пункт системы отопления и горячего водоснабжения содержит подающий 1 и обратный 2 трубопроводы тепловой сети, являющиеся подающим 1 и обратным 2 трубопроводами системы отопления, трубопровод холодной воды 3 и трубопровод горячей воды 4, теплообменник-водонагреватель системы горячего водоснабжения 5, перемычку 6, обратный клапан 7, трехходовой регулирующий клапан 8 с датчиком температуры 9, установленный на обратном трубопроводе отопления. При этом прямой трубопровод отопления 1 через трубопровод 10 соединен с теплообменником-водонагревателем 5 через вход 8(1) трехходового клапана, а обратный трубопровод отопления 2 соединен с теплообменником-водонагревателем 5 через обратный клапан 7 и вход 8(2) трехходового клапана 8. Перемычка 6 подсоединена к участкам обратного трубопровода системы отопления и снабжена регулятором перепуска 11, обратный клапан 7 установлен на обратном трубопроводе отопления 2 перед трехходовым регулирующим клапаном 8, в качестве датчика трехходового регулирующего клапана использован датчик температуры 9, установленный на трубопроводе горячей воды 4, а соотношение диаметров трубопровода 10, соединяющего подающий трубопровод отопления 1 и первый вход 8(1) трехходового регулирующего клапана 8, и обратного трубопровода системы отопления 2, подсоединенного ко второму входу 8(2) трехходового регулирующего клапана 8, находится в пределах

0,3≤D10/D2≤1,3, где

D10 - диаметр трубопровода, соединяющего подающий трубопровод отопления и первый вход трехходового регулирующего клапана,

D2 - диаметр обратного трубопровода системы отопления, соединенного со вторым входом трехходового регулирующего клапана.

В тепловом пункте системы отопления и горячего водоснабжения в качестве теплообменника-водонагревателя 5 использован теплообменник пластинчатого типа.

Тепловой пункт системы отопления и горячего водоснабжения работает следующим образом.

Греющая теплосетевая вода по трубопроводу 1 подается в систему отопления и по трубопроводу 10 на первый вход 8(1) трехходового регулирующего клапана 8. Обратная вода из системы отопления по трубопроводу 2 подается на второй вход 8(2) трехходового регулирующего клапана 8. Излишек расхода обратной воды системы отопления по перемычке 6 сбрасывается через регулятор перепуска 11, настроенный на постоянный перепад давления, в обратный трубопровод теплосети 2. Трехходовой регулирующий клапан 8 по сигналу от датчика температуры 9, установленного на трубопроводе горячей воды 4 на выходе из теплообменника-водонагревателя 5, осуществляет регулирование температуры горячей воды на выходе из теплообменника 5 путем смешивания в определенном соотношении потоков теплосетевой воды и обратной воды из системы отопления 2. Смесь потоков теплосетевой воды и обратной воды из системы отопления после трехходового регулирующего клапана 8 поступает в теплообменник-водонагреватель ГВС 5, где происходит нагрев холодной водопроводной воды до необходимой заданной температуры, а после теплообменника-водонагревателя поток поступает в обратный трубопровод тепловой сети 2. Холодная вода по трубопроводу 3 подается на вход теплообменника-водонагревателя 5, где смешивается с циркуляционной водой ГВС, подающейся по трубопроводу 12, затем в теплообменнике-водонагревателе эта вода нагревается до заданной температуры и далее по трубопроводу горячей воды 4 поступает к потребителю. С помощью обратного клапана перекрывается участок обратного трубопровода, когда по нему не поступает горячая вода (в летнее время).

При соотношении диаметров трубопровода, соединяющего подающий трубопровод отопления и первый вход трехходового регулирующего клапана D10, и обратного трубопровода системы отопления, подсоединенного ко второму входу трехходового регулирующего клапана D2, в пределах 0,3≤D10/D2≤1,3 достигаются оптимальные параметры работы теплообменника-водонагревателя ГВС в течение отопительного периода по постоянному температурному графику по греющему контуру 70-25°C, по нагреваемому - 5-60°C. Кроме того, заявленное соотношение позволит работать теплообменнику-водонагревателю в режиме сопоставимых расходов греющей и нагреваемой среды. В зимний период при температуре наружного воздуха - 18-28°C и при отсутствии водозабора компенсация теплопотерь в системе циркуляции ГВС в предлагаемой схеме обеспечивается только за счет тепловой энергии обратной воды из системы отопления, что уменьшает общий расход сетевой воды в отличие от двух- и одноступенчатой схем. В переходный период заявленная схема работает с незначительным превышением (в пределах 10%) таких параметров, как температура обратной сетевой воды и расход сетевой воды по сравнению с работой двухступенчатой смешанной схемы (фиг.2).

Использование в заявленной системе в качестве теплообменника-водонагревателя пластинчатого теплообменника обеспечит расчетные температурные режимы работы данной системы.

Таким образом, предложенный тепловой пункт системы отопления и горячего водоснабжения позволяет повысить экономичность, надежность и компактность системы за счет экономии площадей в ИТП не только за счет уменьшения площади размещения оборудования, но также и за счет уменьшения зоны обслуживания оборудования, включая уменьшение количества соединительных трубопроводов и арматуры. Снижаются затраты на оборудование (теплообменники, запорная арматура, контрольно-измерительные приборы, трубы, изоляцию), а также его эксплуатацию и обслуживание (промывка, замена прокладок только для одного теплообменника). Осуществляется автоматический перевод режима работы системы ГВС зима/лето благодаря использованию трехходового регулирующего клапана смешения с электроприводом.

Данная схема нашла промышленное применение, которое не ограничивается применением только для подключения систем ГВС, а также может использоваться для подключения систем «теплых полов», подогрева воды в бассейне, вентиляции.

1. Тепловой пункт системы отопления и горячего водоснабжения, содержащий подающий и обратный трубопроводы тепловой сети, являющиеся подающим и обратным трубопроводами системы отопления, трубопровод холодной воды и трубопровод горячей воды, теплообменник-водонагреватель системы горячего водоснабжения, перемычку, обратный клапан, трехходовой регулирующий клапан с датчиком температуры, установленный на обратном трубопроводе отопления, при этом прямой и обратный трубопроводы отопления соединены с теплообменником-водонагревателем через трехходовой регулирующий клапан, отличающийся тем, что перемычка подсоединена к участкам обратного трубопровода системы отопления и снабжена регулятором перепуска, обратный клапан установлен на обратном трубопроводе отопления перед трехходовым регулирующим клапаном, в качестве датчика трехходового регулирующего клапана использован датчик температуры, установленный на трубопроводе горячей воды, а соотношение диаметров трубопровода, соединяющего подающий трубопровод отопления и первый вход трехходового регулирующего клапана, и обратного трубопровода системы отопления, подсоединенного ко второму входу трехходового регулирующего клапана, находится в пределах
0,3≤D10/D2≤1,3,
где D10 - диаметр трубопровода, соединяющего подающий трубопровод отопления и первый вход трехходового регулирующего клапана,
D2 - диаметр обратного трубопровода системы отопления, соединенного со вторым входом трехходового регулирующего клапана.

2. Тепловой пункт системы отопления и горячего водоснабжения по п.1, отличающийся тем, что в качестве теплообменника-водонагревателя использован теплообменник пластинчатого типа.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения для повышения их надежности. .

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения для повышения их надежности. .

Изобретение относится к области теплоэнергетики. .

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения для повышения их надежности. .

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения для повышения их надежности. .

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения для повышения их надежности. .

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения для повышения их надежности. .

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения для повышения их надежности. .

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения для повышения их надежности. .

Изобретение относится к области теплофикации и может использоваться в системах централизованного теплоснабжения и горячего водоснабжения зданий

Изобретение относится к теплотехнике и может быть использовано для отопления и горячего водоснабжения помещений жилищно-коммунальных, промышленных и сельскохозяйственных отраслей, автономных полевых стоянок, кабин и салонов, транспортных передвижных средств

Заявленная группа изобретений относится к устройствам для нагрева и терморегулирования воды. Плоский водонагреватель и способ регулирования температуры нагрева воды в плоском водонагревателе с двумя или более баками-накопителями, сообщающимися друг с другом, в котором подают холодную воду из системы водоснабжения в один расположенный выше по потоку бак, а затем в один или несколько расположенных ниже по потоку баков. Обеспечивают температуру нагрева посредством терморегуляторов, которые поддерживают ее путем включения/выключения нагревательных приборов. Обеспечивают максимальный объем потребления воды, получаемый за один отбор из плоского водонагревателя. Терморегуляторы позволяют поддерживать в расположенном ниже по потоку баке(-ах) температуру воды не выше заданной температуры хранения, а в расположенном выше по потоку баке более высокую температуру, равную заданной температуре хранения, увеличенной на заданную температуру перегрева, и отвечающую нормам безопасности. Техническим результатом заявленного изобретения является дополнительное уменьшение объема воды, содержащейся в плоском водонагревателе, по сравнению с объемом эквивалентного стандартного водонагревателя. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения, содержащая централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми трубопроводами к подающей и обратной сетевым магистралям. Местная система потребителя снабжена контроллером, соединенным с датчиком температуры на подающей сетевой магистрали, приводами запорных органов на подающем и обратном сетевых трубопроводах местной системы потребителя и с приводом циркуляционного насоса, установленного на подающем трубопроводе местной системы теплоснабжения за пиковым источником теплоты по ходу движения воды и соединенного трубопроводом-перемычкой с обратным трубопроводом местной системы потребителя. Техническим результатом изобретения является повышение надежности и качества работы местной системы теплоснабжения за счет ее отключения от подающей и обратной сетевых магистралей и использования пикового источника теплоты в качестве базового при понижении температуры сетевой воды в подающей сетевой магистрали ниже заданных величин. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения содержит централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, которые подключены подающими и обратными сетевыми трубопроводами к подающей и обратной сетевым магистралям. Местная система потребителя снабжена контроллером, соединенным с датчиком расхода на подающем сетевом трубопроводе местной системы потребителя, приводами запорных органов на подающем и обратном сетевых трубопроводах местной системы потребителя и с приводом циркуляционного насоса, установленного на подающем трубопроводе местной системы теплоснабжения за пиковым источником теплоты по ходу движения воды, и соединенного трубопроводом-перемычкой, с обратным трубопроводом местной системы потребителя. Техническим результатом изобретения является повышение надежности и качества работы местной системы теплоснабжения за счет ее отключения от подающей и обратной сетевых магистралей и использования пикового источника теплоты в качестве базового при понижении расхода в сетевом трубопроводе местной системы потребителя ниже заданных величин. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения содержит централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми трубопроводами к подающей и обратной сетевым магистралям. Местная система потребителя снабжена контроллером, соединенным с датчиками давления на подающей и обратной сетевой магистрали, приводами запорных органов на подающем и обратном сетевых трубопроводах местной системы потребителя и с приводом циркуляционного насоса, установленного на подающем трубопроводе местной системы теплоснабжения за пиковым источником теплоты по ходу движения воды, и соединенного трубопроводом-перемычкой, с обратным трубопроводом местной системы потребителя. Техническим результатом изобретения является повышение надежности и качества работы местной системы теплоснабжения за счет ее отключения от подающей и обратной сетевых магистралей и использования пикового источника теплоты в качестве базового при понижении давления сетевой воды в подающей и обратной сетевой магистрали ниже заданных величин. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения содержит централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми трубопроводами к подающей и обратной сетевым магистралям. Местная система потребителя снабжена контроллером, соединенным с датчиком температуры на подающей сетевой магистрали, приводами запорных органов на подающем и обратном сетевых трубопроводах местной системы потребителя и с приводом циркуляционного насоса, установленного на обратном сетевом трубопроводе местной системы потребителя. Техническим результатом изобретения является повышение надежности и качества работы местной системы теплоснабжения за счет ее отключения от подающей и обратной сетевых магистралей и использования пикового источника теплоты в качестве базового при понижении температуры сетевой воды в подающей магистрали ниже заданных величин. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения содержит централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми трубопроводами к подающей и обратной сетевым магистралям. Местная система потребителя снабжена контроллером, соединенным с датчиком давления на подающей сетевой магистрали, приводами запорных органов на подающем и обратном сетевых трубопроводах местной системы потребителя и с приводом циркуляционного насоса, установленного на обратном сетевом трубопроводе местной системы потребителя. Техническим результатом изобретения является повышение надежности и качества работы местной системы теплоснабжения за счет ее отключения от подающей и обратной сетевых магистралей и использования пикового источника теплоты в качестве базового при понижении давления сетевой воды в подающей сетевой магистрали ниже заданных величин. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения, содержащая централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми трубопроводами к подающей и обратной сетевым магистралям. Местная система потребителя снабжена контроллером, соединенным с датчиком расхода на подающей сетевой магистрали, приводами запорных органов на подающем и обратном сетевых трубопроводах местной системы потребителя и с приводом циркуляционного насоса, установленного на обратном сетевом трубопроводе местной системы потребителя. Техническим результатом изобретения является повышение надежности и качества работы местной системы теплоснабжения за счет ее отключения от подающей и обратной сетевых магистралей и использования пикового источника теплоты в качестве базового при понижении расхода сетевой воды в подающей сетевой магистрали ниже заданных величин. 1 ил.

Настоящее изобретение относится к области коммунальных нагревательных установок. Нагревательная установка для производства бытовой горячей воды, содержащая первый теплообменник, который соединен с двумя контурами с текучей средой и в котором первая текучая среда первичного контура передает тепловую энергию второй текучей среде вторичного контура, представляющей собой бытовую горячую воду. Кроме того, первичный контур содержит основной источник тепловой энергии и дополнительный источник тепловой энергии, причем эти источники в гидравлической цепи установлены последовательно, а дополнительный источник установлен по потоку выше основного источника; обводную трубу дополнительного источника, установленную в гидравлической цепи параллельно этому дополнительному источнику; трехпутевой клапан, выполненный с возможностью избирательно направлять первую текучую среду в дополнительный источник или в обводную трубу. При этом установка содержит блок управления, предназначенный для управления трехпутевым клапаном. Что позволяет упростить нагревательную установку за счет уменьшения количества входящих в их состав теплообменников и повысить эффективность и долговечность входящих в ее состав элементов при одновременном использовании возобновляемых типов энергии. 10 з.п. ф-лы, 11 ил.
Наверх