Полимерная композиция



Полимерная композиция
Полимерная композиция
Полимерная композиция
Полимерная композиция
Полимерная композиция
Полимерная композиция
Полимерная композиция

 


Владельцы патента RU 2477294:

Государственное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова (RU)

Изобретение относится к композиционным полимерным материалам на основе бутадиенового эластомера с высокой технологичностью переработки. Полимерная композиция на основе бутадиенового каучука и полиэтилена высокого давления содержит серу, сантекюр, оксид цинка, стеарин и оксид алюминия. Технический результат изобретения заключается в повышении эксплуатационных параметров при введении нанодобавок оксида алюминия в исходные полимерные композиционные материалы, а именно прочности и деформации при растяжении, модуля упругости. 7 ил., 1 табл.

 

Изобретение относится к композиционным полимерным материалам на основе синтетического бутадиенового эластомера с высокой технологичностью переработки, который может найти применение при получении композитов с повышенной прочностью при растяжении, сопротивлением раздиру, хорошими динамическими показателями и сопротивлением тепловому старению.

Известна резиновая смесь по патенту №2096429 на основе бутадиен-нитрильного каучука, включающая серу, каптакс, оксид цинка и технический углерод, содержит в качестве модификатора 2-стирилбензимидазол при следующем соотношении компонентов, мас.ч.: бутадиен-нитрильный каучук СКД-35 - 100; сера 1,4-1,6; каптакс 0,7-0;9; оксид цинка 2,2-2,4; 2-стирилбензимидазол 0,2-2,7.

Известна резиновая смесь по патенту №2096430, включающая бутадиен-нитрильный каучук, серу, каптакс, оксид цинка и технический углерод, дополнительно содержит в качестве модификатора производное бензимидазола при следующем соотношении компонентов, мас.ч.: бутадиен-нитрильный каучук 100; сера 1,4-1,6; каптакс 0,7-0,9; оксид цинка 4,6-5,2; технический углерод 40-70; производное бензимидазола 0,85-4,25.

Известна резиновая смесь по патенту №2086581 на основе бутадиен-нитрильного каучука, включающая мас.ч.: бутадиен-нитрильный каучук 100, сера 1,4-1,6 каптакс 0,7-0,9, оксид цинка 4,6-5,2, технический углерод 40-70, 2,2-бис(винил)бензимидазол 0,58-2,88 для получения вулканизатов с повышенной прочностью при растяжении, сопротивлением раздиру, хорошими динамическими показателями и сопротивлением тепловому старению.

Недостатками указанных смесей является недостаточная прочность и низкие модули упругости, а также применение дорогостоящего наполнителя.

Наиболее близким техническим решением, принятым за прототип, является резиновая смесь по патенту №2086582 на основе бутадиен-нитрильного каучука, которая содержит, мас.ч.: бутадиен-нитрильный каучук 100, сера 1,4-1,6, каптакс 0,7-0,9, оксид цинка 4,6-5,2, технический углерод 40-70, бензимидазольное производное абиетиновой кислоты 1,8-5,4.

Недостатками указанной смеси является недостаточная прочность и низкие модули упругости, а также применение дорогостоящего наполнителя.

Задачей изобретения является повышение эксплуатационных параметров: прочности, динамических механических характеристик, долговечности путем модификации смесей на основе эластомеров наночастицами оксида алюминия.

Поставленная задача решается модификацией полимерной композиции на основе бутадиенового каучука (СКД-35) и полиэтилена высокого давления (ПЭ) наночастицами оксида алюминия от 0,1-5,37 мас.ч. Полимерная композиция на основе бутадиенового каучука и полиэтилена высокого давления содержит серу, сантекюр, оксид цинка, стеарин и оксид алюминия при следующем соотношении компонентов, мас.ч.: СКД-35 - 80; ПЭ - 20; сера - 1,6; сантекюр - 0,72; оксид цинка - 2,4; стеарин - 0,8; оксид алюминия - 0,1-5,37.

В основу полимерной композиции входят широко используемые в промышленности бутадиеновый каучук (СКД-35) и полиэтилен (ПЭ), наполненные наноразмерными частицами оксида алюминия с удельной адсорбционной поверхностью 100 м2/г, средним размером частиц 20-30 нм.

Для определения содержания наночастиц оксида алюминия нами выведена формула:

с=0,1еn, где n=0, 1, 2, 3, 4, е=2,7

Таким образом, содержание оксида алюминия в смеси СКД-35+ПЭ составляло: в 1 системе - 0,1 мас.ч.; во второй - 0,271 мас.ч.; в третьей - 0,73 мас.ч.; в четвертой - 1,99 маc.ч; в пятой - 5,37 мас.ч. Такой экспоненциальный подход позволяет более плотно контролировать область малых добавок, что исключается при линейном распределении наполнителей при малых добавках.

Смешение полимеров с наполнителями осуществляли на лабораторных вальцах в расплаве полимеров при 393±5 К, время смешения 10 мин. Объекты исследования готовили прессованием на вулканизационном прессе при 423°±5 К и выдержке под давлением 100 атм в течение 10 мин.

Распределение частиц оксида алюминия изучали с помощью оптического микроскопа LATIMET в проходящем свете на тонких выпрессовках с толщиной 6-8 мкм. Степень увеличения устанавливали масштабированием по снимкам микрометрической линейки, полученным при тех же условиях, что и снимки смесей полимеров. Состояние поверхности объектов исследования было изучено сканирующим зондовым микроскопом Nanoeducator NT-MDT.

Прочность и деформацию при растяжении, модуль упругости определяли при 293К на разрывной машине РМ-122 при скорости растяжения 100 мм/мин. Диэлектрические характеристики изучались резонансным методом, суть которого заключается в измерении добротности измерительного контура и емкости включенного в этот контур конденсатора с исследуемым образцом при резонансе с параллельным контуром, содержащим конденсатор известной емкости. Измерения велись при частоте 50 кГц. Погрешность измерения диэлектрической проницаемости и тангенса угла диэлектрических потерь составили 5% и 3% соответственно. Поверхностное натяжение измерялось методом «большой капли».

Обнаружено, что добавки до 2 мас.ч. оксида алюминия в смесь СКД-35+ПЭ существенно изменяют их эксплуатационные характеристики.

Исследование прочностных характеристик композиции СКД-35+ПЭ показало, что добавление наноразмерного наполнителя оксида алюминия до 2 мас.ч. повышает прочность при разрыве и относительном удлинении от 50% до 150%.

1. При малых добавках частиц в смеси на концентрационные зависимости прочности поверхностного натяжения и диэлектрических характеристик проявляется максимум.

2. В этой области увеличивается деформируемость материала.

3. Образуется коагуляционная структура из наночастиц.

4. Коагулянты, заполняя микродефекты, способствуют увеличению прочности и других макроскопических параметров. Широкое использование материалов, конструкций на основе смесей полимеров в различных отраслях промышленности поставило задачу модификации их структуры для улучшения эксплуатационных характеристик. Практика показала, что применение различных наполнителей, пластификаторов, а также третьего полимерного составляющего способствует изменению их физико-химических параметров. Как правило, в этих случаях морфология такой сложной системы остается неисследованной и свойства изучаются при комнатной температуре. Вместе с тем известно [1], что в смесях двух полимеров имеются сложные структурные образования, определяемые особенностями структуры исходных компонентов и переходного (диффузионного) слоя. И возникает вопрос: как влияет на морфологию смесей полимеров третий компонент, как отражаются эти особенности на их эксплуатационные характеристики и как ведут себя такие системы в широком интервале температур и частот воздействия периодической силы.

В связи с этим представляет интерес изучение влияния концентрации наночастиц оксида алюминия (при малых добавках) на морфологию и макроскопические характеристики смесей полимеров. В качестве объектов исследования были взяты модельные смеси на основе СКД-35+ПЭ. Концентрация жесткоцепных полимеров в смеси составляла 20 мас.ч. а концентрация наночастиц с определялась по степенному закону с=0,1·еn, где n=0, 1, 2, 3, 4 (т.е. от 0,1 мас.ч. до 5,37 мас.ч.).

Оптическим методом в проходящем поляризованном свете изучалась структура наполненных смесей полимеров. Установлено, что в зависимости от концентрации частиц величина структурных образований (гетерогенность) меняется.

Особенности поверхности и морфология наполненных наночастицами смесей полимеров отражаются на их макроскопических характеристиках (таблица 1).

Таблица 1.
Зависимость модуля Юнга композиции СКД-35+ПЭ (80 мас.ч.+20 мас.ч.) от концентрации оксида алюминия.
Содержание наночастиц оксида алюминия (мас.ч.) чистый 0,1 0,271 0,73 1,99 5,37
Е н/м2 125 560 107,5 565,5 718,5 518

Из таблицы 1 видно, что добавление в массу эластомера СКД-35+ПЭ существенно повышает значение модуля упругости. Модификация данного композита небольшим количеством наноразмерных частиц (0,1 мас.ч.) в 4 раза повышает значение модуля упругости, соответственно, небольшие добавки оксида алюминия существенно меняют значения модуля упругости (таблица 1).

На фиг.1 даны микрофотографии структуры смеси СКД-35+ПЭ при соотношении компонентов 80 мас.ч.+20 мас.ч. по массе с содержанием оксида алюминия: а) 0 мас.ч.; б) 0,1 мас.ч.; в) 0,271 мас.ч.; г) 0,73 мас.ч.; д) 1,99 мас.ч.; е) 5,37 мас.ч. при увеличении в 500 раз.

Исследование состояния поверхности смеси СКД-35+ПЭ при соотношении компонентов 80 мас.ч.+20 мас.ч., модифицированной наночастицами оксида алюминия показало, что малое изменение концентрации частиц оксида алюминия существенно влияет на состояние поверхности смеси.

На фиг.2 представлены данные АСМ для поверхности смеси полимеров СКД-35+ПЭ при соотношении компонентов:

а) 80-мас.ч.+20 мас.ч.+0 мас.ч. оксида алюминия по массе, часть данной поверхности размером 30×30 мкм: видны частицы размерами 2,2×2 мкм и высотой 0,4-0,8 мкм.

б) 80 мас.ч.+20 мас.ч.+0,1 мас.ч. оксида алюминия по массе, часть данной поверхности размером 30×30 мкм: видны частицы размерами 2,3×2,2 мкм и высотой 0,2-0,4 мкм.

в) 80 мас.ч.+20 мас.ч.+0,271 мас.ч. оксида алюминия по массе, часть данной поверхности размером 30×30 мкм: видны частицы размерами 2,3×2,2 мкм и высотой 0,2-0,4 мкм.

г) 80 мас.ч.+20 мас.ч.+0,73 мас.ч. оксида алюминия по массе, часть данной поверхности размером 30×30 мкм: виден крупный пик размерами 5,8×17,1 мкм, высотой 2 мкм и маленькие бугорки высотой 0,1-0,3 мкм, размером 1,3-2,5 мкм.

д) 80 мас.ч.+20 мас.ч.+1,99 мас.ч. оксида алюминия по массе, часть данной поверхности размером 30×30 мкм: видны крупные частицы размерами 12×24 мкм, высотой 2-2,3 мкм.

е) 80 мас.ч.+20 мас.ч.+5,37 мас.ч. оксида алюминия по массе, часть данной поверхности размером 30×30 мкм: видны частицы размерами 16×21 мкм и высотой 2-4 мкм.

Аналогичную картину имеем и для других систем.

На фиг.3 изображена зависимость разрывного напряжения σр от концентрации оксида алюминия для СКД-35 (100 мас.ч.).

На фиг.4 - зависимость σр СКД-35 (80 мас.ч.)+ПЭ (20 мас.ч.) от концентрации наноразмерных частиц оксида алюминия.

Сравнение зависимости σp от концентрации наночастиц сажи на фиг.3 и 4 свидетельствует о том, что модификация эластомера жесткоцепным полимером с наночастицами оксида алюминия существенно повышает не только значения модуля упругости, но и значения разрывного напряжения при растяжении.

На фиг.5 изображена зависимость поверхностного натяжения (σ) СКД-35 от концентрации оксида алюминия.

На фиг.6 - зависимость поверхностного натяжения СКД-35 (80)+ПЭ(20) от концентрации оксида алюминия: σтж - твердое тело-жидкость; -σтп - твердое тело-газ,

На фиг.7(а, б) - зависимости тангенса угла диэлектрических потерь смеси полимеров и относительной диэлектрической проницаемости СКД-35(80 мас.ч.)+ПЭ(20 мас.ч.) от концентрации наноразмерных частиц оксида алюминия.

На концентрационных зависимостях прочности (фиг.4), поверхностного натяжения (фиг.5, 6) и диэлектрических параметров (фиг.7) наблюдаются экстремумы в области концентрации наночастиц 0,1-1 мас.ч.

При малых концентрациях наночастиц и определенных особенностях их поверхности термодинамически выгодно образование коагуляционной структуры. Они, структурируя полимерную матрицу вокруг себя, оказывают влияние на физико-химические свойства смесей полимеров. Разработанная схематическая модель наполненной смеси полимеров позволила объяснить полученные экспериментальные результаты.

Технический результат изобретения заключается в повышении эксплуатационных параметров при введении нанодобавок оксида алюминия в исходные полимерные композиционные материалы, а именно прочности и деформации при растяжении, модуля упругости,

Композиты на основе СКД и ПЭ находят широкое применение в производстве кабельной продукции, в обувной промышленности. При этом важными физическими параметрами, характеризующими эти изделия, являются такие величины, как прочность, работа адгезии, диэлектрическая проницаемость, модуль упругости, механические и диэлектрические потери.

Литература

1. Кулезнев В.Н. Смеси полимеров. - М.: Химия, 1980. 304 с.

2. Догадкин Б.А., Лукомская А.И. В кн.: Труды III конференции по коллоидной химии. - М., Изд-во АН СССР, 1956, с.363-370.

3. Липатов Ю.С.Физическая химия наполненных полимеров. - М.: Химия, 1977.304 с.

4. Бартенев Г.М., Зеленев Ю.В. Физика и механика полимеров. - М.:

Высшая школа. 1983. 391 с.

5. Ребиндер П.А. Физико-химическая механика дисперсных структур. - М.: Наука, 1966. С.3-16.

6. Толстая С.Н. и др., ДАН СССР, 1968. т.178, с.148-152.

Полимерная композиция на основе бутадиенового каучука, включающая серу, оксид цинка, отличающаяся тем, что она дополнительно содержит полиэтилен высокого давления, сантекюр, стеарин и оксид алюминия при следующем соотношении компонентов, мас.ч:

бутадиеновый каучук (СКД-35) 80
полиэтилен 20
оксид цинка 2,4
сера 1,6
сантекюр 0,72
стеарин 0,8
оксид алюминия 0,1-5,37

причем модификацию полимерной композиции проводят наночастицами оксида алюминия со средним размером частиц 20-30 нм по следующей формуле:
с=0,1еn,
где n=0, 1, 2, 3, 4, е=2,7.



 

Похожие патенты:

Изобретение относится к композиционным полимерным материалам на основе бутадиен-акрилонитрильного эластомера, которые находят широкое применение в производстве кабельной продукции, в обувной промышленности.

Изобретение относится к резиновым смесям на основе бутадиен-акрилонитрильного каучука. .

Изобретение относится к нитрильным каучукам, сокращенно обозначаемым как «NBR». .
Изобретение относится к средствам защиты, а именно к композиционным слоистым резинотканевым защитным материалам на основе бутадиен-нитрильного каучука с барьерным слоем, и может быть использовано для защиты от отравляющих и химических веществ.
Изобретение относится к области получения прессовочной композиции, предназначенной для изготовления изделий общепромышленного назначения. .
Изобретение относится к области получения резиновых смесей на основе эпихлоргидриновых и нитрильных каучуков для изготовления резинотехнических изделий, в частности топливных шлангов, работающих в условиях воздействия топлива, и может быть использовано в автомобильной промышленности.
Изобретение относится к полимерной композиции и может быть использовано в резинотехнической промышленности. .

Изобретение относится к химической промышленности, в частности к процессам модификации полимеров и получения ингибитора деструкции полимеров. .

Изобретение относится к способу изготовления герметизирующих прокладок для установки между деталями и узлами двигателей внутреннего сгорания, между фланцевыми соединениями в химической промышленности, для отделочных, шумо- и теплоизоляционных панелей.

Изобретение относится к полимерному материаловедению и может быть использовано для изготовления морозоустойчивых деталей - прокладок, покрытий, манжет, уплотнений, колец и других конструкционных изделий различного функционального назначения, работающих в режиме интенсивного истирания в среде нефти, масел, смазок и топлива.

Изобретение относится к композиционным полимерным материалам на основе бутадиен-акрилонитрильного эластомера с высокой технологичностью переработки, который может найти применение при получении вулканизатов с повышенной прочностью при растяжении, сопротивлением раздиру, хорошими динамическими показателями и сопротивлением тепловому старению
Изобретение относится к области авиационной техники, машиностроению, а именно к легким, ударопрочным, трудносгорающим пеноматериалам, которые могут быть использованы в качестве конструкционных и теплоизоляционных заполнителей, а также для изготовления элементов «непотопляемых» конструкций с малым коэффициентом водо- и топливопоглощения, например поплавков уровнемеров топливных баков двигательных установок
Изобретение относится к морозостойкой резиновой смеси и может быть использовано в автомобильной и резинотехнической промышленности для изготовления уплотнительных деталей, используемых в подвижных узлах механизмов, эксплуатирующихся в условиях низких температур

Изобретение относится к смесям полиамид-эластомер для изготовления формованных изделий

Изобретение относится к производству вулканизуемой резиновой смеси на основе бутадиен-нитрильных каучуков, перерабатываемой методом литья под давлением для изготовления резиновых уплотнительных деталей для гидравлических и пневматических устройств
Изобретение относится к производству композиционного материала на основе гидрированного бутадиен-нитрильного и акрилатного каучуков и может найти применение для изготовления пластин резиновых теплостойких, валов обрезиненных, резиновых уплотнительных деталей
Изобретение относится к производству резиновых смесей, используемых для изготовления эластичных резиновых элементов, используемых в производстве пакерно-якорного оборудования нефтегазодобывающей отрасли. Термостойкая резиновая смесь на основе комбинации бутадиен-нитрильного каучука и частично гидрированного бутадиен-нитрильного каучука включает вулканизирующий агент, соагент перекисной вулканизации, оксид цинка, технологическую добавку для резиновых смесей и технический углерод. Смесь содержит в качестве вулканизующего агента - новоперокс БП-40, в качестве соагента перекисной вулканизации - дельтагран HVA-2 70 GE, в качестве технологической добавки для резиновых смесей - мягчитель РС-1 и дополнительно - 2-меркаптобензтиазол, магнезию жженую, стеариновую кислоту, наугард 445, новантокс 8ПФДА, цинколет ВВ-222, технический углерод N 220, технический углерод П 514, олигоэфирокрилаты МГФ-9 и ТГМ-3 при следующем соотношении компонентов, мас.ч.: бутадиен-нитрильный каучук - 15,0-25,0; частично гидрированный бутадиен-нитрильного каучук - 75,0-85,0; новоперокс БП-40 - 10,0-11,0; дельтагран HVA-2 70 GE - 1,5-2,0; 2-меркаптобензтиазол - 0,3-0,5; оксид цинка - 3,0-5,0; магнезия жженая - 8,0-10,0; стеариновая кислота - 0,5-1,0; цинколет ВВ-222 - 1,0-2,0; мягчитель PC-1 - 1,0-2,0; наугард 445 - 1,0-3,0; новантокс 8ПФДА - 1,0-3,0; техуглерод N 220 - 15,0-20,0 техуглерод П 514 - 50,0-55,0; олигоэфирокрилат МГФ-9 - 8,0-12,0; олигоэфирокрилат ТГМ-3 - 8,0-12,0. Технический результат - увеличение упругопрочностных свойств вулканизата при температуре 150°C, обеспечение герметизирующей способности резиновых элементов пакерно-якорного оборудования, повышение сопротивления раздиру, а также увеличение работоспособности резинового элемента при высоких температурах. 1 табл.
Изобретение относится к термостойким резиновым смесям и может быть использовано в автомобильной, нефтяной и резинотехнической промышленности. Термостойкая резиновая смесь содержит бутадиен-нитрильный каучук, серу, тиазол 2 МБС, дифенилгуанидин, N-нитрозодифениламин, оксид цинка, стеарин, дибутилсебацинат, технический углерод и диафен ФП. Она дополнительно содержит противостаритель - порошковую форму Новантокса 8 ПФДА (Новантокс 8 ПФДА+шунгит). Технический результат - улучшение стойкости резины к термическому старению на воздухе, удешевление смеси за счет уменьшения количества противостарителя при сохранении достаточно хороших физико-механических свойств. 2 табл.
Наверх