Способ определения точки кюри металлических высокотемпературных ферромагнитных сплавов

Изобретение относится к технической физике и может быть использовано при определении температурной зависимости вязкости высокотемпературных металлических ферромагнетиков - сплавов на основе Fe, Co, Ni. Для осуществления заявленного способа используют установку фотометрического определения кинематической вязкости сплава. Образец сплава помещают в тигель на закручиваемой упругой нити внутри электронагревателя вертикальной электропечи, освещают зеркало, закрепленное на этой упругой нити, определяют посредством фотоприемного устройства траекторию светового луча. Далее включают электронагреватель и определяют параметры выходного сигнала фотоприемного устройства. Продолжают разогрев образца и регистрируют первое же изменение выходного сигнала фотоприемного устройства, происходящее в процессе разогрева образца. Регистрируют температуру начал изменения выходного сигнала, после чего делают вывод о том, что она индицирует точку Кюри образца. Технический результат: повышение информативности и точности данных термозависимостей физических свойств высокотемпературных металлических ферромагнетиков - сплавов на основе Fe, Co, Ni. 1 табл.

 

Предлагаемый способ относится к технической физике, а именно к способам контроля и измерения физических свойств веществ. Он предназначен для индикации точки Кюри в процессе фотометрических измерений крутильных колебаний тигля с расплавом при определении температурной зависимости вязкости высокотемпературных металлических ферромагнетиков - сплавов на основе Fe, Co, Ni. Дополнительными сферами применения являются металлургия, в частности, разработка технологии формирования параметров наноструктуры аморфизующихся сплавов для магнитопроводов, а также обучение студентов вузов, с дополнительной демонстрацией термозависимости различных физических свойств сплава.

Известно, что металлические ферромагнетики - сплавы на основе Fe, Со, Ni - теряют свои магнитные свойства при нагреве и превышении температуры t°k, называемой точкой Кюри для ферромагнетиков, и превращаются в парамагнетики. В точке Кюри t°k наблюдается ряд скачкообразных изменений в параметрах, характеризующих состояние исследуемого сплава, в частности, изменение его магнитной восприимчивости, скачок в теплоемкости этого сплава, резкое увеличение магнитокалорического эффекта, заключающегося в функциональной связи намагниченности сплава и изменения его температуры, и т.д. - см. А.И.Ахиезер. Общая физика. Электрические и магнитные явления: справочное пособие. Киев: Наукова думка, 1981, с.353, 372, рис.13.1-13.3; Р. Бозорт. Ферромагнетизм. Пер. с англ. М., ИЛ, 1956, с.573, 574, фиг.721. Поэтому в ряде случаев даже индикация t°k, а не только точное измерение t°k, может быть необходимой и достаточной. Например, это целесообразно в цеховых условиях при групповой оценке термозависимостей различных физических свойств, например, кинематической вязкости и магнитных характеристик выпускаемых либо проектируемых сплавов для электротехнической промышленности, используемых, в частности, при создании магнитопроводов. Знание точки Кюри t°k необходимо для оптимизации технологических режимов плавления металлических ферромагнитных сплавов, их охлаждения, закалки и проч., поскольку, например, быстрое охлаждение сплава ниже этой точки влияет на скорость процесса направленного атомного упорядочения.

Известно, что определение точки Кюри t°k может быть осуществлено посредством использования различных термомагнитных способов, основанных на использовании электромагнитных, тепловых, механических эффектов и, соответственно, узкоспециализированных установок для изучения связи магнитных характеристик материала и его температуры вблизи точки Кюри t°k - см. Р.Бозорт. Ферромагнетизм. Пер. с англ. М., ИЛ, 1956, с.573, 574, фиг.721 - аналог.

Недостатком этих способов является необходимость использования в экспериментах специализированных установок, не позволяющих получить, дополнительно к данным о точке Кюри t°k, групповые данные о нескольких свойствах исследуемого сплава, значительно превышающих температуру точки Кюри t°k и отражающих его высокотемпературные характеристики, например, кинематическую вязкость в текучем состоянии, что ограничивает информацию об этих сплавах. Кроме того, для проведения исследований по получению комплекса групповых температурных характеристик других физических свойств исследуемых сплавов, например, вязкости, требуется наличие дополнительного оборудования, что удорожает эксперименты, предполагает наличие высококвалифицированного обслуживающего персонала и требует дополнительного времени на проведение новых экспериментов.

Известен термомагнитный способ определения точки Кюри t°k металлических высокотемпературных ферромагнитных сплавов, основанный на контроле температурной зависимости параметров разогреваемого образца металлического высокотемпературного ферромагнитного сплава при его взаимодействии с магнитным полем - см. Ю.Стародубцев. Магнитомягкие материалы. Энциклопедический словарь-справочник. М.: Техносфера, 2011, с.440, рис.T1 - прототип. Способ основан на измерении термозависимости начальной магнитной проницаемости сплавов.

Недостатком прототипа является отсутствие возможности определения иных, не магнитных, свойств данного сплава, в частности, отражающих его высокотемпературные (1500°C-2000°C) свойства, например, кинематическую вязкость в текучем состоянии, а температурный диапазон прототипа незначительно превышает точку Кюри. Это не позволяет получить дополнительную информацию о высокотемпературной термозависимости немагнитных физических свойств сплавов, например, вязкости, когда исследование по определению требует текучего состояния расплава и его температура существенно выше точки Кюри t°k. Кроме того, не обеспечено упрощение, ускорение и удешевление экспериментов, а также повышение качества учебного процесса, например, по изучению групповых термозависимостей физических свойств высокотемпературных металлических ферромагнитных сплавов при обучении студентов.

Задачей предлагаемого способа является расширение функциональных возможностей устройств, предназначенных для изучения термозависимостей физических свойств высокотемпературных металлических ферромагнетиков - сплавов на основе Fe, Со, Ni, получение дополнительной информации о термозависимости их свойств, упрощение, ускорение и удешевление экспериментов, а также повышение качества учебного процесса при обучении студентов вузов.

Для решения задачи предлагается способ определения точки Кюри металлических высокотемпературных ферромагнитных сплавов.

В способе определения точки Кюри металлических высокотемпературных ферромагнитных сплавов, основанном на контроле температурной зависимости параметров разогреваемого образца металлического высокотемпературного ферромагнитного сплава при его взаимодействии с магнитным полем, для определения точки Кюри используют установку фотометрического определения кинематической вязкости сплава, при этом образец разогреваемого сплава помещают в тигель, подвешенный на закручиваемой упругой нити внутри электронагревателя вертикальной вакуумируемой электропечи, освещают световым лучом от источника света зеркало, закрепленное на упругой нити, определяют путем прямых измерений фотоприемным устройством траекторию отраженного светового луча, адекватную крутильным колебаниям тигля с данным образцом, включают электронагреватель, определяют параметры выходного сигнала фотоприемного устройства, причем сначала регистрируют параметры выходного сигнала фотоприемного устройства, установившиеся после окончания переходных процессов в начале процедуры разогрева образца металлического высокотемпературного ферромагнитного сплава, затем продолжают разогрев этого образца, регистрируют первое же изменение параметров выходного сигнала фотоприемного устройства, происходящее в процессе разогрева образца, регистрируют значение температуры, соответствующее началу изменения параметров выходного сигнала фотоприемного устройства, после чего делают вывод о том, что данная температура индицирует точку Кюри измеряемого образца металлического высокотемпературного ферромагнитного сплава.

Отличительные признаки предложенного технического решения - способа - обеспечивают расширение функциональных возможностей устройств, предназначенных для изучения термозависимостей физических свойств высокотемпературных металлических ферромагнетиков - сплавов на основе Fe, Co, Ni, получение дополнительной информации о термозависимости их свойств, упрощение, ускорение и удешевление экспериментов, а также повышение качества учебного процесса при обучении студентов вузов.

Способ определения точки Кюри t°k металлических высокотемпературных ферромагнитных сплавов осуществляют следующим образом.

Эксперимент осуществляют путем использования компьютеризованной фотометрической установки для определения кинематической вязкости высокотемпературных расплавов посредством вакуумной вертикальной электропечи - см. пат. РФ №2349898. Образец массой 10-30 г помещают в цилиндрический тигель из бериллиевой керамики с диаметром 10-15 мм и объемом несколько см куб., который подвешен на упругой закручиваемой нихромовой нити длиной около 0,8 м коаксиально в молибденовом цилиндрическом электронагревателе длиной 200 мм диаметром 42 мм. Вверху упругой нити находится электромагнитное устройство закручивания упругой нити, аналогичное статору и ротору микродвигателя, на 0,3 м ниже закреплено зеркало для отражения светового луча от источника света. Электронагреватель - низковольтный (6 В), мощность электротока 15-18 кВА, 50 - Гц. Измерение температуры, как и фотометрию, производят термопарой с погрешностью +/-3°C непрерывно в течение всего эксперимента. Ваккуумируют электропечь, после чего регистрируют отраженный световой луч - «зайчик» на входе фотоизмерительного устройства с двумя интегральными фотосенсорами TSL250 на входе. При движении луч последовательно попадает на фотосенсоры, выходной сигнал которых поступает в компьютер, где определяются амплитудно-временные характеристики этого сигнала, по которым рассчитывают затухание упругих вращательных колебаний тигля с образцом, которое связано известными формулами с измеряемыми свойствами сплава - см. пат. РФ №2349898.

Затем включают электронагреватель, после чего положение отраженного светового луча меняется из-за того, что электронагреватель создает мощное магнитное поле. При этом тигель с образцом сплава изменяет свое положение, притягивается к стенке электронагревателя, соприкасается с ней и перестает свободно колебаться внутри электронагревателя. Время переходного процесса, т.е. отрезок времени от включения электронагревателя и, соответственно, от какого-то установившегося значения параметров выходного сигнала фотоприемного устройства, до соприкосновения тигля со стенкой электронагревателя и, соответственно, до появления нового установившегося значения этих параметров, практически непредсказуемо и равно единицам секунд. При этом идет разогрев образца сплава, его скорость составляет, примерно, 100°C/мин, причем общее время разогрева образца металлического ферромагнитного сплава до текучего состояния в среднем составляет 10-15 мин. Для образца сплава массой приблизительно 25 г тепловая инерция его прогрева достаточно велика и составляет десятки секунд. В этом случае описать многофакторные термомагнитные явления, в частности, определить градиент температуры в образце с учетом характеристик магнитного поля электронагревателя, непредсказуемости местонахождения тигля с образцом сплава в этом поле очень сложно. Именно поэтому значения параметров выходного сигнала фотоприемного устройства, установившееся после окончания переходных процессов в начале разогрева образца ферромагнитного сплава, регистрируют как первоначальные. Затем продолжают разогрев этого образца и регистрируют изменение выходного сигнала фотоприемного устройства, происходящее в процессе разогрева. Для высокотемпературных сплавов на основе Fe, Co, Ni это изменение параметров происходит через несколько минут с момента включения электронагревателя. Когда с ростом температуры достигают точки Кюри t°k данного сплава, его ферромагнитные характеристики переходят в парамагнитные, влияние магнитного поля электронагревателя на сплав уменьшается. Тигель с образцом сплава перестает соприкасаться со стенкой электронагревателя и занимает первоначальное коаксиальное положение в нем, что регистрируют в виде изменения траектории отраженного светового луча и соответствующего изменения амплитудно-временных значений выходного сигнала фотоприемного устройства. В этот момент отмечают значение контролируемой температуры, равное или незначительно, на 10-20°C, теоретически превышающее точку Кюри t°k из-за тепловой инерции, что приемлемо для практического применения, и делают вывод о том, что данная температура индицирует точку Кюри t°k измеряемого сплава. С этой температуры автоматика установки включает электромагнитное устройство закручивания упругой нити, после чего продолжают эксперимент по измерению кинематической вязкости.

В качестве примера в таблице приведены экспериментально полученные авторами значения точки Кюри t°k для сплавов на основе Fe (несколько видов рельсовой стали) и Со (с разными добавками) на вышеописанной установке в лаборатории исследовательского центра физики металлических жидкостей УрФУ, г.Екатеринбург.

Таблица
Сплав k, °C(+/-20°C)
1 Рельсовая сталь Б511 780
2 Рельсовая сталь Н5464 630
3 Рельсовая сталь Н5453 790
4 Со - сплав с добавками В - 6%, Si - 8% 920
5 Со - сплав с добавками В - 4%, Si - 2% первый сплав 970
6 Со - сплав с добавками В - 4%, Si - 2% второй сплав 940
7 Со - сплав с добавками В - 6%, Si - 4% 920
8 Со - сплав с добавками В - 4% 910

Анализ таблицы показывает, что полученные для сплавов значения точки Кюри t°k, в сравнении со справочными значениями для чистых металлов: t°k (Fe)=770°C и t°k (Co)=1130°C - см. вышеуказанное Р.Бозорт… с.570, табл.84, соответствуют физическим представлениям о свойствах этих сплавов.

Поскольку точки Кюри T°k получены без применения специальных установок вместе с данными по кинематической вязкости сплава, предлагаемый способ обеспечивает расширение функциональных возможностей устройств, предназначенных для изучения физических свойств ферромагнетиков - металлов на основе Fe, Co, Ni, например, вязкости, при высоких температурах, получение дополнительной информации о термозависимости свойств исследуемых металлических высокотемпературных ферромагнетиков, упрощение, ускорение и удешевление экспериментов, а также повышение качества учебного процесса при обучении студентов вузов.

Предложенное техническое решение, содержащее вышеуказанную совокупность отличительных признаков, а также совокупность ограничительных и отличительных признаков не выявлены в известном уровне техники, что, при достижении вышеописанного результата, позволяет считать предложенное решение имеющим изобретательский уровень. Это решение обеспечивает технический результат - расширение функциональных возможностей устройств, предназначенных для изучения термозависимостей физических свойств высокотемпературных металлических ферромагнетиков - сплавов на основе Fe, Со, Ni, получение дополнительной информации о термозависимости их свойств, упрощение, ускорение и удешевление экспериментов, а также повышение качества учебного процесса при обучении студентов вузов.

Способ определения точки Кюри металлических высокотемпературных ферромагнитных сплавов, основанный на контроле температурной зависимости параметров разогреваемого образца металлического высокотемпературного ферромагнитного сплава при его взаимодействии с магнитным полем, отличающийся тем, что для определения точки Кюри используют установку фотометрического определения кинематической вязкости сплава, при этом образец разогреваемого сплава помещают в тигель, подвешенный на закручиваемой упругой нити внутри электронагревателя вертикальной вакуумируемой электропечи, освещают световым лучом от источника света зеркало, закрепленное на упругой нити, определяют путем прямых измерений фотоприемным устройством траекторию отраженного светового луча, адекватную крутильным колебаниям тигля с данным образцом, включают электронагреватель, определяют параметры выходного сигнала фотоприемного устройства, причем сначала регистрируют параметры выходного сигнала фотоприемного устройства, установившиеся после окончания переходных процессов в начале процедуры разогрева образца металлического высокотемпературного ферромагнитного сплава, затем продолжают разогрев этого образца, регистрируют первое же изменение параметров выходного сигнала фотоприемного устройства, происходящее в процессе разогрева образца, регистрируют значение температуры, соответствующее началу изменения параметров выходного сигнала фотоприемного устройства, после чего делают вывод о том, что данная температура индицирует точку Кюри измеряемого образца металлического высокотемпературного ферромагнитного сплава.



 

Похожие патенты:

Изобретение относится к способу определения концентрации ванадия в атмосферном воздухе методом масс-спектрометрии с индуктивно связанной плазмой (вариантам). .

Изобретение относится к нефтяной и газовой промышленности. .

Изобретение относится к области теплотехнических измерений и может быть использовано для оценки температурного режима работы пароперегревательных котельных труб из аустенитных сталей.

Изобретение относится к области магнетизма ферромагнетиков и может быть использовано для регистрации структурного изменения ферроматериала в сверхсильном магнитном поле.

Изобретение относится к измерительной технике и предназначено для измерения деформации грунта, горных пород, зданий, сооружений и железобетонных конструкций. .

Изобретение относится к области аналитического приборостроения и предназначено для определения содержания концентрации кислорода в различных газовых средах, например, в химической, нефтегазовой, металлургической промышленности, медицине, в системах контроля жизнеобеспечения в замкнутых объемах.

Изобретение относится к области измерения концентрации газов в газовых смесях. .

Изобретение относится к исследованию материалов с помощью тепловых средств, а именно к идентификации промежуточных фаз в монокристаллах силикатов. .

Изобретение относится к исследованию фазовых превращений в раствор-расплавных средах, а именно, к способам определения температуры начала кристаллизации в раствор-расплаве (температуры ликвидус).

Изобретение относится к разработке методов анализа полимерных материалов, в частности к способам инверсии фазовой структуры в смесях термопластичных пол-. .

Изобретение относится к химической технологии , в частности, к устройствам для определения констант фазового равновесия жидких топлив. .

Изобретение относится к способу определения кремниевой кислоты, может быть использовано в цветной металлургии и позволяет повысить селективность и расширить диапазон анализа.

Изобретение относится к области температурного контроля, основанного на измерении магнитных свойств материала в условиях повышенных температур. .
Наверх