Способ ионно-имплантационной обработки деталей из титановых сплавов


 


Владельцы патента RU 2479667:

Гонтюрев Василий Андреевич (RU)
Павлинич Сергей Петрович (RU)
Дыбленко Михаил Юрьевич (RU)
Гордеев Вячеслав Юрьевич (RU)
Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" (RU)
Смыслова Марина Константиновна (RU)
Селиванов Константин Сергеевич (RU)
Смыслов Анатолий Михайлович (RU)
Мингажев Аскар Джамилевич (RU)

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота. Ионную очистку проводят при энергии от 8 до 10 кэВ и плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа. Ионно-имплантационную обработку поверхности детали проводят при энергии от 25 до 30 кэВ. Ионную имплантацию проводят либо в непрерывном, либо в импульсном режиме. Техническим результатом изобретения является повышение предела выносливости и циклической долговечности деталей из титановых сплавов. 11 з.п. ф-лы, 1 пр.

 

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой турбины из титановых сплавов для повышения выносливости и циклической долговечности деталей.

Известен способ восстановления рабочей поверхности лопатки турбины теплового двигателя, включающий удаление отработанного слоя потоком ионов плазмы тугоплавких материалов и нанесение жаростойкого покрытия с последующей термообработкой (А.С. СССР №1832132, МПК С23С 14/02, 1993).

Однако известный способ очистки поверхности (А.С. СССР №1832132, МПК С23С 14/02, 1993) потоком ионов плазмы инертного газа не предусмотривает последующее ионно-имплантационное модифицирование, что не позволяет обеспечить комплекс необходимых повышенных эксплуатационных характеристик (выносливости, длительной прочности) деталей из сплавов на основе титана

Известен также способ модификации поверхности жаропрочных сплавов, включающий ионную очистку поверхности пучком ионов азота, ионную имплантацию и стабилизирующий отжиг (Патент РФ №2007501, МПК С23С 14/48,1994).

Основным недостатком этого способа являются недостаточно высокие эксплуатационные характеристики деталей из сплавов на основе титана.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ ионно-имплантационной обработки деталей из титановых сплавов, включающий ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота. (Патент РФ №2116378, МПК С23С 14/48, СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТНЫХ СЛОЕВ ДЕТАЛЕЙ ИЗ СПЛАВОВ НА ОСНОВЕ ТИТАНА. 1998 г.). При этом ионную очистку осуществляют ионами инертных газов аргона или ксенона с энергией 250-350 кВ, плотностью ионного тока 3-10 мА/см2, в течение времени более 3000 с, ионное легирование азотом проводят с энергией 30-50 мкА/см2, в течение 500-2500 с, а отжиг проводят при температуре 450-550°С и давлении остаточных газов 10-3-5·10-3 Па в течение 2-2,5 ч.

Основным недостатком аналога способа являются невысокие эксплуатационные характеристики деталей из сплавов на основе титана (предела выносливости, циклической долговечности). Это связано с недостаточно рациональными вариантами обработки поверхности деталей из титановых сплавов при использовании методов ионно-имплантационного воздействия. При этом повышение указанных характеристик особенно важно для таких деталей из титановых сплавов, как компрессорные лопатки газотурбинных двигателей (ГТД) и лопатки паровых турбин.

Задачей настоящего изобретения является создание такого поверхностного слоя материала детали, который позволил бы обеспечить повышенные эксплуатационные характеристики деталей из сплавов на основе титана (предела выносливости, циклической долговечности).

Техническим результатом заявляемого способа является повышение эксплуатационных характеристик (предела выносливости, циклической долговечности) деталей из сплавов на основе титана за счет обеспечения интенсификации ионно-имплантационной обработки поверхности деталей.

Технический результат достигается тем, что в способе ионно-имплантационной обработки деталей из титановых сплавов, включающем ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота, в отличие от прототипа, ионную очистку проводят при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа, а ионно-имплантационную обработку поверхности детали проводят при энергии от 25 до 30 кэВ; при этом возможны следующие варианты способа: создание требуемого вакуума производится турбомолекулярным насосом; создают вакуум от 10-5 до 10-7 мм рт.ст.

Технический результат достигается также тем, что в способе ионно-имплантационной обработки деталей из титановых сплавов ионную имплантацию проводят либо в импульсном режиме, либо в непрерывном режиме, а после ионно-имплантационной обработки проводят постимплантационный отжиг.

Технический результат достигается также тем, что в способе ионно-имплантационной обработки деталей из титановых сплавов в качестве деталей из титановых сплавов используются лопатки компрессора газотурбинного двигателя, или газотурбинной установки, или лопатка паровой турбины.

Для оценки эксплуатационных свойств лопаток паровых и газовых турбин были проведены следующие испытания. Образцы из титановых сплавов ВТ6, ВТ 18-У и ВТ9 были подвергнуты ионно-имплантационной обработке как по способу-прототипу (патент РФ №2116378, МПК С23С 14/48, 1998 г.), согласно приведенным в способе-прототипе условиям и режимам обработки, так и по предлагаемому способу.

Режимы обработки образцов по предлагаемому способу.

Ионная очистка: ионы аргона при энергии 6 кэВ - неудовлетворительный результат (Н.Р.); 8 кэВ - удовлетворительный результат (У.Р.); 10 кэВ (У.Р.); 12 кэВ (Н.Р.); плотность тока: 110 мкА/см2 (Н.Р.); 130 мкА/см2 (У.Р.); 160 мкА/см2 (У.Р.); 180 мкА/см2 (Н.Р.); время ионной очистки: 0,1 часа (Н.Р.); 0,3 часа (У.Р.); 1,0 часа (У.Р.); 1,5 часа (Н.Р.).

Ионная имплантация ионами N: энергия - 20 кэВ (Н.Р.); 25 кэВ (У.Р.); 30 кэВ (У.Р.); 40 кэВ (Н.Р.); доза - 1,2·1017 см-2 (Н.Р.); 1,6·1017 см-2 (У.Р.); 2·1017 см-2 (У.Р.); 3·1017 см-2 (Н.Р.); скоростью набора дозы - 0,4·1015 с-1 (Н.Р.); 0,7·1015 с-1 (У.Р.); 1·1015 c-1(У.P.); 3·1015 с-1(Н.Р.).

Создание требуемого вакуума производилось турбомолекулярным насосом; создавали вакуум от 10-5 до 10-7 мм рт.ст.

После обработки деталей проводили постимплантационный отжиг в одном вакуумном объеме установки за один технологический цикл.

Ионную имплантацию проводили как в импульсном, так и непрерывном режимах. В качестве деталей из титановых сплавов использовались лопатки компрессора газотурбинного двигателя, лопатки газотурбинной установки и лопатки паровой турбины.

Были проведены испытания на выносливость и циклическую прочность образцов из титановых сплавов ВТ6, ВТ 18-У и ВТ9 на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (σ-1) образцов в исходном состоянии составляет 400 МПа, у образцов, упрочненных по способу-прототипу - 420 МПа, а по предлагаемому способу - 440-480 МПа.

Таким образом, проведенные сравнительные испытания показали, что применение в способе ионно-имплантационной обработки деталей из титановых сплавов следующих приемов: ионную очистку ионами аргона при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа; ионно-имплантационную обработку поверхности детали ионами азота при энергии от 25 до 30 кэВ; создание требуемого вакуума турбомолекулярным насосом; создание вакуума от 10-5 до 10-7 мм рт.ст.; проведение ионной имплантации либо в импульсном режиме, либо в непрерывном режиме; проведение после ионно-имплантационной обработки постимплантационного отпуска; использование в качестве деталей из титановых сплавов лопаток компрессора газотурбинного двигателя или газотурбинной установки или лопаток паровой турбины позволяет увеличить, по сравнению с прототипом, выносливость и циклическую прочность, что подтверждает заявленный технический результат предлагаемого изобретения - повышение предела выносливости и циклической долговечности обработанных деталей.

1. Способ ионно-имплантационной обработки деталей из титановых сплавов, включающий ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота, отличающийся тем, что ионную очистку проводят при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 ч, а ионно-имплантационную обработку поверхности детали проводят при энергии от 25 до 30 кэВ.

2. Способ по п.1, отличающийся тем, что создание требуемого вакуума производят турбомолекулярным насосом.

3. Способ по п.2, отличающийся тем, что создают вакуум от 10-5 до 10-7 мм рт.ст.

4. Способ по любому из пп.1-3, отличающийся тем, что ионную имплантацию проводят в импульсном режиме.

5. Способ по любому из пп.1-3, отличающийся тем, что ионную имплантацию проводят в непрерывном режиме.

6. Способ по любому из пп.1-3, отличающийся тем, что после ионно-имплантационной обработки проводят постимплантационный отжиг.

7. Способ по п.4, отличающийся тем, что после ионно-имплантационной обработки проводят постимплантационный отжиг.

8. Способ по п,5, отличающийся тем, что после ионно-имплантационной обработки проводят постимплантационный отжиг.

9. Способ по любому из пп.1-3, 7-8, отличающийся тем, что в качестве деталей из титановых сплавов используют лопатки компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

10. Способ по п.4, отличающийся тем, что в качестве деталей из титановых сплавов используют лопатки компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

11. Способ по п.5, отличающийся тем, что в качестве деталей из титановых сплавов используют лопатки компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

12. Способ по п.6, отличающийся тем, что в качестве деталей из титановых сплавов используют лопатки компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.



 

Похожие патенты:

Изобретение относится к области машиностроения, а именно к способам ионной имплантации поверхностей деталей из титановых сплавов. .

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении. .

Изобретение относится к области машиностроения и может быть использовано при изготовлении деталей двигателей, а также в медицине и других отраслях промышленности.

Изобретение относится к получению легированного кварцевого стекла с тетраэдрической координацией атомов титана и может быть использовано при создании оптоэлектронных и светоизлучающих устройств.
Изобретение относится к области машиностроения, а именно к способам ионной обработки поверхности деталей из конструкционных сталей, в частности, типа 30ХГСН2А. .

Изобретение относится к ионно-лучевым технологиям получения материалов со специальными свойствами, а именно к способам и устройствам для ионной обработки изделий, и предназначено для изменения физических, механических и химических свойств поверхностных слоев металлов или сплавов.

Изобретение относится к вакуумной ионно-плазменной технологии, а именно к устройствам для обработки длинномерных изделий. .

Изобретение относится к области машиностроения, а именно к способам ионной обработки поверхности деталей из конструкционных сталей. .
Изобретение относится к области машиностроения, а именно к методам нанесения защитных покрытий на лопатки энергетических и транспортных турбин, в частности газовых турбин авиадвигателей.

Изобретение относится к плазменной обработке поверхности изделий и может быть использовано в машиностроении, электротехнике, энергетике, электронике и других областях

Изобретение относится к области машиностроения, а именно к методам нанесения теплозащитных покрытий на рабочие лопатки газотурбинных двигателей и энергетических установок

Изобретение относится к области машиностроения, а именно к способам ионной имплантации поверхности деталей из конструкционных сталей

Изобретение относится к способу получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова
Изобретение относится к технологии получения покрытий при изготовлении режущего инструмента

Изобретение относится к области атомного и химического машиностроения, а именно к способам нанесения покрытий для защиты деталей от водородной коррозии. Технический результат - повышение работоспособности, надежности и увеличение долговечности деталей с покрытием. Способ включает обезжиривание детали, размещение детали в вакуумной камере, откачку камеры до вакуума, предварительную очистку в среде инертного газа, ионную очистку/травление поверхности, осаждение слоев конденсацией с ионной бомбардировкой и охлаждение в вакууме, а затем в среде инертного газа. Размещение детали выполняют в точке фокусирования потоков не менее чем двух вакуумных дуговых источников плазмы. Предварительную очистку выполняют в среде ионизированного инертного газа. Ионную очистку/травление поверхности выполняют путем подачи на подложку сначала напряжения в диапазоне 200-500 В, затем повышают его плавно или ступенчато до 1-1,5 кВ. При этом для нанесения микрослоев покрытия используют сплавы на основе сочетаний металлов, выбранных из группы Cr, Ni, W, Nb, Zr, Ti, Al, Mo, распыляя их одновременно при вращении детали. 1 з.п. ф-лы, 2 ил.
Изобретение относится к области машиностроения и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора и турбины из легированных сталей и сплавов на никелевой основе для повышения выносливости и циклической долговечности деталей. Способ включает создание требуемого вакуума турбомолекулярным насосом, ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота. Вакуум создают от 10-5 до 10-7 мм рт.ст. Ионную очистку проводят при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа. Ионно-имплантационную обработку поверхности детали проводят либо в непрерывном, либо в импульсном режиме при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 2·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1. Повышаются эксплуатационные характеристики деталей. 16 з.п. ф-лы.

Изобретение может быть использовано при обработке длинномерных изделий для модифицирования поверхности и нанесения функциональных покрытий с использованием технологий вакуумной ионно-плазменной обработки, ионной имплантации и нанесения покрытий. Цилиндрическая вакуумная камера (1) установки имеет загрузочную дверь (11), оснащенную фланцевыми соединениями для установки технологических модулей (4, 5, 6, 7, 8). Установка содержит систему подачи газов, откачную систему, источники питания и блок управления. Приспособление для размещения обрабатываемых изделий выполнено поворотным. В качестве технологических модулей установка содержит, по крайней мере, один протяженный вакуумно-дуговой генератор металлической плазмы, протяженный генератор газовой плазмы, среднечастотный дуальный магнетрон, источник ионов металлов, источник ионов газов, а также источник напряжения смещения, выполненный с возможностью обеспечения ионной имплантации и/или осаждения покрытий. Техническим результатом изобретения является обеспечение одновременной или последовательной комплексной поверхностной обработки, включающей очистку и активацию поверхности, нанесение различного вида функциональных многослойных покрытий, модифицирование поверхности металлической и газовой плазмой. 16 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к области получения мощных ионных пучков, а именно к катодам, которые могут быть использованы в установках для ионной имплантации металлов и сплавов, работающих в непрерывном и импульсном режимах. Катод выполнен из сплава меди со свинцом. Свинец содержится в количестве 36 мас.%, соответствующем монотектической точке сплава, в микроструктуре которого суммарная протяженность межфазных границ на 1 мм поверхности катода составляет 6,5…16,0 мм/мм2. Технический результат - повышение износостойкости имплантируемых деталей. 4 ил., 1 табл.
Наверх