Способ многослойного нанесения покрытий на подложку


 


Владельцы патента RU 2492276:

Семенов Виктор Никонорович (RU)

Изобретение относится к технологии получения покрытий при изготовлении режущего инструмента. Осуществляют нанесение покрытия на подложку из высокоуглеродистой стали в среде инертного газа. Сначала выполняют очистку поверхности подложки потоком ионов инертного газа методом конденсации с ионной бомбардировкой (КИБ) при температуре 550-600°С. Никелевое покрытие наносят методом КИБ при температуре 550-600°С. Затем осуществляют его отжиг с повышением температуры до 650-700°С и последующее нанесение карбида хрома. Изобретение позволяет повысить плотность и однородность покрытий и адгезию между подложкой и первым слоем покрытия из никеля, а также - между покрытиями из никеля и карбида хрома. 1 пр.

 

Изобретение относится к технологии получения покрытий, стойких в процессе обработки деталей из жаропрочных и высокопрочных сплавов, и может быть использовано при изготовлении режущего инструмента, работающего при точении сверхтвердых металлов.

Режущий инструмент с многослойным покрытием успешно работает при точении вышеназванных металлов и сварного шва, имеющего даже большую твердость в сравнении с указанными металлами. Наиболее приемлемым для получения никелевого покрытия является метод конденсации с ионной бомбардировкой (КИБ). Для покрытия из карбида хрома используется способ плазменно-кластерного типа. Плазменно-кластерная технология основана на подаче напыляемого порошкового материала микронного размера в канал плазматрона. В сопле плазматрона и в струе плазмы, истекающей в вакуумную камеру с напыляемым материалом (Cr3C3), происходят различные теплофизические процессы: плавление, диспергирование и испарение. Дальнейшее расширение, струи, плазмы в вакуумной камере приводит к тому, что парообразная фаза материала (Cr2C3)

начинает конденсироваться на поверхности инструмента с образованием кластеров, из которых в дальнейшем образуются наночистицы.

Оба способа позволяют обеспечить плотные и равномерные по толщине покрытия.

Известен способ вакуумного ионно-плазменного нанесения покрытий на подложку в среде инертного газа, включающий создание разности потенциалов между подложкой и катодом, очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия с последующим отжигом. При этом ионный поток и поток испаряющегося материала, идущий от катода к подложке, экранируют. Однако данный способ используется для нанесения покрытий на рабочее колесо турбины энергетической установки, выполненное из высоколегированного сплава на основе никеля, а не на режущий инструмент (см. патент RU 2192501, кл. С23С 14/34, дата публикации 10.11.2002).

Известен также способ получения многослойного покрытия на режущем инструменте, включающий последовательное формирование методом вакуумно-дугового синтеза адгезионного, переходного и износостойкого слоев тугоплавких соединений. Для этого формируют адгезионный слой, содержащий, по крайней мере, один элемент из состава переходного слоя и/или его соединение, формируют переходный слой, содержащий тугоплавкое соединение металлов IV и/или V групп Периодической системы элементов, по крайней мере, один из которых из состава износостойкого слоя, и формируют износостойкий слой с нанокристаллической структурой, содержащий тугоплавкие соединения металлов из IV и/или V, и/или VI групп, легированные алюминием (см. патент RU 2413790, кл. С23С 14/06, дата публикации 27.11.2011). Однако при осуществлении этого способа проводится ускоренный нагрев и ускоренное охлаждение. Такой режим не обеспечивает адгезию между подложкой и покрытиями, и, кроме того, разность между коэффициентами линейного расширения материалов подложки и покрытий приводит к образованию трещин в покрытиях.

Предлагаемый способ нанесения покрытий на подложку из высокоуглеродистой стали в среде инертного газа включает очистку поверхности подложки потоком ионов инертного газа методом КИБ при температуре 550-600°С, нанесение никелевого покрытия методом КИБ при температуре 550-600°С и его отжиг с повышением температуры до 650-700°С и последующее нанесение карбида хрома плазменно-кластерным методом. Ионы инертного газа возникают при образовании плазмы за счет расщепления инертного газа.

Технический результат, достигаемый при осуществлении изобретения - повышение плотности и однородности покрытий, наносимых на заготовку режущего инструмента, и адгезии между подложкой и первым покрытием - никелем, и между покрытиями никелем и карбидом хрома, что способствует увеличению стойкости режущего инструмента при циклических нагрузках.

Процесс осуществляется следующим образом. Вначале заготовку (под режущий инструмент) обрабатывают в ацетоне с последующей обдувкой сжатым воздухом. Это позволяет удалить загрязнения с поверхности заготовки. Далее проводят установку заготовки в приспособление в рабочем объеме камеры установки (КИБ). Затем осуществляют вакуумирование рабочего объема установки до 1*10-5 мм. рт. ст. и после этого вводят в него аргон до достижения давления 4*10-2 мм. рт. ст. После этого в зоне воздействия дугового разряда создают электрическую мощность 2-3 кВт. Это обеспечивает формирование потока, содержащего ионы аргона, и осуществление процесса очистки поверхности подложки на заготовке режущего инструмента ионами аргона. Время очистки составляет 30-40 мин. После очистки поверхности наносят слой никеля толщиной 5-7 мкм и производят последующий отжиг в этой же установке при температуре 550±50°С. Время выдержки составляет 80-100 мин. Температура достигается в процессе бомбардировки поверхности (подложки) ионами аргона и частично ионами и атомами никеля. Никель для нанесения используется порошковый. Нанесение его осуществляют с увеличением электрической мощности в дуге до 4-6 кВт. Отжиг позволяет уплотнить никелевое покрытие за счет процесса самодиффузии его атомов и обеспечить адгезию никеля в подложку благодаря процессу диффузии. Никель с железом имеют сродство между собой. Далее заготовку с никелевым покрытием охлаждают в камере до температуры 100±10°С и затем устанавливают ее в плазменно - кластерную установку. После вакуумирования рабочего объема до 10-2 мм. рт. ст. заполняют рабочий объем аргоном до давления 50 Па. Затем осуществляют напыление порошка карбида хрома на никелевое покрытие.

Расход порошка карбида хрома составляет до 5 г/сек; температура газа доходит до 3300°С, давление в плазматроне до 70-100 Па, скорость нанесения покрытий до 1 мкм/сек. Охлаждение заготовки осуществляют, как в установке КИБ, так в и ионно-кластерной до температуры 100±10°С.

Ниже приведен пример осуществления предложенного способа. В качестве подложки использовали стержень - сталь 45 (основа - железо с добавкой углерода 0,45%). Перед началом проведения процесса нанесения покрытия рабочую камеру КИБ вакуумировали до 1*10-5 мм. рт. ст. и после того вводили в нее аргон до достижения давления 4*10-2 мм. рт. ст. Далее зажигали дугу мощностью до 3±0,1 кВт и осуществляли очистку поверхности (подложки) от окислов и одновременно при этом достигали развитой поверхности (подложки) для улучшения связи (адгезии) покрытия (никеля) с подложкой.

После очистки поверхности подложки наносили на нее покрытие из никеля толщиной 5+2 мкм. Температура на подложке составляла 550±50°С. Контроль температуры осуществляли пирометром. Далее проводили отжиг покрытия. Температуру на подложке поднимали до 650-700°С бомбардировкой подложки ионами аргона. Выдержку при этой температуре осуществляли в течение 10-15 мин. Далее заготовку с никелевым покрытием охлаждали в камере до температуры 100±10°С и затем устанавливали ее в установку плазменно-кластерного типа. После вакуумирования рабочего объема до 1 Па (1*10-2 мм рт. ст.) в камеру подавали разогретый плазмотроном газ (азот) с порошком карбида хрома. Устанавливалось динамическое давление около 50 Па (0,5 мм рт. ст.) Время нанесения покрытия составляло 5-10 мин. Толщина покрытия карбида хрома была в пределах 15-25 мкм. Скорость нанесения покрытий никеля составила 0,1 мкм/мин и карбида хрома 2-3 мкм/мин. После окончания нанесения покрытий осуществляли охлаждение в установке до температуры 100±10°С. Затем подложку охлаждали на воздухе.

Качество покрытий оценивали с помощью металлографического исследования. Установлено, что покрытия плотные, отмечена диффузия никеля в подложку и в покрытие карбида хрома. Все это доказывает достаточную прочность сцепления покрытий друг с другом и никеля с подложкой.

Способ нанесения покрытия на заготовку режущего инструмента из высокоуглеродистой стали, включающий очистку поверхности заготовки и нанесение многослойного покрытия, отличающийся тем, что очистку поверхности заготовки осуществляют потоком ионов аргона методом конденсации с ионной бомбардировкой (КИБ) при температуре 550-600°С, затем наносят слой никеля методом КИБ при температуре 550-600°С, после чего осуществляют его отжиг при температуре 650-700°С и нанесение слоя кластерного покрытия карбида хрома.



 

Похожие патенты:
Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов.

Изобретение относится к химическим производствам, в частности к металлоксидному электроду, технологии его изготовления и применению в аналитической химии. .
Изобретение относится к способу нанесения покрытий на металлические подложки, включая подложки из железа, такие как холоднокатаная сталь и сталь с гальваническим покрытием.
Изобретение относится к композитному покрытию из металла и углеродных нанотрубок (CNT) и/или фуллерена на металлических лентах или заранее отштампованных металлических лентах, а также к способу получения металлической ленты.
Изобретение относится к области получения декоративных покрытий на изделиях из стекла, керамики и других материалов с оптически гладкой поверхностью и может быть использовано при нанесении декоративных покрытий на товары народного потребления, отделочно-декоративные и художественные изделия в различных областях народного хозяйства.

Изобретение относится к металлизирующей предварительной обработке оцинкованных и/или покрытых цинковым сплавом стальных поверхностей для улучшения адгезии поверхности и исключения отслаивания лака, вызванного дефектами в цинковой оболочке полосовой стали.

Изобретение относится к способу получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова.

Изобретение относится к области машиностроения, а именно к способам ионной имплантации поверхности деталей из конструкционных сталей. .

Изобретение относится к области машиностроения, а именно к методам нанесения теплозащитных покрытий на рабочие лопатки газотурбинных двигателей и энергетических установок.

Изобретение относится к плазменной обработке поверхности изделий и может быть использовано в машиностроении, электротехнике, энергетике, электронике и других областях.
Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. .

Изобретение относится к области машиностроения, а именно к способам ионной имплантации поверхностей деталей из титановых сплавов. .

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении. .

Изобретение относится к области машиностроения и может быть использовано при изготовлении деталей двигателей, а также в медицине и других отраслях промышленности.

Изобретение относится к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий и может быть использовано в машиностроении для повышения надежности и деталей машин и инструмента.
Наверх