Термохимический датчик


 


Владельцы патента RU 2483297:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" (RU)

Изобретение относится к газовому анализу и может быть использовано в газоанализаторах для определения концентрации водородсодержащих горючих газов в окружающей среде и позволяет расширить диапазон измерения концентрации водородсодержащих горючих газов до 100 об.%. Термохимический датчик содержит измерительную схему из рабочего и сравнительного элемента, каждый из которых выполнен в виде резистора, изготовленного в виде нагревательной спирали, запеченной внутри пористого носителя, в рабочем элементе которого пористый носитель покрыт каталитически активным слоем, а в сравнительном элементе пористый носитель покрыт каталитически неактивным слоем, в рабочем элементе между пористым носителем и каталитически активным слоем находится промежуточный слой состава BaO(CeO)0,9(Nd2O3)0,1, а в качестве материала каталитически активного слоя используется состав (La2O3)0,6(SrO)0,4MnO2. 3 табл., 1 ил.

 

Изобретение относится к газовому анализу и может быть использовано в газоанализаторах для определения концентрации водородсодержащих горючих газов в окружающей среде.

Известен термохимический газоанализатор (патент RU №2119663), содержащий рабочий (чувствительный) элемент в виде спирали, запеченной внутри пористого носителя, обработанного катализатором и установленного в держателе, в качестве держателя используется диэлектрическая подложка с размещенным на ней пленочным нагревателем, выполняющим функцию компенсации изменений температуры окружающей среды. Недостатком данного технического решения является малый диапазон измерения концентрации горючих газов, максимальное значение диапазона не превышает 10 об.%. При увеличении процентного содержания горючего газа в окружающей среде проявляется нестабильность выходных характеристик.

Наиболее близким аналогом является конструкция термохимического датчика (а.с. SU №1767405), содержащего измерительную схему из резисторов, покрытого катализатором рабочего и каталитически неактивного сравнительного чувствительных элемента, выполненных из нагревательной спирали, которая запечена внутри пористого носителя. Рабочий элемент покрыт катализатором, состоящим из оксидов кобальта и алюминия, сравнительный элемент покрыт каталитически неактивным составом из оксидов кобальта, меди и хрома. Такой состав позволяет улучшить избирательность датчика по отношению к водороду в присутствии других горючих газов. К недостаткам этой конструкции можно отнести малый диапазон измерения концентрации водорода: термохимический датчик не определяет процент содержания газа, превышающий 10 об.%; а также неспособность реагировать на присутствие водорода в бескислородной среде с небольшим процентным содержанием других горючих газов.

Целью изобретения является расширение диапазона измерения концентрации водородсодержащих горючих газов до 100 об.%.

Поставленная цель достигается тем, что термохимический датчик содержит измерительную схему из рабочего и сравнительного элемента, каждый из которых выполнен в виде резистора постоянного сопротивления, изготовленного в виде нагревательной спирали, запеченной внутри пористого носителя, в рабочем элементе которого пористый носитель покрыт каталитически активным слоем, а в сравнительном элементе пористый носитель покрыт каталитически неактивным слоем, в рабочем элементе между пористым носителем и каталитически активным слоем находится промежуточный слой состава BaO(CeO)0,9(Nd2O3)0,1, а в качестве материала каталитически активного слоя используется состав (La2O3)0,6(SrO)0,4MnO2.

Особенностью термохимического датчика является то, что материал промежуточного слоя обладает протонной проводимостью, а материал каталитически активного слоя является катализатором двух типов реакций: реакции разложения водородсодержащего горючего газа на составляющие его элементы, в том числе и на ионы H2 (протоны), и реакции окисления элементов горючего газа. Ионы водорода диффундируют в промежуточный слой, повышая его проводимость.

Конструкция термохимического датчика представлена на фиг.1. На установочную платформу 1 с закрепленной на ней разделительной перегородкой из слюды 2 крепятся рабочий 3 и сравнительный 4 элементы. Элементы крепятся к проволочным выводам 5, вмонтированным в установочную платформу. Защитный колпачок 6 из пористого материала защищает датчик от механических повреждений извне, не препятствуя прохождению горючих газов.

Рабочий 3 и сравнительный 4 элементы содержат платиновые спирали 7. Спираль каждого элемента запечена внутри пористого носителя 8 из оксида алюминия Al2O3. Промежуточный слой 9 рабочего элемента состава BaO(CeO)0,9(Nd2O3)0,1 нанесен на пористый носитель. Данный состав промежуточного слоя является оптимальным с точки зрения протонной (ионной) проводимости, которая достигает 10 mSm/cm (600°C) и 20 mSm/cm (800°C) (F.Chen, O.T.Sorensen, G.Meng, D.Peng. Preparation of Nd-doped barium cerate through different routes. Solid State Ionics v.100, 1997, p.63-72). Промежуточный слой покрыт каталитически активным слоем 10 состава (La2O3)0,6(SrO)0,4MnO2. Сравнительный элемент датчика поверх пористого носителя 8 из оксида алюминия Al2O3 покрыт каталитически неактивным составом - оксидом кремния SiO2. Промежуточный слой наносится из растворов азотнокислых солей бария, церия и неодима с последующим отжигом. Слой катализатора приготавливают из растворов азотнокислых солей лантана, стронция и марганца, наносят на рабочий элемент поверх промежуточного слоя с последующим отжигом.

Датчик работает следующим образом. На выводы, соединенные с платиновой спиралью, подается рабочее напряжение, температура элемента достигает рабочей Тр (300-500°C). При наличии в окружающей среде регистрируемого газа на рабочем элементе происходит сначала реакция разложения водородсодержащего газа на образующие его элементы, включая ионы водорода, часть которых проникает в промежуточный слой, повышая его протонную проводимость, и затем идет реакция окисления элементов горючего газа с выделением тепла. После повышения температуры увеличивается сопротивление платиновой спирали, а сопротивление промежуточного слоя уменьшается.

Изменение напряжения на чувствительном элементе в зависимости от концентрации регистрируемого газа фиксируется схемой обработки сигнала. Выходной сигнал термохимического датчика является суммой двух сигналов: сигнала, обусловленного уменьшением сопротивления рабочего элемента за счет увеличения протонной проводимости промежуточного слоя, и сигнала, обусловленного увеличением сопротивления рабочего элемента за счет увеличения сопротивления платиновой спирали из-за повышения температуры вследствие окисления элементов горючего газа. Во всем диапазоне измерения концентрации водородсодержащего горючего газа от 0 до 100 об.% данные механизмы обеспечивают понижение сопротивления рабочего элемента. Включение датчика в мостовую схему обеспечивает независимость выходного сигнала датчика от температуры окружающей среды.

В таблицах 1-3 представлены зависимости выходного сигнала датчика от концентрации водородосодержащего газа (метан, водород, пропан) в диапазоне от 0 до 100 об.%

Таблица 1
Чувствительность к метану (CH4)
Концентрация анализируемого газа, об.% 0 0,5 1 1,5 2 3 5 10 20 40 60 80 100
Выходной сигнал датчика, мВ 0 8 12 17 21 28 37 51 71 129 182 224 277
Таблица 2
Чувствительность к водороду (Н2)
Концентрация анализируемого газа, об.% 0 0,5 1 1,5 2 3 5 10 20 40 60 80 100
Выходной сигнал датчика, мВ 0 11 15 21 24 30 39 58 79 142 192 238 296
Таблица 3
Чувствительность к пропану (С3Н8)
Концентрация анализируемого газа, об.% 0 0,5 1 1,5 2 3 5 10 20 40 60 80 100
Выходной сигнал датчика, мВ 0 6 10 13 18 24 31 44 65 109 163 213 259

Преимуществом заявляемой конструкции можно назвать простоту изготовления датчика, способность определения концентрации водородсодержащих горючих газов в бескислородной среде.

Термохимический датчик, содержащий измерительную схему из рабочего и сравнительного элемента, каждый из которых выполнен в виде резистора, изготовленного в виде нагревательной спирали, запеченной внутри пористого носителя, в рабочем элементе которого пористый носитель покрыт каталитически активным слоем, а в сравнительном элементе пористый носитель покрыт каталитически неактивным слоем, отличающийся тем, что в рабочем элементе между пористым носителем и каталитически активным слоем находится промежуточный слой состава BaO(CeO)0,9(Nd2O3)0,1, а в качестве материала каталитически активного слоя используется состав (La2O3)0,6(SrO)0,4MnO2.



 

Похожие патенты:
Изобретение относится к аналитическому приборостроению, а именно к технологии изготовления чувствительных элементов термохимических (термокаталитических) датчиков горючих газов, и может быть использовано в газоанализаторах для контроля довзрывных концентраций взрыво- и пожароопасных газов и газовых смесей.

Изобретение относится к аналитической технике, предназначенной для анализа газовых сред, в частности к детектированию веществ, разделяемых в хроматографических колонках для их последующего изотопного анализа, и может быть использовано в газовой и нефтяной промышленности, энергетике, геохимии, гидрологии, экологии, аналитическом приборостроении при проведении высокоточных измерений концентраций органических газов, кислорода, газообразных оксидов и для определения изотопного состава углерода, водорода и азота в смесях органических газов.

Изобретение относится к газовому анализу и может быть применено при разработке приборов контроля взрывоопасных газов в окружающей среде. .

Изобретение относится к области газового анализа. .

Изобретение относится к способам измерения концентрации горючих газов в окружающей среде и может быть использовано для индикации в системах взрывопредупреждения и контроля степени взрывоопасности объектов.

Изобретение относится к области анализа газовых сред и может быть использовано для определения концентрации в кислородосодержащей среде, например в рабочих помещениях нефтедобывающих и нефтеперерабатывающих предприятий, предприятий тепловой энергетики, химических заводов и др.

Изобретение относится к области анализа газовых сред. .

Изобретение относится к области анализа газовых сред. .

Сигнализатор может быть использован для контроля довзрывоопасных концентраций газов и паров в воздухе производственных помещений и рабочих зон. Сигнализатор довзрывоопасных концентраций состоит из одинарного термокаталитического элемента, генератора стабильного тока, источников опорного напряжения, таймера, повторителя напряжения, электронных ключей, узла регистрации обрыва термокаталитического элемента, монитора питания, запоминающего каскада, компаратора превышения порога, узла отображения и передачи данных. Изобретение обеспечивает снижение стоимости, уменьшение габаритов и количества электронных компонентов, исключение из схемы сравнительного чувствительного элемента, упрощение процедуры настройки, устранение влияния совокупности изменяющихся внешних факторов, таких как: температура, давление, влажность, газовоздушные потоки, уменьшение потребляемого тока, повышение надежности, реализация функции дистанционной настройки по воздуху, возможность использования в стационарном режиме и в качестве индивидуальных, легких и удобных сигнализаторов для мониторинга воздушной среды. 17 з.п. ф-лы, 4 ил.
Наверх