Высокопрочный экономнолегированный сплав на основе алюминия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, деталей летательных аппаратов, автомобилей и других транспортных средств, деталей спортинвентаря и др. Сплав содержит, мас%: 5,5-6,5 Zn, 1.7-2,3 Mg, 0,4-0,7 Ni, 0,3-0,7 Fe, 0,02-0,25 Zr, 0,05-0,3 Cu, причем сплав имеет температуру солидуса не менее 570°С, температуру сольвуса не более 410°С, а твердость - не менее 150 HV. Техническим результатом является создание экономнолегированного высокопрочного сплава, способного к термическому упрочнению, предназначенного для получения фасонных отливок и тонколистового проката и обладающего высокой прочностью и технологичностью. 2 з.п. ф-лы, 3 табл., 3 пр., 2 ил.

 

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С: детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и других транспортных средств (в том числе велосипедов, самокатов, тележек), детали спортинвентаря и др.

Наиболее прочные деформируемые алюминиевые сплавы типа В95 (σв=500-600 МПа) относятся к системе Al-Zn-Mg-Cu (Промышленные алюминиевые сплавы /Справ. изд./ Алиева С.Г., Альтман М.Б. и др. - М.: Металлургия, 1984. 528 с.). Они имеют низкие литейные свойства, поэтому эти сплавы практически не используются для получения фасонных отливок.

Известен сплав на основе алюминиево-никелевой эвтектики, раскрытый в патенте RU 2158780 от 10.11.2000 г. Данный сплав содержит матрицу, образованную твердым раствором цинка, магния и меди в алюминии с равномерно распределенными дисперсными частицами фаз, образованных алюминием, цинком, магнием и медью, равномерно распределенные в матрице частицы алюминидов никеля кристаллизационного происхождения и равномерно распределенные в матрице частицы, по меньшей мере, одного из алюминидов, выбранных из группы, в состав которой входят алюминиды хрома и алюминиды циркония, при суммарном содержании от 0,1 до 0,5 об.% материала.

Из этого сплава можно получать отливки с улучшенными литейными свойствами за счет добавки никеля, который образует алюминиды эвтектического происхождения. Однако для достижения высоких прочностных свойств необходимо обеспечить этим алюминидам глобулярную форму, что требует проведения операции сфероидизирующего отжига. Поскольку медь, входящая в известный материал, сильно снижает равновесный солидус (для среднего состава он ниже 530°С), то требуется относительно высокая дисперсность исходной структуры, что ограничивает использование предложенного сплава сравнительно небольшими отливками простой формы. Кроме того, наличие меди в последнем усложняет фазовый состав, что может приводить к нестабильности механических и технологических свойств.

Наиболее близким к предложенному является сплав на основе алюминия, раскрытый в патенте RU 2245388 (опубл. 27.01.2011, бюл.№3). Данный сплав содержит цинк, магний и никель, железо, цирконий и медь при следующих концентрациях компонентов, мас.%:

Цинк 5-8
Магний 2-3,1
Никель 1-4,2
Железо 0,02-1
Цирконий 0,02-0,25
Медь 0,05-0,3
Алюминий Остальное

и при этом температура равновесного солидуса составляет не менее 550°С, а твердость - не менее 180 HV.

Достижение высоких механических свойств достигается реализацией структуры, представляющей собой матрицу, образованную твердым раствором алюминия с равномерно распределенными дисперсными частицами вторичных выделений, и равномерно распределенными в матрице частицами алюминидов, содержащих никель и железо, эвтектического происхождения. При этом количество этих алюминидов составляет 5,0-6,3 об.%.

Техническим результатом является создание нового высокопрочного сплава, способного к термическому упрочнению, предназначенного для получения как фасонных отливок, так и деформированных полуфабрикатов.

Однако этот сплав недостаточно технологичен при получении тонколистового проката (толщиной менее 0,5 мм) методом холодной прокатки. Второй недостаток состоит в том, что сплав не предназначен для получения фасонных отливок в разовые формы. Третий недостаток заключается в том, что сплав содержит дорогостоящую добавку никеля в количестве более 1 мас.%.

Задачей изобретения является создание нового высокопрочного экономнолегированного алюминиевого сплава, содержащего не более 0,8% Ni и предназначенного для получения как фасонных отливок, так и деформированных полуфабрикатов и обладающего высокой технологичностью при обработке давлением (в частности, при получении тонколистового проката методом холодной прокатки) и литье (в частности, в разовые формы).

Поставленная задача решена тем, что сплав на основе алюминия содержит цинк, магний, никель, железо, цирконий и медь при следующих концентрациях компонентов, мас.%:

Цинк 5,5-6,5
Магний 1,7-2,3
Никель 0,4-0,7
Железо 0,3-0,7
Цирконий 0,02-0,25
Медь 0,05-0,3
Алюминий Остальное

и при этом температура солидуса составляет не менее 570°С, температура сольвуса не более 410°С, а твердость - не менее 150 HV.

Материал может быть выполнен в виде отливок (в частности, литьем в разовые формы), обладающих следующими свойствами на растяжение: временное сопротивление (σв) не менее 450 МПа, предел текучести (σ0,2) не менее 400 МПа, относительное удлинение (δ) - не менее 4%.

Кроме того, материал может быть выполнен в виде деформированных полуфабрикатов (в частности, тонколистового проката), обладающих следующими свойствами на растяжение: временное сопротивление (σв) не менее 500 МПа, предел текучести (σ0,2) не менее 450 МПа, относительное удлинение (δ) не менее 5%.

Сущность изобретения состоит в следующем.

Наличие легирующих элементов в заявленных пределах с учетом требований к твердости позволяет обеспечить наилучшее сочетание механических свойств и технологичности. Заявленное ограничение по температуре солидуса позволяет проводить сфероидизирующий отжиг при достаточно высоких температурах, обеспечивая формирование относительно глобулярных частиц фазы Al9FeNi, что положительно сказывается на пластичности. Заявленное ограничение по температуре сольвуса позволяет растворять цинк, магний и медь в алюминиевом твердом растворе при относительно низких температурах, что облегчает окончательную (или повторную) термообработку. Это положительно сказывается на стоимости термообработки.

ПРИМЕР 1.

Были приготовлены слитки 6 сплавов, составы которых указаны в табл.1. Сплавы готовили в электрической печи сопротивления в графитошамотных тиглях из алюминия марки А5Е (99,5%), цинка марки Ц0 (99,9%), магния марки Мг90 (99,9%), меди марки M1 (99,9%) и лигатур Al-Ni, Al-Fe и Al-Zr. Определение температур солидуса (TS) и сольвуса (TSS) проводили с использование программы Thermo-Calc (база данных TTAL5). Под значением TSS принималась температура полного растворения цинка, магния и меди в алюминиевом твердом растворе при нагреве. Слитки термообрабатывали по режиму Т6 (двухступенчатый нагрев под закалку, закалка в холодной воде и старение). Твердость по Виккерсу определяли по ГОСТ 2999-75 на универсальном твердомере Wilson Wolpert 930. Рассчитанные и экспериментальные значения приведены в табл.1.

Из табл.1 видно, что только заявляемый сплав (составы 2-4) обеспечивает требуемые значения TS, TSS и HV. При этом заявляемый сплав отвечает требуемому ограничению по концентрации никеля (менее 0,8%). В сплаве 1 твердость намного ниже требуемого уровня. В сплавах 5 и 6 значения TS ниже требуемого уровня, а значения TSS, наоборот, выше.

Таблица 1
Составы экспериментальных сплавов и их характеристики
Концентрация в сплаве, мас.% TS, °С TSS, °C HV
Zn Mg Ni Fe Zr Cu Al
1 4,0 1,5 0,2 0,2 0,01 0,02 ост. 612 335 95
2 5,5 2,3 0,7 0,7 0,02 0,05 ост. 586 394 165
3 6,0 2,0 0,5 0,5 0,15 0,2 ост. 586 394 158
4 6,5 1,7 0,4 0,3 0,25 0,3 ост. 586 392 155
5 8,0 3,0 1,0 1,0 0,3 0,5 ост. 525 461 210
61 6,7 2,8 2,0 0,4 0,15 0,2 ост. 554 436 190
1 средний состав сплава-прототипа

ПРИМЕР 2.

Сплавы 3 и 5 (табл.1) были получены в виде фасонных отливок литьем в разовые формы, которые изготавливалась методом быстрого прототипирования на принтере Z-cast. Отдельные части формы собирали и скрепляли (фиг.1а). Отливки из сплава 3 (фиг.1б) не содержали дефектов, а их микроструктура характеризовалась наличием относительно компактных включений фазы Al9FeNi. Отливки из сплава 5 имели трещины, поэтому механические свойства на них не определяли. После термической обработки обеспечивающую твердость, указанную в табл.1, определяли механические свойства сплава 3 на цилиндрических образцах, вырезанных из отливок, по ГОСТ 1497-84. Из табл.2 видно, что сплав заявленного состава в отливках, полученных литьем в разовые формы, имеет требуемые механические свойства.

Таблица 2
Механические свойства заявленного сплава1 в отливках
σв, МПа σ0,2, МПа δ,%
460 420 5,5
1 состав 3 (см. табл.1)

ПРИМЕР 3.

Из сплавов 3, 5 и 6 (табл.1) получали холоднокатаные листы по технологии, которая включала в себя следующие основные операции:

- получение плоского слитка толщиной 20 мм;

- двухступенчатый гомогенизационный отжиг слитка;

- горячая прокатка гомогенизированного слитка до толщины 2 мм;

- промежуточный отжиг горячекатаного листа;

- холодная прокатка до толщин 0,45 и 0,17 мм (получение тонколистового проката);

- упрочняющая термообработка холоднокатаных листов (нагрев под закалку, закалка в холодной воде и старение).

В сплавах 5 и 6 в процессе холодной прокатки образовались трещины, поэтому их механические свойства не определяли. В тонколистовом прокате сплава 3 трещины и другие дефекты обнаружены не были (фиг.2).

После термической обработки холоднокатаных листов сплава 3 определяли механические свойства на плоских образцах, вырезанных из листов, по ГОСТ 1497-84.

Из табл.3 видно, что сплав заявленного состава в виде тонколистового проката имеет требуемые механические свойства.

Таблица 3
Механические свойства заявленного сплава1 в листах
Толщина листа, мм σв, МПа σ0,2, МПа δ,%
0,45 520 460 7,0
0,17 560 480 5,5
1 состав 3 (см. табл.1)

1. Сплав на основе алюминия, содержащий, цинк, магний, никель, железо, цирконий и медь, отличающийся тем, что он содержит компоненты в следующем количестве, мас.%:

Цинк 5,5-6,5
Магний 1,7-2,3
Никель 0,4-0,7
Железо 0,3-0,7
Цирконий 0,02-0,25
Медь 0,05-0,3
Алюминий Остальное,

причем сплав имеет температуру солидуса не менее 570°С, температуру сольвуса не более 410°С и твердость - не менее 150 HV.

2. Сплав по п.1, отличающийся тем, что он выполнен в виде отливок и имеет после термообработки по режиму Т6 временное сопротивление (σв) не менее 450 МПа, предел текучести (σ0,2) - не менее 400 МПа, относительное удлинение (δ) - не менее 4%.

3. Сплав по п.1, отличающийся тем, что он выполнен в виде тонколистового проката и имеет после закалки и старения временное сопротивление (σв) не менее 500 МПа, предел текучести (σ0,2) не менее 450 МПа, относительное удлинение (δ) не менее 5%.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к протекторным сплавам на основе алюминия, и может быть использовано при производстве протекторов для защиты от коррозии морских сооружений и судов из алюминиевых сплавов.

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 100-150°С, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др.

Изобретение относится к алюминиевоцинкомагниевым сплавам и к продуктам, выполненным из таких сплавов, которые могут быть использованы для изготовления литейных форм для производимых литьем под давлением пластмасс.
Изобретение относится к металлургии легких сплавов, в частности к сверхпрочным деформируемым термически упрочняемым алюминиевым сплавам системы Al-Zn-Mg-Cu, которые предназначены для изготовления деформированных полуфабрикатов в виде прессованных и катаных труб, штампованных крышек, используемых в виде деталей газовых центрифуг.

Изобретение относится к алюминиевым сплавам, в частности к сплавам алюминия серии 7000, подходящим для изготовления элементов конструкции коммерческих самолетов. .
Изобретение относится к способу изготовления слоистой плиты на основе алюминия для противопульной сварной брони. .
Изобретение относится к получению высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, предназначенных для изготовления прессованных, кованых и катаных полуфабрикатов.

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др.
Изобретение относится к сплаву серии АА7000 и к способу изготовления продуктов из этого алюминиевого сплава, а именно к алюминиевым деформированным продуктам относительно большой толщины, в частности от 30 до 300 мм.
Изобретение относится к алюминиевым сплавам, в частности к тем, из которых получают высокопрочный алюминиевый полуфабрикат, а также к способу получения таких алюминиевых полуфабрикатов

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении крупногабаритных отливок сложной формы, предназначенных для изготовления деталей ответственного назначения, в частности корпусов редукторов, применяемых в авиастроении
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением

Изобретение относится к способу производства длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте
Сплав на основе алюминия предназначен для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах. Сплав содержит, в мас.%: цинк 6,6-7,4, магний 3,2-4,0, медь 0,8-1,4, скандий 0,12-0,30, цирконий 0,06-0,20, бериллий 0,0001-0,005, кобальт 0,05-0,15, никель 0,35-0,65, железо 0,25-0,65, алюминий - остальное. Техническим результатом изобретения является повышение прочности при сохранении пластичности и пониженной плотности сплава. 3 табл., 1 пр.
Группа изобретений относится к изделиям из дисперсионно-твердеющего алюминиевого сплава. Изделие выполнено толщиной от 2 дюймов (50 мм) до 12 дюймов (305 мм) из сплава следующего химического состава, вес.%: Zn - от 3 до 11, Mg - от 1 до 3, Cu - от 0,9 до 3, Ge - от 0,03 до 0,4, Si - максимум 0,5, Fe -максимум 0,5, Ti - максимум 0,3, остальное - алюминий и обычные и/или неизбежные элементы и примеси. Способ изготовления изделия включает отливку заготовки, подогрев и/или гомогенизацию отлитой заготовки, горячую обработку заготовки, необязательную холодную обработку, термообработку на твердый раствор (ТТР) подвергнутой горячей обработке и необязательно холодной обработке заготовки, охлаждение ТТР заготовки, необязательное растяжение или сжатие охлажденной ТТР заготовки либо иную холодную обработку охлажденной ТТР заготовки для снятия напряжений, старение охлажденной и необязательно подвергнутой растяжению или сжатию либо иной холодной обработке ТТР заготовки для достижения нужного состояния. Обеспечивается получение изделия с высокой прочностью при высокой вязкости и пониженной чувствительности к закалке. 2 н. и 18 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к активному материалу отрицательного электрода для электрического устройства, содержащему сплав с формулой состава SixZnyAlz, где каждый из х, y и z представляет массовое процентное содержание, удовлетворяющее: (1) x+y+z=100, (2) 26≤х≤47, (3) 18≤y≤44 и (4) 22≤z≤46. Также изобретение относится к электрическому устройству и отрицательному электроду для него. Технический результат заключается в том, чтобы предоставить активный материал отрицательного электрода для электрического устройства, такого как литий-ионная аккумуляторная батарея, проявляющего хорошо сбалансированные свойства сохранения высокой циклируемости и достижения высокой начальной емкости. 3 н. и 1 з. п. ф-лы, 2 табл., 10 ил., 2 пр.
Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения. Сплав содержит, мас.%: цинк 6,0-8,0; магний 3,4-4,2; медь 0,8-1,3; скандий 0,07-0,15; цирконий 0,08-0,12; бериллий 0,0005-0,004; церий 0,01-0,15; титан 0,02-0,08; кремний 0,01-0,15; железо 0,01-0,15; водород 0,05-0,35 см3/100 г металла; неизбежные примеси из группы Mn, Cr, V, Mo, Li, Ag, K, Na, O в суммарном количестве не более 0,10; алюминий - остальное, при соотношении между содержанием магния и цинка от 0,53 до 0,57. Техническим результатом изобретения является повышение уровня прочности сплавов системы Al-Zn-Mg-Cu с пониженной плотностью и разовых изделий, выполненных из них. 2 н.п. ф-лы, 1 пр., 2 табл.
Изобретение относится к области металлургии, в частности к способам производства труб осесимметричных штамповок диаметром до 200 мм из высокопрочных алюминиевых сплавов Al-Zn-Mg-Cu, легированных скандием и цирконием. Способ производства осесимметричных штамповок типа крышка диаметром до 200 мм из высокопрочных алюминиевых сплавов Al-Zn-Mg-Cu, легированных скандием и цирконием, включает приготовление алюминиевого расплава, содержащего скандий и цирконий, его перегрев до 765-780°С, отливку круглых слитков малого диаметра при 710-740°С, их гомогенизацию при 400-440°С в течение 4-10 часов, штамповку при 380-440°С, закалку с температуры 465-480°С с равномерным охлаждением всей поверхности штамповок со скоростью, обеспечивающей сохранение после закалки полностью нерекристаллизованной структуры штамповки, и искусственное старение. Штамповки имеют меньший уровень остаточных закалочных напряжений, что обеспечивает стабильность геометрических параметров деталей за счет устранения овализации при обточке штамповок на тонкостенные детали. 2 табл., 1 пр.

Изобретение относится к конструкционным элементам из алюминиевого сплава, в частности для аэрокосмической промышленности. Плита выполнена толщиной по меньшей мере 4 дюйма из алюминиевого сплава, который содержит: от 6,4 до 8,5 мас.% Zn, от 1,4 до 1,9 мас.% Mg, от 1,4 до 1,85 мас.% Сu, от 0,05 до 0,15 Zr, от 0,01 до 0,06 мас.% Ti, до 0,15 мас.% Fe, до 0,12 мас.% Si, остальное алюминий, сопутствующие элементы и примеси. Обеспечивается улучшенное сочетание прочности и стойкости к растрескиванию, а также обеспечивается стойкость к растрескиванию в результате коррозии под нагрузкой, особенно в условиях морской атмосферы. 9 з.п. ф-лы, 14 ил., 14 табл., 3 пр.
Наверх