Оптический криостат


 


Владельцы патента RU 2486480:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новгородский государственный университет имени Ярослава Мудрого" (RU)

Изобретение относится к измерительной технике и предназначено для проведения оптических и фотоэлектрических исследований в диапазоне криогенных температур. Основой данного криостата является корпус 1, выполненный в виде стакана из теплоизолирующего материала (например, пенопласта). На дне внутренней части корпуса расположен держатель образца 2, выполненный из материала с высокой теплопроводностью для снижения градиента температуры (например, меди). В дне корпуса 1, вблизи образующей внутренней стенки, выполнено одно или несколько отверстий 3. Нижняя наружная часть корпуса выполнена таким образом, что он плотно (без зазоров) устанавливается в горловую часть сосуда 4 с жидким криоагентом 5. При испарении холодный сухой газообразный криоагент поступает через отверстия 3 внутрь корпуса и вытесняет из него теплый (влажный) воздух и тем самым устраняет возможность «обмерзания» держателя и установленного на нем исследуемого образца. Пары носителя омывают держатель, что приводит к его охлаждению. Изобретение позволяет исключить изменение спектра падающего излучения из-за наличия окон, получить возможность проведения исследований в широком диапазоне температур (отличных от температуры хладагента), просто в реализации и имеет низкую стоимость. 1 ил.

 

Изобретение относится к измерительной технике и предназначено, в частности, для проведения оптических и фотоэлектрических исследований в диапазоне криогенных температур.

Известен выбранный за прототип термостат приемника ИК излучения, содержащий установленный в корпусе, закрепленный в оправе вакуумированный сосуд Дьюара, снабженный внешним и внутренним входными окнами, напротив которых на охлаждаемом держателе расположен кристалл с фоточувствительными элементами, а герметичная полость, образованная держателем, сосудом Дьюара и оправой, заполнена осушенным газом (см. RU №2213941, МПК 7 G01J 5/02, 2003 г.). Этот криостат имеет ряд недостатков:

1) наличие двух окон может приводить к изменению спектра падающего на исследуемый образец излучения;

2) требуется предварительное заполнение внутренней камеры осушенным газом и ее герметизация.

Техническим результатом использования предлагаемого криостата является устранение указанных недостатков. Кроме того, предлагаемый криостат имеет более простую конструкцию и, как следствие, более низкую стоимость.

Указанный технический результат достигается тем, что:

а) в предлагаемом оптическом криостате отсутствует входное окно,

б) конденсация паров воды на объекте исследования предотвращается заполнением внутренней полости криостата (камеры) сухим газообразным криоагентом, например азотом, получаемым испарением криогента из жидкой фазы.

На фиг.1 схематически изображен оптический криостат (вид сбоку), который состоит из следующих частей:

1 - корпус;

2 - держатель образца;

3 - отверстия для паров криоагента;

4 - сосуд с жидким криоагентом;

5 - жидкий криоагент.

Основой данного криостата является корпус 1, выполненный в виде стакана из теплоизолирующего материала (например, пенопласта). На дне внутренней части корпуса расположен держатель образца 2, выполненный из материала с высокой теплопроводностью для снижения градиента температуры (например, меди). В дне корпуса 1, вблизи образующей внутренней стенки, выполнено одно или несколько отверстий 3. Нижняя наружная часть корпуса выполнена таким образом, что он плотно (без зазоров) устанавливается в горловую часть сосуда 4 с жидким криоагентом 5.

При испарении холодный сухой газообразный криоагент поступает через отверстия 3 внутрь корпуса, вытесняет из него теплый (влажный) воздух и тем самым устраняет возможность «обмерзания» держателя и установленного на нем исследуемого образца. Пары носителя омывают держатель, что приводит к его охлаждению.

Предложенная конструкция криостата была использована для исследования спектральных характеристик фотодиодов и фотоприемных устройств в диапазоне 1,8-2,6 мкм. Фотоприемное устройство имело габариты 13×13×8 мм, массу 2 грамма, диаметр оптического окна составлял 2,3 мм.

Техническим результатом использования разработанного криостата было существенное упрощение конструкции, удобство в работе и снижение стоимости. Изобретение позволило провести измерения спектральной чувствительности в диапазоне температур от 77 K (температура жидкого азота) до 293 K.

Оптический криостат, содержащий корпус, внутри которого размещен держатель образца, отличающийся тем, что корпус выполнен в виде стакана из теплоизолирующего материала с возможностью установки его нижней наружной части в горловую часть сосуда с жидким криогентом без зазора, при этом в дне корпуса, вблизи образующей внутренней стенки, выполнено не менее одного отверстия, а держатель образца установлен внутри корпуса на его дне без перекрытия отверстий.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для определения пространственно-углового распределения излучения, отраженного от тел сложной формы.

Изобретение относится к конструкции многоэлементных (матричных) фотоприемников. .

Изобретение относится к устройствам для определения углового распределения излучения, отраженного от поверхности объекта. .

Изобретение относится к области измерения и контроля светопропускания оконных блоков и других светопрозрачных строительных конструкций и их элементов. .

Изобретение относится к технике измерения характеристик лазерного излучения и применимо в лазерной технике. .

Изобретение относится к метеорологии, а именно физике и химии атмосферы, и предназначено для определения содержания озона в атмосфере оптическим методом. .

Фотометр // 1758445

Изобретение относится к автоматике и вычислительной технике и предназначено для вычисления производной от частотно-импульсного сигнала по времени с представлением результата в аналоговой форме.

Изобретение относится к технике определения параметров аэрозолей оптическими методами и может быть использовано для градуировки нефелометров, имеющих переменную в зависимости от угла рассеяния чувствительность.

Изобретение относится к измерительной технике и может быть использовано для измерения и аттестации пространственных, спектральных и цветовых (для источников излучения видимого диапазона длин волн) параметров и характеристик источников излучения, например светодиодов, инфракрасных и ультрафиолетовых излучающих диодов. Устройство содержит измерительный стенд, приемник излучения, блок обработки и управления с устройством вывода информации. При этом измерительный стенд включает основание, на котором закреплены два поворотных устройства, расположенные так, что их оси вращения взаимно перпендикулярны. На первом поворотном устройстве установлено устройство крепления для исследуемого источника излучения. На втором поворотном устройстве установлен держатель, на котором закреплено входное окно канала передачи излучения, в качестве которого применен оптоволоконный кабель, а его выходное окно закреплено на приемнике оптического излучения, в качестве которого применен спектрометр. Изобретение направлено на повышение точности измерений при упрощении процесса сборки и одновременной автоматизации процесса измерений. 3 ил.

Изобретение относится к области визуализации терагерцового (ТГц) излучения (ν=0,1÷10 ТГц или λ=30÷3000 мкм) и может быть использовано при создании приборов для регистрации и анализа ТГц-излучения. Устройство визуализации источников ТГц-излучения содержит конвертер ТГц-излучения в инфракрасное (ИК) излучение, состоящий из слоя искусственно созданного метаматериала с резонансным поглощением ТГц-излучения, нанесенного на твердую подложку из сапфира, расположенный между входным ТГц-объективом и объективом ИК-камеры, расположенной со стороны подложки. При этом конвертер выполнен на основе желатиновой матрицы, содержащей наночастицы металла, и снабжен отрезающим фильтром, размещенным перед матрицей с возможностью фильтрации теплового излучения источника ТГц-излучения с длинами волн не более 30 мкм. Технический результат заключается в повышении помехоустойчивости конструкции, снижении уровня шума и повышении чувствительности при одновременном упрощении конструкции устройства визуализации. 15 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам, предназначенным для сжатия и подачи воздуха (газов) под давлением, и может применяться в оптических приборах. Изобретение реализовано в виде устройства подачи воздуха в фотометре пламенном. Оно содержит вакуумный мембранный компрессор с последовательно соединенным полым цилиндром, имеющим входное и выходное сопла. Входное сопло полого цилиндра соединено с нагнетательным клапаном вакуумного мембранного компрессора. Диаметр входного сопла полого цилиндра dBX=K·PK, где К - коэффициент пропорциональности, равный 1÷3 см3/кгс, PK - давление нагнетания вакуумного мембранного компрессора, кгс/см2. Длина полого цилиндра 1≥20 dBX, а его диаметр D≥10 dBX. Устройство может иметь несколько выходных сопел, но не более четырех. Позволяет сгладить пульсации давления нагнетаемого в фотометр пламенный воздуха и, следовательно, обеспечить устойчивость работы фотометра пламенного, значительно сократить погрешность измерений за счет стабилизации пламени, снизить массу, габариты устройства и оптического прибора в целом. 1 ил.

Изобретение могут использовать люди, имеющие плохое зрение. На первом диске 1 расположены фотоэлементы 2. Диск 1 скреплен штырем 3 со вторым диском 4. В отверстиях диска 4 расположены штифты 5, имеющие на конце пластинки 6. На штыре 3 расположена втулка 8, к которой прикреплены планки 9. К планкам 9 прикреплены аккумуляторная батарея 10, трубки 11 и усилители 12. К трубкам 11 прикреплены электромагниты 15. Человек с плохим зрением вращает планки 9. Подпружиненные контакты 13 снимают напряжения фотоэлементов 2 и по проводам 14 подают их на усилители 12. Усилители 12 подают напряжения через провода 18 на электромагниты 15. Якоря 16, отталкиваясь, отжимают штифты 5. Пластинки 6 отходят от наружной стенки диска 4. Якоря 16 отжимают следующие штифты 5, пластинки 6 которых отходят от наружной стенки диска 4. Так контакты 13 и якоря 16, вращаясь на разных расстояниях от центра дисков, проходят целый круг. Расстояния пластинок 6 от наружной стенки диска 4 соответствуют яркости освещения фотоэлементов 2. Человек с плохим зрением, ощупывая пальцами пластинки 6, определяет предмет. Технический результат - определение фотометрическим устройством плохо видящими людьми предметов, находящихся от них вдали. 2 ил.

Маска // 2578267
Изобретение относится к области оптического приборостроения и касается маски, которая накладывается на чувствительную поверхность сдвоенного пироэлектрического датчика. Маска представляет собой лист, выполненный из блокирующего инфракрасное излучение материала. В маске выполнены сквозные отверстия, сформированные таким образом, чтобы обеспечивать возможность изменения процентных долей соответствующих облученных инфракрасными лучами областей двух пироэлектрических элементов при перемещении источника излучения по двум координатным осям. Отверстия формируют две области апертур. При этом граница одной из областей апертур выступает по направлению, перпендикулярному расположению пироэлектрических элементов дальше, чем граница другой области апертур. Технический результат заключается в увеличении чувствительности и обеспечении возможности регистрации перемещения объекта одновременно по двум координатным осям. 5 з.п. ф-лы. 40 ил.
Наверх