Способ анализа биологических препаратов

Изобретение относится к исследованию материалов с помощью анализа оптических сред и может быть использовано для неразрушающего контроля молекулярного состава и структуры различных веществ. Способ характеризуется тем, что для регистрации спектров флуоресценции образец облучают коротковолновым (266 нм) электромагнитным излучением ультрафиолетового диапазона с высоким (0,1 мм) пространственным разрешением. В этих веществах из-за наличия ароматических колец происходит фундаментальное электронное поглощение этих соединений в среднем ультрафиолетовом диапазоне, регистрируемые спектры флуоресценции преобразуют в корреляционные спектры флуоресценции, которые позволяют устанавливать различия в качественном и количественном составе образца даже при близости вида их спектров флуоресценции. Изобретение обеспечивает неразрушающий контроль высокой степени достоверности молекулярного состава и структуры биологических препаратов с минимизацией временных затрат на исследование. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к области технической физики, а именно к исследованию материалов с помощью анализа оптических сред, и может быть использовано для неразрушающего контроля молекулярного состава и структуры биологических препаратов, содержащих ароматические соединения, например, для контроля качественного и количественного состава лекарственных препаратов, для мониторинга веществ, загрязняющих окружающую среду, для выявления в биологических жидкостях токсических веществ и др.

Известен способ количественного определения состава многокомпонентных лекарственных препаратов жаропонижающего, анальгезирующего, противопростудного действия (RU 2267115 C2, 23.06.2003). Данный способ одновременного количественного определения состава многокомпонентных лекарственных препаратов методом обращенно-фазовой высокоэффективной жидкостной хроматографии с помощью ультрафиолетового детектора, характеризующийся тем, что анализ препаратов жаропонижающего, анальгезирующего, противопростудного действия, содержащих парацетамол, пропифеназон, кофеин, фенобарбитал, кодеина фосфат, или парацетамол, аскорбиновую кислоту, кодеина фосфат, фенилэфедрина гидрохлорид, хлорфениламина малеат, или парацетамол, теофиллин, кофеин, фенобарбитал, эфедрина гидрохлорид, или кодеина фосфат, нипагин, нипазол, проводят в одну стадию в режиме линейного градиента, наклон и продолжительность которого определяют свойствами компонентов анализируемого препарата, при этом состав подвижной фазы изменяется от фосфатного буферного раствора с pH 3,0 до смеси ацетонитрила с этим же фосфатным буферным раствором в объемном соотношении

1:1. При анализе лекарственных препаратов, содержащих анальгин или неидентифицированные компоненты растительного сырья, на начальном этапе градиента вводится подвижная фаза, содержащая только ацетонитрил и воду, а фосфатный буферный раствор вводится в подвижную фазу после выхода всех пиков, кроме кодеина.

Данный способ обладает рядом недостатков, таких как:

1) ограниченность, поскольку не для всех компонентов, входящих в состав препарата, возможно установить количественные характеристики;

2) недостоверность: качественный состав препарата не может быть установлен;

3) сложная и трудоемкая методика исследования;

4) затратность, поскольку для исследования необходимо использовать сторонние реагенты.

Наиболее близким к заявленному способу является способ анализа жидкой биологической среды в процессе мониторинга (RU 2212029 C1, 03.12.2001). Он основан на регистрации и последующем анализе электронных спектров поглощения в ультрафиолетовой области спектра. Способ анализа включает: мониторинг исследуемой среды, в ходе которого берут пробы исследуемой среды, определяют концентрацию присутствующих в среде компонентов в каждой пробе, одновременно измеряют спектры поглощения каждой пробы, после чего определяют границы информативной области спектра, в пределах которой наблюдается изменение спектра поглощения взятых проб, после чего измеряют спектры поглощения каждого из присутствующих в среде компонентов в ультрафиолетовой области спектра, выделяют компоненты, полосы собственного поглощения которых приходятся на информативную область, и определяют зависимости спектрального коэффициента экстинкции от концентрации для выделенных компонентов в этой области в диапазоне концентраций проб с учетом взаимного влияния компонентов, затем проводят мониторинг аналогичного процесса, в ходе которого через установленные интервалы времени измеряют спектры поглощения исследуемой среды в информативной области и для каждого спектра вычисляют концентрации тех компонентов, для которых получены спектральные характеристики коэффициента экстинкции.

К недостаткам данного способа можно отнести:

1) трудоемкость методики исследования;

2) необходимость использования большого объема исследуемого образца;

3) длительное проведение эксперимента и сложная обработка результатов.

Задачи, которые решены изобретением, состоят в обеспечении неразрушающего контроля высокой степени достоверности молекулярного состава и структуры биологических препаратов с минимизацией временных затрат на исследование.

Поставленная задача решена следующим образом. Способ неразрушающего контроля молекулярного состава и структуры биологических препаратов, содержащих ароматические соединения, характеризующийся тем, что для регистрации спектров флуоресценции образец облучают коротковолновым (266 нм) электромагнитным излучением ультрафиолетового диапазона с высоким (0,1 мм) пространственным разрешением, в этих веществах из-за наличия ароматических колец происходит фундаментальное электронное поглощение этих соединений в среднем ультрафиолетовом диапазоне, регистрируемые спектры флуоресценции преобразуют в корреляционные спектры флуоресценции, которые позволяют устанавливать различия в качественном и количественном составе образца даже при близости вида их спектров флуоресценции.

Для возбуждения и регистрации спектров флуоресценции использовалась известная волоконно-оптическая методика [1], в которой в качестве источника электромагнитного излучения ультрафиолетового диапазона используется четвертая гармоника (266 нм) лазера на алюмоиттриевом гранате, генерирующего импульсно-периодическое излучение с длиной волны 1064 нм. Высокое пространственное разрешение лазерных методов обеспечивается тем, что зондирующее излучение лазера с помощью кварцевого световода с внутренним диаметром 0,1 мм подводится к поверхности исследуемого образца.

Для установления количественного отличия спектров, полученных от различных биологических образцов, строят корреляционные функции K X Y с использованием следующего соотношения:

K Х Э ( λ ) = 1 | i X ( λ ) i Э ( λ ) | ,

где iX(λ), iЭ(λ) - нормированные спектры флуоресценции анализируемого образца (X) и эталонного (Э).

Коэффициенты корреляции K Х Э анализируемых образцов по отношению к эталонному определяется по формуле:

K Х Э = 1 N i = 1 i = N K Х Э ( λ i )

где N - количество диапазонов разбиения.

Пример.

Рассмотрим возможность применения заявленного способа для контроля качественного и количественного состава фармацевтических препаратов, таких как цитрамон, анальгин, аспирин, парацетамол.

Таблица 1
Химические формулы исследуемых фармацевтических препаратов.
Фармацевтический препарат Химическая формула Структурная формула
Аспирин C9H8O4
Анальгин C13H16N3NaO4S
Цитрамон (аспирин, кофеин, фенацетин) C9H8O4 + C8H10N4O2 + C10H13NO2
Парацетамол C8H9NO2

Из таблицы 1 видно, что в структуре всех исследуемых веществ присутствуют ароматические кольца, что приводит к фундаментальному электронному поглощению этих соединений в среднем ультрафиолетовом диапазоне. Соответственно, в этих веществах наблюдается флуоресценция в фиолетово-красном диапазоне при возбуждении флуоресценции коротковолновым (266 нм) электромагнитным излучением.

На основе зарегистрированных спектров флуоресценции фармацевтических препаратов были построены нормированные спектры флуоресценции. Фиг.1 иллюстрирует вид спектров флуоресценции таблетки цитрамона от нескольких точек на поверхности образца, отстоящих друг от друга на расстоянии 3-4 мм. Молекулярный состав анализируемой таблетки цитрамона оказывается различным для областей поверхности, представленных кривыми на Фиг.1: 1 - вид спектров флуоресценции таблетки цитрамона, на расстоянии 3 мм от левого края образца; 2 - вид спектров флуоресценции таблетки цитрамона, на расстоянии 6 мм от левого края образца; 3 - вид спектров флуоресценции таблетки цитрамона, на расстоянии 9 мм от левого края образца. Это свидетельствует о неоднородности молекулярного состава анализируемой пробы.

На Фиг.2 приводятся спектры флуоресценции всех четырех изучаемых препаратов. У всех анализируемых фармацевтических препаратов наблюдаются структурированные полосы флуоресценции в фиолетово-красной области спектра, форма которых несущественно отличается, по крайней мере, для цитрамона и аспирина, а также для анальгина и парацетамола. Для установления количественного отличия спектров, полученных от различных фармацевтических препаратов, нами были построены корреляционные функции с использованием следующего соотношения:

K Х A ( λ ) = 1 | i X ( λ ) i A ( λ ) | ,

где iX(λ), iА(λ) - нормированные спектры флуоресценции анализируемого образца (X) и аспирина (А), соответствующие спектры приведены на Фиг.3. Корреляционные спектры строились в диапазоне длин волн Δλ=369-468 нм с интервалом разбиения Δλi=0.26 нм. Кроме того, были вычислены соответствующие коэффициенты корреляции анализируемых препаратов по отношению к аспирину по формуле:

K Х A = 1 N i = 1 i = N K Х A ( λ i )

Близость вида спектров флуоресценции цитрамона и аспирина обусловлена присутствием в них одного и того же компонента. В то же время различия в спектрах флуоресценции от различных областей поверхности цитрамона обусловлена неравномерным распределением в нем компонентов (кофеина и фенацетина). Уширение полосы флуоресценции анальгина по сравнению со спектром парацетамола можно объяснить более сложной молекулярной структурой анальгина.

Литература

1. V.S.Gorelik, Yu.P.Voinov, V.D.Zvorykin, et al., Laser implantation of sodium nitrite ferroelectric into pores of synthetic opal / Journal of Russian Laser Research. 31(1), p.80 (2010).

1. Способ анализа биологических препаратов по электронным спектрам поглощения в ультрафиолетовой области спектра, основанный на абсорбционном методе, отличающийся тем, что для регистрации спектров флуоресценции образец облучают коротковолновым (266 нм) электромагнитным излучением ультрафиолетового диапазона с высоким (0,1 мм) пространственным разрешением, в веществах из-за наличия ароматических колец происходит фундаментальное электронное поглощение этих соединений в среднем ультрафиолетовом диапазоне, причем регистрируют спектры флуоресценции, строят нормированные спектры анализируемого и эталонного образцов, используя которые, получают корреляционные функции с коэффициентами корреляции и строят корреляционные спектры, которые позволяют устанавливать различия в качественном и количественном составах образца даже при близости вида их спектров флуоресценции.

2. Способ по п.1, отличающийся тем, что для установления количественного отличия спектров, полученных от различных биологических образцов, строят корреляционные функции с использованием следующего соотношения:
K Х Э ( λ ) = 1 | i X ( λ ) i Э ( λ ) | ,
где iX(λ), iЭ(λ) - нормированные спектры флуоресценции анализируемого образца (X) и эталонного (Э).

3. Способ по п.1, отличающийся тем, что коэффициент корреляции K Х Э анализируемых образцов по отношению к эталонному определяется по формуле:
K Х Э = 1 N i = 1 N K Х Э ( λ i ) ,
где N - количество диапазонов разбиения.



 

Похожие патенты:

Изобретение относится к способу отслеживания и возможного регулирования добавления одной или более поверхностных добавок в бумагоделательный процесс. .

Изобретение относится к микроэлектронному сенсорному устройству и способу для обнаружения целевых компонентов, например, биологических молекул, содержащих частицы-метки.

Изобретение относится к автоматизированным средствам измерения и может использоваться органами охраны окружающей среды для контроля природных вод и органами технического надзора для контроля технологических вод.
Изобретение относится к фармации, а именно к фармацевтической химии, и может быть использовано для количественного определения фармакологически активных веществ - флавоноидов в лекарственном растительном сырье.

Изобретение относится к области физических и химических исследований свойств материалов, в частности касается конструкции автоматизированного цифрового микроскопа для исследования микро- и наноструктур на длинах волн второй оптической гармоники и двухфотонной люминесценции.

Изобретение относится к аналитической химии применительно к экспресс-анализу лекарственных препаратов, преимущественно для обнаружения и количественного определения активнодействующего вещества.

Изобретение относится к области приборостроения и может быть использовано при исследовании объектов окружающей среды, а также технологических растворов. .

Изобретение относится к устройствам для оптического спектрального определения элементного состава веществ по спектрам люминесценции и может быть использовано, в частности для определения малых концентраций актинидных элементов в объектах окружающей среды и технологических растворах, например, для определения концентрации урана в природных водах, в водах хозяйственно-бытового и технического назначения
Изобретение относится к области ветеринарной вирусологии и касается способа определения полноты инактивации антирабической инактивированной вакцины

Изобретение относится к оптическому устройству для обеспечения нераспространяющегося излучения, в ответ на падающее излучение, в объеме регистрации, который содержит целевой компонент в среде, причем, по меньшей мере, один плоскостной размер (W1) объема регистрации меньше дифракционного предела. Дифракционный предел определяется длиной волны излучения и средой. Нераспространяющееся излучение обеспечивается структурами, образующими отверстие, причем наименьший плоскостной размер отверстия W1 меньше дифракционного предела. Объем регистрации обеспечен между структурами, образующими отверстие. Структуры, образующие отверстие, дополнительно определяют наибольший плоскостной размер отверстия W2; причем наибольший плоскостной размер отверстия больше дифракционного предела. Источник предусмотрен для излучения пучка излучения, имеющего длину волны, падающий на оптическое устройство, направление падения которого не параллельно внеплоскостному нормальному направлению, для обеспечения нераспространяющегося излучения в объеме регистрации, в ответ на излучение, падающее на оптическое устройство. Плоскость падения параллельна наибольшему плоскостному размеру отверстия. Изобретение обеспечивает увеличение эффективности возбуждения без необходимости использовать более высокие интенсивности для регистрации целевых компонентов. 3 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к системам и способам детектирования, в частности, в области диагностики. Система детектирования содержит держатель для подложки (16), причем подложка имеет поверхность детектирования и выполнена с возможностью содержать объем образца так, что образец находится, по меньшей мере, частично в контакте с поверхностью детектирования; источник (18) возбуждающего излучения для подачи возбуждающего излучения; компоновку подачи излучения для подачи возбуждающего излучения на область возбуждения образца, причем область возбуждения содержит поверхность детектирования; детектор (22), чтобы детектировать излучение детектирования, возникающее в результате взаимодействия возбуждающего излучения с образцом и собранное от анализируемой области в пределах области возбуждения образца, причем анализируемая область содержит поверхность детектирования; причем система дополнительно содержит магнитную компоновку, расположенную вблизи и с той же стороны поверхности детектирования образца, и неподвижную относительно источника (18) возбуждающего излучения и компоновки подачи излучения, причем магнитная компоновка выполнена с возможностью притягивать магнитные гранулы (15) в пределах образца к поверхности детектирования, и компоновку (24) направления магнитного поля для фокусировки магнитного поля от магнитной компоновки на анализируемую область, причем компоновка (24) направления магнитного ноля содержит отверстие, через которое компоновка подачи излучения может направить возбуждающее излучение и/или излучение детектирования. Технический результат - повышение эффективности детектирования. 2 н. и 11 з.п. ф-лы, 7 ил.
Изобретение относится к области исследования и экспертизы пожаров и предназначено для обнаружения на месте пожара остатков интенсификаторов горения. Сущность способа заключается в выполнении твердофазной экстракции остатков сгоревшего материала, выделении остатков интенсификаторов горения, содержащихся на месте пожара. Для этого используют микро-нанопористый полимерный материал, с помощью его сорбирующих функций берут пробу, исследуют остатки измерением интенсивности флуоресценции с поверхности данного сорбента, например, с помощью портативного флуориметра. Интенсивность люминесценции проводят при длине волны возбуждения 250-350 нм. В качестве сорбента используют пластины из микро-нанопористого полиэтилена с общей пористостью ~ 40%, удельной поверхностью около 41 м/г и размером сквозных каналов 180-520 нм. Изобретение позволяет более точно и достоверно определить род и состав интенсификаторов горения. 1 з.п. ф-лы, 1 табл.

Изобретение относится к технологии оптического обнаружения для флоат-стекла (термополированного стекла), особенно к устройству опознавания оловянной поверхности флоат-стекла. Устройство включает наружную оболочку, газоразрядную лампу, излучающую ультрафиолетовый свет, и источник электропитания. Газоразрядная лампа и источник электропитания расположены внутри наружной оболочки. Окно облучения установлено на наружной оболочке, соответствуя положению газоразрядной лампы. Метка, поглощающая ультрафиолетовый свет, расположена на внутренней или наружной поверхности окна облучения или на внутренней или наружной поверхности светофильтра. Устройство позволяет повысить эффективность опознавания оловянной поверхности флоат-стекла. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для оперативной идентификации разливов нефти и нефтепродуктов на морских, озерных и речных акваториях. Для классификации нефтяных загрязнений на поверхности воды облучают исследуемую водную поверхность в ультрафиолетовом диапазоне на длине волны возбуждения λв, регистрируют интенсивность флуоресцентного излучения I(λ1), I(λ2), I(λ3), I(λ4) от исследуемой водной поверхности в четырех узких спектральных диапазонах с центрами на длинах волн λ1, λ2, λ3, λ4, выбранных из условия максимального расстояния между классами в двумерном пространстве классифицирующих признаков и . Находят величины K1 и K2 для исследуемой водной поверхности и о принадлежности нефтяного загрязнения к одному из классов судят по попаданию найденных величин K1 и K2 для исследуемой водной поверхности в область, соответствующую этому классу в двумерном пространстве классифицирующих признаков. Изобретение позволяет проводить классификацию по четырем группам: вода с различными характеристиками (незагрязненная нефтепродуктами поверхность), белок или водоросли в воде, сырая нефть, тяжелые нефтепродукты, легкие очищенные нефтепродукты. 5 ил., 2 табл.

Изобретение относится к области биотехнологии и касается химерного белка, нуклеиновой кислоты, кодирующей такой белок, кассеты экспрессии и эукариотической клетки-хозяина. Представленный химерный белок с SEQ ID NO:02 является флуоресцентным биосенсором, сконструирован на основе белка НуРеr и мутанта РН-домена тирозинкиназы Btk. Представленные изобретения позволяют проводить одновременный мониторинг продукции пероксида водорода и фосфатидилинозитол-3,4,5-трифосфат в живой клетке. 4 н.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к аналитической химии органических соединений, а именно к способу определения в воздухе пиридина на фоне алифатических аминов. Способ заключается в том, что ДБМВF2 или его производное адсорбируют на полимерной матрице, содержащей полярные группы (например, ОН-группы). Появление в воздухе паров пиридина определяют по разгоранию флуоресценции в области 400-500 нм при воздействии пиридина в случае использования матрицы с малым содержанием флуорофора (таким, что он находится в основном в форме мономера) или по возрастанию интенсивности флуоресценции в диапазоне 400-500 нм с одновременным уменьшением интенсивности в диапазоне длин волн 500-600 нм (если в матрице наряду с мономерной формой флуорофора находится значительная доля димерной формы). Технический результат: предложенный способ обеспечивает определение наличия в воздухе паров пиридина в течение 10-60 с. 2 з.п. ф-лы, 3 пр., 7 ил.

Изобретение относится к области обнаружения свечения. Система обнаружения свечения содержит источник возбуждающего излучения и устройство (18, 20) обработки излучения, содержащее элемент (20) формирования линии и элемент (18) профилирования пучка, фокусирующее устройство, устройство для сбора флуоресцентного или фосфоресцентого излучения, детектор (28), подложку (16) для удержания образца (14) и средство сканирования возбуждающей линии. Возбуждающее излучение представляет собой линию и направляется на образец под углом, большим, чем критический угол между подложкой (16) и образцом (14), чтобы возбуждающее излучение подверглось полному внутреннему отражению на границе подложка-образец и являлось затухающим. При этом элемент (18) профилирования пучка выполнен для формирования пучка кольцевой формы (34), а элемент (20) формирования линии выполнен с возможностью формирования формы пучка из кольцевого пучка, который преобразуется фокусирующим устройством в возбуждающую линию. Технический результат заключается в обеспечении возможности повышения скорости измерения без потери чувствительности. 2 н. и 13 з.п. ф-лы, 5 ил.
Наверх