Способ получения наночастиц карбида молибдена



Способ получения наночастиц карбида молибдена
Способ получения наночастиц карбида молибдена

 


Владельцы патента RU 2489351:

Учреждение Российской академии наук Институт химии твердого тела Уральского отделения РАН (RU)

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения наночастиц карбида молибдена включает растворение пентахлорида молибдена в этаноле в соотношении, равном 1:(1-3). В полученный раствор добавляют мочевину. Затем проводят отжиг в две стадии. На первой стадии нагрев осуществляют в вакууме со скоростью не более 5°C/мин до температуры 430-450°C. На второй стадии нагревают в атмосфере азота до температуры 550-600°C с последующей выдержкой при этой температуре в течение 2,5-3 часов. Изобретение позволяет снизить температуру процесса и получить частицы карбида молибдена размером 5-10 нм. 2 ил., 2 пр.

 

Изобретение относится к способам получения наноразмерных материалов, в частности к способу получения карбида молибдена с морфологией наночастиц, который используют в производстве сталей, в качестве антикоррозионного, жаропрочного и жаростойкого материала, в качестве восстановителя, раскислителя, катализатора.

Известен способ получения нанопроволоки карбида молибдена (патент CN 101367521, МПК C01B 31/34, 2009 год). Способ получения состоит из нескольких стадий: соответствующий молибдат растворяют в воде, получая раствор с концентрацией молибдена 0,02-1,5 М. Затем проводят интеркаляцию органическим амином в соотношении амин : Мо 20÷1:1. К полученному композиту по каплям добавляют кислоту до установления pH среды 3-6. При этом образуется белый осадок. После чего реакционную смесь нагревают на масляной бане до температуры 30-60°С и выдерживают при указанной температуре в течение 6-24 ч. Конечный продукт фильтруют, промывают, сушат, а затем отжигают в инертной газовой атмосфере при температуре 675-750°С в течение 4-10 ч.

Недостатками известного способа являются многостадийность; примесное содержание углерода на поверхности карбида молибдена, снижающее качество конечного продукта; недостаточно высокий выход целевого продукта, который не превышает 95%.

Наиболее близким к предлагаемому техническому решению является способ получения наночастиц карбида молибдена (С.Giordano, С.Erpen, W.Yao, М.Antonietti "Synthesis of Mo and W carbide and nitride nanoparticles via a simple "urea glass" route", Nano Lett, 2008, v.8, p.4659-4663). В известном способе в качестве прекурсоров используют пентахлорид молибдена MoCl5 и мочевину CO(NH2)2 в соотношении мочевина : Мо 5÷7:1. Порошок пентахлорида молибдена растворяют в этаноле, затем медленно при перемешивании в течение 2 -часов, добавляют мочевину. Полученный гель помещают в печь и медленно при скорости нагрева 3°С/мин нагревают в токе азота в течение 4 часов до 800° и выдерживают при указанной температуре дополнительно 3 часа. По данным рентгенофазового анализа состав полученного продукта соответствует α-Мо2С кубической сингонии (JCPDS 15-0457). Согласно просвечивающей электронной микроскопии (ПЭМ) размер частиц карбида молибдена равен 15-30 нм. По данным рентгеновского анализа размер частиц равен 21,1-24,7 нм.

Недостатком известного способа получения является достаточно высокая температура отжига (800°С), приводящая к росту наночастиц карбида молибдена.

Таким образом, перед авторами стояла задача разработать способ получения карбида молибдена, который бы позволил снизить температуру отжига и повысить качество конечного продукта за счет уменьшения размера частиц.

Поставленная задача решена в предлагаемом способе получения наночастиц карбида молибдена, включающем растворение пентахлорида молибдена в этаноле, добавление в раствор мочевины и последующий отжиг, в котором пентахлорид молибдена и этанол берут в соотношении, равном 1:1÷3 соответственно, а отжиг ведут в две стадии: со скоростью не более 5°С/мин до температуры 430-450°С в вакууме, затем до температуры 550-600°С в атмосфере азота с последующей выдержкой при этой температуре в течение 2,5-3 часов.

В настоящее время из патентной и научно-технической литературы не известен способ получения наночастиц карбида молибдена состава α-Мо2С кубической сингонии ступенчатым отжигом реакционной гелеобразной массы первоначально в вакууме, а затем в токе азота.

Экспериментальные исследования, проведенные авторами, позволили разработать двухстадийный способ получения наноразмерного карбида молибдена. Причем при проведении процесса в две стадии появляется возможность ведения процесса при более низких температурах, за счет чего достигается более мелкий гранулометрический состав полученного продукта, поскольку отсутствуют условия спекания мелких частиц в более крупные. Авторами экспериментально было установлено, что существенным при подготовке исходных компонентов является соотношение между пентахлоридом молибдена и спиртом, например, этанолом. Необходимо соблюдать соотношение в интервале MoCl5: этанол =1:(1÷3). Соблюдение соотношения в указанном интервале, во-первых, позволяет за более короткое время получить исходный гелеобразный продукт, представляющий собой смесь пентахлорида молибдена, растворенного в этаноле, и мочевины (15-20 минут по сравнению с 2 часами в прототипе), во-вторых, повысить скорость нагрева гелеобразного продукта (до 5°С/мин по сравнению с 3°С/мин). Дальнейшее повышение скорости нагрева технологически нецелесообразно, так как может произойти вспенивание реакционной массы и принудительный ее выброс из емкости. При этом авторами установлено, что отсутствует необходимость соблюдения медленного нагрева в течение всего процесса. Необходимость медленного нагрева существует только на первой стадии при нагревании до температуры 430-450°С. В этих условиях авторами экспериментально установлено получение порошкообразного продукта, поэтому на второй стадии дальнейший нагрев можно проводить с произвольной скоростью. Совокупность предлагаемых условий проведения процесса получения карбида молибдена позволяет уже при отжиге при 550-600°С получить наноразмерный карбид молибдена состава α-Mo2C кубической сингонии.

Исследования, проведенные авторами, позволили сделать вывод, что частицы гранулометрического состава 5-10 нм карбида молибдена α-Мо2С кубической сингонии могут быть получены только при условии соблюдения параметров процесса, заявляемых в предлагаемом способе. Так, при снижении температуры первой стадии ниже 430°С, а второй стадии ниже 550°С в конечном продукте наблюдается появление примесных фаз (металлический молибден, оксид молибдена, углерод). При повышении температуры первой стадии выше 450°С, а второй стадии выше 600°С в конечном продукте появляется карбид молибдена другой модификации с морфологией микрочастиц.

Предлагаемый способ может быть осуществлен следующим образом. Пентахлорид молибдена MoCl5 растворяют в этаноле при соотношении MoCl5: этанол =1:(1÷3). Добавляют мочевину CO(NH2)2 в соотношении мочевина: Мо=5÷7:1 и перемешивают до образования геля (примерно 15-20 минут). Затем гелеобразную массу загружают в печь, нагревают в вакууме со скоростью не более 5°С/мин до температуры 430-450°С, после чего нагрев продолжают в атмосфере азота с произвольной скоростью до температуры 550-600°С и выдерживают при этой температуре в течение 2,5-3 часов. Полученный продукт охлаждают до комнатной температуры. Аттестацию полученного продукта проводят с помощью рентгенофазового анализа (РФА) и просвечивающей электронной микроскопии (ПЭМ). По данным РФА полученный порошок серого цвета является карбид молибдена состава α-Мо2С кубической сингонии. Согласно просвечивающей электронной микроскопии частицы карбида молибдена имеют морфологию наночастиц диаметром 5-10 нм. Размер частиц, вычисленный по данным рентгеновского анализа с использованием уравнения Шеррера, не превышает 10 нм.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 1 г пентахлорида молибдена MoCl5, растворяют в 1 мл этанола при соотношении MoCl5: этанол =1:1. Добавляют 1,10 г мочевины (соотношение MoCl5: мочевина =1:5), выдерживают в течение 20 минут до полного ее растворения и образования гелеобразной массы. Затем гелеобразную массу загружают в печь, нагревают в вакууме со скоростью 5°С/мин до температуры 430°С, после чего нагрев продолжают в атмосфере азота с произвольной скоростью до температуры 550°С и выдерживают при этой температуре в течение 2,5 часов. Полученный продукт охлаждают до комнатной температуры. По данным РФА и ПЭМ полученный продукт имеет состав α-Мо2С кубической сингонии с параметром кристаллической решетки а=4,225Å и состоит из наночастиц диаметром 5-10 нм. На фиг.1 представлена рентгенограмма α-Мо2С. На фиг.2 приведено изображение наночастиц карбида молибдена, полученное на просвечивающем электронном микроскопе высокого разрешения.

Пример 2. Берут 1 г пентахлорида молибдена MoCl5, растворяют в 3 мл этанола при соотношении MoCl5: этанол =1:3. Добавляют 1,54 г мочевины (соотношение MoCl5: мочевина =1:7), выдерживают в течение 20 минут до полного ее растворения и образования гелеобразной массы. Затем гелеобразную массу загружают в печь, нагревают в вакууме со скоростью 5°С/мин до температуры 450°С, после чего нагрев продолжают в атмосфере азота с произвольной скоростью до температуры 600°С и выдерживают при этой температуре в течение 3 часов. Полученный продукт охлаждают до комнатной температуры. По данным РФА и ПЭМ полученный продукт имеет состав α-Мо2С кубической сингонии с параметром кристаллической решетки а=4,225Å и состоит из наночастиц диаметром 5-10 нм.

Таким образом, авторами предлагается способ получения наночастиц карбида молибдена, обеспечивающий снижение температуры процесса и повышение качества конечного продукта за счет уменьшения гранулометрического состава.

Способ получения наночастиц карбида молибдена, включающий растворение пентахлорида молибдена в этаноле, добавление в раствор мочевины и последующий отжиг, отличающийся тем, что пентахлорид молибдена и этанол берут в соотношении, равном 1:(1÷3) соответственно, а отжиг ведут в две стадии: со скоростью не более 5°C/мин до температуры 430-450°C в вакууме, затем до температуры 550-600°C в атмосфере азота с последующей выдержкой при этой температуре в течение 2,5-3 ч.



 

Похожие патенты:

Изобретение относится к способу, который позволяет преобразовывать хлориды щелочноземельных металлов в вольфраматы и молибдаты, а также к его применению. .

Изобретение относится к области электроники и нанотехнологии, в частности к способу создания материала для высокоэффективных автоэмиссионных катодов на основе углеродных нанотруб, которые могут найти применение в дисплеях, панельных лампах, ионизаторах, рентгеновских источниках и других областях техники.
Изобретение относится к усовершенствованному способу извлечения молибдена из продуктов каталитического эпоксидирования олефинов органическими гидропероксидами.

Изобретение относится к сложному оксиду молибдена состава (VO)0.09V0.18Mo0.82O 3·0.54Н2O, а также к способу его получения. .

Изобретение относится к синтезу летучих фторидов элементов IV-VIII групп Периодической системы, являющихся сырьем для получения нанодисперсных материалов. .
Изобретение относится к области химической технологии, а именно к области получения соединений электролитическим способом, конкретно к способам получения интеркаляционных соединений, содержащих чередующиеся монослои дихалькогенида металла и органического вещества.

Изобретение относится к неорганической химии, а именно к получению оксосульфидных кластерных комплексов металлов, в частности оксосульфидных кластерных комплексов вольфрама и молибденвольфрама состава W3S2O2(H2 O)9Cl4 (1) и W2MoS2 O2(H2O)9Cl4 (2).
Изобретение относится к способам получения вольфраматов или молибдатов двухвалентных металлов и может быть использовано в химической промышленности, в частности, для получения исходных солей для выращивания монокристаллов.
Изобретение относится к технологии получения вольфраматов или молибдатов двухвалентных металлов, которые могут быть использованы в качестве исходных соединений для выращивания кристаллов, применяемых для изготовления детекторов ионизирующих излучений в компьютерной томографии, а также для различных технических нужд, в частности, в радиоэлектронике и лазерных установках.

Изобретение относится к области нанотехнологии и наноэлектроники, а именно к получению тонких пленок карбида вольфрама. .

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошковых материалов на основе карбидов вольфрама. .

Изобретение относится к области разработки технологии получения нанопорошков металлов и твердых сплавов. .

Изобретение относится к области неорганического синтеза, а именно к получению карбидов вольфрама, и может найти применение в металлургической промышленности, производстве инструментов, катализе.

Изобретение относится к области неорганического синтеза и может быть использовано в металлургической промышленности, производстве инструментов, катализе. .

Изобретение относится к электрохимическому синтезу соединений вольфрама и может быть использовано для получения нанодисперсного чистого порошка карбида вольфрама, обладающего развитой поверхностью, электрокаталитическими свойствами.

Изобретение относится к электрохимическому синтезу тугоплавких соединений вольфрама и может быть использовано для получения нанодисперсных твердосплавных композиций на основе карбида вольфрама и кобальта, обладающих высокими значениями температур плавления, твердости, прочности, упругости, химической инертностью.
Изобретение относится к порошковой металлургии и может быть использовано для получения монокарбида вольфрама различной дисперсности, используемых в производстве твердосплавных материалов на основе карбида вольфрама.

Изобретение относится к получению высокодисперсных тугоплавких карбидов, в том числе смешанных, покрытий и композитов на их основе при сравнительно низких температурах.

Изобретение относится к области нанотехнологий и может быть использовано для получения нанотрубок и фуллеренов. .
Наверх