Способ защиты атмосферного воздуха городов, имеющих горно-котловинное расположение, от загрязнения отработавшими газами двигателей внутреннего сгорания автомобилей



Способ защиты атмосферного воздуха городов, имеющих горно-котловинное расположение, от загрязнения отработавшими газами двигателей внутреннего сгорания автомобилей
Способ защиты атмосферного воздуха городов, имеющих горно-котловинное расположение, от загрязнения отработавшими газами двигателей внутреннего сгорания автомобилей
Способ защиты атмосферного воздуха городов, имеющих горно-котловинное расположение, от загрязнения отработавшими газами двигателей внутреннего сгорания автомобилей

 


Владельцы патента RU 2490870:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") (RU)

Предлагаемый способ относится к технологии создания зеленых городских лесозащитных зон. Способ защиты атмосферного воздуха городов, имеющих горно-котловинное расположение, от загрязнения отработавшими газами двигателей внутреннего сгорания автомобилей, заключается в том, что в местах скопления загрязнений токсичными и вредными веществами, а именно в пределах нижних точек котловин, создают технологические парки, а рядом с открытыми автомобильными стоянками и над закрытыми подземными гаражами-стоянками создают технологические скверы. Скверы и парки располагают с подветренной стороны стоянок вдоль основного направления ветра по розе ветров. Для засадки технологических парков и скверов применяют тополь и сирень и/или акацию. Предлагаемый способ обеспечивает систему очистки атмосферного воздуха от загрязнения токсичными и вредными веществами от отработавших газов автомобильных двигателей внутреннего сгорания в теплое время года. 10 табл., 3 ил.

 

Предлагаемый способ относится к технологии создания зеленых городских лесозащитных зон.

В настоящее время известны города, имеющие горно-котловинное месторасположение и одновременно самые высокие показатели индекса загрязнения атмосферы (ИЗА), который имеет максимальные показатели в нижних точках котловин. В пределах территории этих городов, как и везде, имеются открытые автомобильные стоянки и подземные гаражи - стоянки. Имеются зеленые городские насаждения вдоль дорог, зданий, во дворах домов и т.п.

Недостатком защиты атмосферного воздуха таких городов, имеющих горно-котловинное расположение, является отсутствие специальной системы зеленых лесозащитных зон, привязанных к рельефу, а также к открытым автомобильным стоянкам и подземным гаражам - стоянкам. Недостатком открытых автомобильных стоянок и подземных гаражей - стоянок является отсутствие или недостаточность систем очистки атмосферного воздуха от загрязнения токсичными и вредными веществами (ТВ и ВВ), входящими в состав отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС) автомобилей и выбрасываемых в наибольшем количестве именно на автомобильных стоянках при неустойчивых режимах работы ДВС во время запуска и прогрева.

Целью предлагаемого способа является создание системы естественной очистки атмосферного воздуха от загрязнения токсичными и вредными веществами от отработавших газов автомобильных двигателей внутреннего сгорания в теплое время года.

Цель достигается тем, что способ защиты атмосферного воздуха городов, имеющих горно-котловинное расположение, от загрязнения отработавшими газами двигателей внутреннего сгорания автомобилей, заключается в том, что в местах скопления загрязнений токсичными и вредными веществами, а именно в пределах нижних точек котловин, создают технологические парки, а рядом с открытыми автомобильными стоянками и над закрытыми подземными гаражами-стоянками создают технологические скверы, расположенные таким образом, что сами скверы и парки размещены с подветренной стороны и вытянуты в сторону основного направления ветра по розе ветров, при этом применяют для засадки технологических парков и скверов тополь и сирень и/или акацию, представляющие собой двухуровневую систему, при этом площадь парков и скверов рассчитывают по формуле:

S N а в т V а в т K ,

где S - площадь требуемых технических скверов и парков, м2 (га);

Nавт - количество автомобилей;

Vавт - выброс одного автомобиля, кг (т);

K - удельное поглощение загрязнения ТВ и ВВ (токсичных и вредных веществ), кг/м2 (т/га).

На фиг.1 изображен город с горно-котловинным месторасположением, на фиг.2 - открытая автомобильная стоянка с технологическим сквером, на фиг.3 - подземный гараж-стоянка с технологическим сквером.

На фиг.: город (1); технологический парк (2); система технологических скверов (3); основное направление ветра по розе ветров (4).

Технологический парк (2), является естественным фильтром для очистки атмосферного воздуха от ТВ и ВВ, скапливающихся в нижних точках котловин. ТВ и ВВ в составе ОГ ДВС автомобилей, вместе с воздушными массами с автомобильных стоянок, попадают в технологические скверы (3), рассеиваясь в сторону основного направления ветра по розе ветров (4) по всей площади технологических скверов.

В результате этого в городах, имеющих горно-котловинное месторасположение, в летнее время года происходит естественная очистка атмосферного воздуха от загрязнения ТВ и ВВ, входящими в состав ОГ ДВС автомобилей.

Над парками и скверами возникают нисходящие потоки воздуха, потому что поверхность листьев значительно прохладнее асфальта и металла. Пыль, увлекаемая нисходящими токами воздуха, оседает на листьях. Один гектар деревьев хвойных пород задерживает за год до 40 тонн пыли, а лиственных - около 100 тонн. Парки и скверы, привязанные при строительстве к рельефу, могут быть активными проводниками чистого воздуха в центральные районы города. Качество воздушных масс значительно улучшается, если они проходят над парками и скверами. При этом количество взвешенных примесей снижается на 10-40%. Практика показала, что это является достаточно эффективным средством борьбы с вредными выбросами автомобильного транспорта, эффективность которых может варьироваться в довольно широких пределах - от 7% до 35%.

Площади парков и скверов можно рассчитать по формуле:

S N а в т V а в т K ,

где S - площадь требуемых технических скверов и парков, м2 (га);

Nавт - количество автомобилей;

Vавт - выброс одного автомобиля, кг (т);

K - удельное поглощение загрязнения ТВ и ВВ (токсичных и вредных веществ), кг/м2 (т/га)

Пример расчета площади требуемых технологических скверов и парков для г. Чита в 2012 году.

1) Nавт - общее количество автомобилей (легковых, грузовых, автобусов) в г. Чита по статистическим данным ГИБДД на 2012 год составляет - 124095: а) легковые - 102656; б) грузовые - 15439; в) автобусы - 6000.

2) Vавт - выброс одного автомобиля был рассчитан по формуле:

V а в т = V N а в т , ( 2 )

где V - суммарный выброс всех типов автомобилей.

Данные для расчетов были получены при исследовании загрязнения атмосферного воздуха в регионах с резкоконтинентальным климатом отработавшими газами автомобилей (таблица 1).

Таблица 1
Значения суммарных выбросов токсичных и вредных веществ для различных групп автомобилей г.Чита, т/год в 2012 г.
Тип автомобилей Количество автомобилей Суммарный выброс одного автомобиля Суммарный выброс
Легковые 102656 1,65 169382
Грузовые 15439 0,01 154,39
Автобусы 6000 0,02 120
Итого: 169656.39

Выброс одного автомобиля составил: Vавт=1,37 т/год.

3) Деревьями для засадки технологических парков и скверов, обладающими наилучшими показателями по очистке атмосферного воздуха от ТВ и ВВ, являются тополь и акация и/или сирень, представляющие собой двухуровневую систему, наиболее эффективную в данном случае.

K - удельное поглощение загрязнения было рассчитано по формуле:

K = K т о п + K а к ( 3 )

где Kтоп - удельное поглощение тополем,

Kак - удельное поглощение акацией.

При расчетах учитывались только тяжелые металлы, в частности свинец (основной в выбросах автомобилей) и газ СО - основные элементы, участвующие в фотосинтезе.

Данные для расчетов были взяты из автореферата Копылова Л.В., 2012 г. / «Накопление тяжелых металлов в древесных растениях на урбанизированных территориях Восточного Забайкалья».

Таблица 2
Среднее содержание тяжелых металлов в листьях древесных растений в зависимости от видовой принадлежности, мг/кг.
Pb г. Чита Тополь (Populus balsamifera) Акация (Caragana arborescens)
5.7 4,5
Таблица 3
Среднее количество листьев древесных растений в зависимости от видовой принадлежности, кг/дерево, куст.
г. Чита Тополь (Populus balsamifera) Акация (Caragana arborescens)
45 17

Было получено:

Таблица 4
Среднее содержание тяжелых металлов в листьях древесных растений в зависимости от видовой принадлежности, кг/дер., куст.
Pb г. Чита Тополь (Populus balsamifera) Акация (Caragana arborescens)
0,000257 0,000077

См. А.А. Бабурин, Г.Ю. Морозова, 2009 / Вестник Тихоокеанского государственного университета. «Оценка экологической значимости зеленых насаждений».

Таблица 5
Среднее содержание CO в листьях древесных растений в зависимости от видовой принадлежности, мг/кг.
CO г. Чита Тополь (Populus balsamifera) Акация (Caragana arborescens)
1,83 1,83

Было получено:

Таблица 6
Среднее поглощение CO листьями древесных растений в зависимости от видовой принадлежности, кг/дер., куст.
CO г. Чита Тополь (Populus balsamifera) Акация (Caragana arborescens)
0,000082 0.000031
Таблица 7
Общее поглощение ТВ и ВВ листьями древесных растений в зависимости от видовой принадлежности, кг/дер., куст.
Pb+CO г. Чита Тополь (Populus balsamifera) Акация (Caragana arborescens)
0,000339 0.000108

См. Московский государственный университет леса ГУП Академия коммунального хозяйства им. К.Д. Памфилова ЗАО «ПРИМА-М» / Москва, 2001 «Методическое руководство и технические условия по реконструкции городских зеленых насаждений».

Таблица 8
Среднее количество деревьев (кустов) на одном гектаре.
Тополь (Populus balsamifera) Акация (Caragana arborescens)
Количество растений на га 200 1000

Было получено:

Таблица 9
Удельное поглощение ТВ и ВВ листьями древесных растений в зависимости от видовой принадлежности, кг/га.
Pb+CO г. Чита Тополь (Populus balsamifera) Акация (Caragana arborescens)
0,068 0.108
Таблица 10
Удельное поглощение ТВ и ВВ листьями древесных растений, т/га.
Pb+CO г. Чита 0,000176

Удельное поглощение загрязнения ТВ и ВВ составило: K=0,000176 т/га.

Площадь требуемых технических скверов и парков для г. Чита на 2012 г. составила: S=9,7 га.

По данным Управления архитектуры в г. Чита в 2012 году было зарегистрировано 25 автомобильных стоянок открытого и закрытого типа.

Вывод: исходя из официальных данных и расчетов в г. Чита, к примеру, можно построить 20 технологических скверов, для автомобильных стоянок площадью 0,25 га каждый и технологический парк в Железнодорожном районе (основание Читино-ингодинской котловины) площадью 4,7 га, что в летнее время снизит, по прогнозам, общее загрязнение атмосферного воздуха автотранспортом на 20-30%.

Способ защиты атмосферного воздуха городов, имеющих горно-котловинное расположение, от загрязнения отработавшими газами двигателей внутреннего сгорания автомобилей, заключающийся в том, что в местах скопления загрязнений токсичными и вредными веществами, а именно в пределах нижних точек котловин, создают технологические парки, а рядом с открытыми автомобильными стоянками и над закрытыми подземными гаражами-стоянками создают технологические скверы, расположенные таким образом, что сами скверы и парки размещены с подветренной стороны и вытянуты в сторону основного направления ветра по розе ветров, при этом применяют для засадки технологических парков и скверов тополь и сирень и/или акацию, представляющие собой двухуровневую систему, при этом площади парков и скверов рассчитывают по формуле
S N а в т V а в т K ,
где S - площадь требуемых технических скверов и парков, м2 (га);
Nавт - количество автомобилей;
Vавт - выброс одного автомобиля, кг (т);
K - удельное поглощение загрязнения ТВ и ВВ (токсичных и вредных веществ), кг/м2 (т/га).



 

Похожие патенты:

Изобретение относится к прикладной метеорологии и может быть использовано для коррекции погодных условий и изменения климата в отдельных регионах в интересах сельского хозяйства и экологии.

Изобретение относится к области воздействия на погодные условия и может быть использовано для рассеивания тумана на контролируемой территории. .

Изобретение относится к исследованиям верхней атмосферы Земли и околоземного космического пространства методом искусственных светящихся облаков и может быть использовано, например, при активных воздействиях на атмосферные процессы.

Изобретение относится к области сельского хозяйства и метеорологии и может быть использовано для регулирования климатических условий местности. .

Изобретение относится к устройствам для изменения атмосферных условий, а более конкретно к метеорологическим ракетам для рассеивания в облаках аэрозоля. .

Изобретение относится к области технических средств, предназначенных для генерации ледяных кристаллов, и может быть использовано для регулирования метеорологических процессов.

Изобретение относится к метеорологии и может быть использовано для активного воздействия на приземный слой атмосферы с целью ослабления туманов и улучшения видимости.

Изобретение относится к области метеорологии и может быть использовано для борьбы с аномальными атмосферными явлениями. .
Изобретение относится к пиротехническим составам для метеорологических ракет и пиропатронов, в частности аэрозолеобразующим составам для рассеяния облаков и туманов, предотвращения градобитий и вызывания осадков из переохлажденных облаков.
Изобретение относится к области активного воздействия на гидрометеорологические процессы, в частности для рассеивания тумана и облаков посредством генерирования адсорбирующего аэрозоля при горении пиротехнического заряда, включающего соли галогенов кислородсодержащих кислот.

Генератор ледяных кристаллов содержит, размещенный на борту самолета сосуд Дьюара с жидким азотом, крышку с манометром и зажимами для крепления к горловине сосуда Дьюара. По оси крышки размещен питающий трубопровод, один конец которого снабжен распылителем и выставлен за борт самолета в набегающий воздушный поток, а второй конец через крышку введен в сосуд Дьюара и опущен в жидкий азот. Генератор содержит устройство для подачи жидкого азота через питающий трубопровод в распылитель, а также трубку аварийного сброса давления. В целях упрощения конструкции устройства и повышения надежности и безопасности ее эксплуатации крышка выполнена в виде обратного клапана и подпружинена к горловине сосуда Дьюара с помощью упругих зажимов. При этом боковая поверхность крышки, контактирующая с внутренней боковой поверхностью горловины, содержит дренажный паз, соединяющий газовую полость сосуда Дьюара с внешней средой при достижении давления в ней критического порогового уровня. Устройство для принудительной подачи жидкого азота в распылитель выполнен в виде конического обтекателя, выставленного за борт самолета, а распылитель размещен по оси конического обтекателя и направлен в сторону, противоположную направлению движения самолета. Использование данного изобретения позволяет повысить надежность работы устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области метеорологии и может быть использовано для предотвращения торнадо. Способ предотвращения торнадо состоит в определении координат завихрения образующегося торнадо спутником с прибором визуального обзора и передающей антенной. Координаты передают на приемную антенну, а оттуда в расчетное устройство. Результаты расчета поступают на блок наведения полноповоротной передающей антенны. Антенна направляет луч сверхвысокочастотной энергии к ионосфере под таким углом, который обеспечивает попадание отраженного луча СВЧ энергии в центр завихрения образующегося торнадо. Устройство для предотвращения торнадо содержит приемную антенну, взаимодействующую с расчетным устройством, взаимодействующим с блоком наведения. Приемная антенна установлена на мачте и заземлена в грунт. Дополнительно введена передающая полноповоротная антенна с блоком наведения, спутниковое устройство с визуальным обзором и передающей антенной. Спутниковое устройство прибором визуального обзора и передающей антенной взаимодействует с приемной антенной. Приемная антенна взаимодействует с расчетным устройством. Расчетное устройство взаимодействует с блоком наведения передающей полноповоротной антенны. Луч СВЧ энергии взаимодействует с ионосферой земли, а отраженный от ионосферы земли луч СВЧ энергии взаимодействует с центром завихрения образующегося торнадо. Обеспечивается расширение функциональных возможностей устройства и повышение эффективности борьбы с торнадо. 2 н.п. ф-лы, 2 ил.

Изобретение предназначено для сдвига и разрушения антициклонов в тропосфере. Способ включает длительное воздействие на атмосферу вертикальным восходящим конвективным потоком от системы излучателей, поднятых над Землей и разнесенных по площади, образуемым завихрением магнитным полем генерируемых коронирующими электродами ионов и их канализацией посредством соленоидов в каждом излучателе при пропускании через них тока коронирования и разогрева потока ионов электромагнитным полем на длине волны больше критической, для создаваемой плотности концентрации в объеме соленоидов за счет соосного их охвата элементами спиральной антенны с осевой результирующей диаграммой направленности. Технический результат - образование струйных течений от восходящего потока ионов, изменяющих динамику атмосферных процессов. 5 ил.

Изобретение касается метеорологии и может быть использовано для сдвига и разрушения антициклонов в тропосфере. Устройство содержит генератор высокочастотного напряжения и присоединенную к нему систему коронирующих электродов, каждый из которых выполнен в виде соленоида с венчиком игл на концах, помещенных во внутренний нижний торец соленоидов. Каждый из соленоидов соосно охвачен витками элементов спиральной антенны, размещенных в двух взаимно ортогональных плоскостях, с общим рефлектором, создающих осевую результирующую диаграмму направленности. Антенна подключена к высокочастотному передатчику электромагнитных волн. Технический результат - образование в тропосфере струйных течений восходящего потока ионов, изменяющих динамику атмосферных процессов. 6 ил.
Изобретение относится к области активного воздействия на гидрометеорологические процессы, в частности, для рассеивания тумана и облаков посредством генерирования адсорбирующего аэрозоля при горении пиротехнического заряда, включающего соли галогенидов. Пиротехнический аэрозолеобразующий состав для воздействия на облака и туман содержит перхлорат аммония, фенолформальдегидную смолу, в качестве органического пластификатора уротропин, в качестве галогенида, образующего распределенные центры дисперсной фазы - йодат калия, служащий поставщиком йодида калия, и йодид меди, льдообразующий йодид серебра и графит в качестве технологической добавки. Изобретение обеспечивает высокую эффективность действия целевого пиротехнического аэрозолеобразующего состава по назначению за счет генерирования при горении дополнительной дисперсной фазы, служащей в качестве активных центров конденсации влаги теплых и переохлажденных облаков и тумана, обеспечивая универсальность метеорологического воздействия в широком диапазоне температур при высоком пороге льдообразования и выходе активных ядер кристаллизации. 1 табл.

Предлагаемое изобретение относится к способу самоинициирующегося охлаждения тропосферы путем ее обогащения по меньшей мере одним веществом из группы неорганических хлоридов и бромидов. Используемые для этой цели вещества характеризуются по меньшей мере одним из следующих свойств: они находятся в газообразном состоянии, они находятся в парообразном состоянии при температуре ниже 500°C, они гигроскопичны, они гидролизуемы. Согласно предлагаемому изобретению образование используемых для этой цели веществ дополнительно характеризуется по меньшей мере одним из следующих этапов: образование упомянутого вещества с помощью электролиза соленой воды, образование упомянутого вещества за пределами процесса сгорания, образование упомянутого вещества в свободной тропосфере. Предлагаемый способ позволяет решать проблему потепления климата путем образования охлаждающих облаков. 14 з.п. ф-лы, 1 ил., 9 пр.

Изобретение относится к области метеорологии и сельского хозяйства и может быть использовано для воздействия на термический циклон с целью увеличения количества атмосферных осадков. В зоне термического циклона выделяют сектор, ограниченный с севера линией, соответствующей направлению от центра циклона на восток. С запада сектор ограничивает линия, соответствующая направлению от центра циклона на юго-запад. В этом секторе восходящим потоком ионизированного воздуха формируют область пониженного атмосферного давления. Устройство для осуществления способа содержит генератор ионов и снабжено рефлектором. Рефлектор выполнен в виде трубчатой конструкции из металлической сетки. Генератор ионов размещен внутри заземленного рефлектора. Генератор ионов может быть снабжен увлажнителем воздуха, расположенным под ним. Увлажнитель воздуха может быть выполнен в виде генератора пара. Обеспечивается сужение потока ионизированного воздуха, увеличение концентрации в нем ионов, увеличение скорости потока, снижение его зависимости от ветра и тем самым обеспечивается подъем ионизированного воздуха на большую высоту. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение может быть использовано для сдвига и разрушения антициклонов в тропосфере. Устройство выполнено в виде геометрического зонтика из десяти радиальных проводов-коронирующих электродов, создающих антенное поле, длиной 100 м каждый, подвешенных на центральной опорной мачте из композитного материала высотой 30 м с узлом крепления проводов на вершине через высоковольтные изоляторы, изолирующие радиальные провода от центральной мачты и десяти вспомогательных мачт из композитного материала высотой 10 м, подвески радиальных проводов, электрически соединенных по периметру окружности «зонтика», изолированных от мачт стержневыми изоляторами, одна из мачт содержит узел крепления провода запитки «зонтика» от источника высоковольтного питания в регулируемом режиме изменения полярности питающего напряжения посредством высоковольтного переключателя и заземлителя питающего источника. Технический результат - достижение критических значений мощности и турбулентности восходящего потока ионов, достаточных для возникновения струйного течения в тропосфере, за счет увеличения зоны активной генерации и тока коронирования, а также режима переключения полярности питания коронирующих электродов. 7 ил.

Изобретение относится к области техники, предназначенной для рассеивания тумана над различными объектами, к которым следует отнести аэродромы, скоростные автодороги, морские порты и т.п., где для управления транспортными средствами необходимо обеспечение дальности видимости, а также на открытых площадках для проведения различных спортивных и зрелищных мероприятий. Устройство для рассеивания тумана содержит установленную на раме заземленную электропроводную сетку, поверх которой установлены электропроводные стержни, вдоль поверхности которых с зазором установлены соединенные с высоковольтным источником питания коронирующие электроды. Электропроводные стержни установлены параллельно коронирующим электродам с шагом вдоль поверхности сетки, кратным шагу коронирующих электродов. Предлагаемое техническое решение позволяет обеспечить гарантированное значение зазора разрядного промежутка, что позволяет сформировать устойчивый коронный разряд и обеспечить повышение эффективности работы устройства рассеивания тумана. Конструкция устройства позволяет использовать высокоэффективные коронирующие электроды с фиксированными разрядными точками (игольчатые электроды), широко применяемые в электрофильтрах. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам изменения атмосферных условий над заданной территорией и предназначено для формирования дождевых облаков, преимущественно в период засух. Способ предусматривает распыление в приземном слое атмосферы мелкодисперсных гигроскопичных водорастворимых частиц и/или капель химических реагентов при обеспечении давления насыщающих паров, меньшего, чем существующее на момент распыления давление водяных паров в приземном слое атмосферы. В результате инициируется устойчивый восходящий конвективный поток воздуха при обеспечении условий перехода сухоадиабатического процесса во влажно-адиабатический процесс при восхождении такого потока воздуха. Предлагаемое изобретение позволяет при минимальном наборе средств обеспечить эффективное воздействие на атмосферные условия в период засухи или возникновении смога. 2 ил.
Наверх