Способ получения средства для рентгенологического исследования



Способ получения средства для рентгенологического исследования
Способ получения средства для рентгенологического исследования

 


Владельцы патента RU 2491959:

Васильев Виктор Георгиевич (RU)
Осминин Александр Георгиевич (RU)

Изобретение относится к способу получения средства для рентгенологических исследований путем обработки суспензии танталата элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций в режиме ударных механических нагружений интенсивностью не менее 10 g, в присутствии натриевой соли карбоксиметилцеллюлозы (Na-КМЦ), взятой в количестве 0,5-1,5 мас.% от общей массы. Заявленное изобретение обеспечивает высокую контрастность изображения и стабильность средства в течение длительного времени за счет получения суспензии, содержащей наноразмерные частицы. 2 ил., 3 пр.

 

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано для получения рентгеноконтрастного средства, необходимого при проведении диагностических исследований различных органов человека.

Известен способ получения танталатов редкоземельных элементов, скандия и иттрия, включающий гомогенизацию смеси исходного оксида редкоземельного элемента или скандия, или иттрия и оксида тантала, взятых в стехиометрическом соотношении, путем механической обработки в смесительном устройстве с планетарным движением барабана, твердость материала рабочих элементов которого более или равна 3 по шкале Мооса, с частотой вращения 10-17 с-1 и последующую термообработку при температуре 840-1000°C (патент RU 22009770, МКИ C01G 35/00, C01F 17/00; 2003 год).

Недостатком известного способа является использование планетарного устройства, рабочие элементы которого выполнены из стали или меди. Использование стальных или медных рабочих элементов ведет к появлению большого намола, загрязняющего конечный продукт.

Известен способ получения средства для рентгенологического исследования гладкомышечных полых органов и других мягких тканей на основе суспензии танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций, путем обработки суспензии в режиме ударных механических нагружений интенсивностью не менее 10 g (патент RU 2205030, МКИ A61K 51/00, 2003 год) (прототип).

К недостаткам известного способа относятся, во-первых, недостаточно высокая контрастность, во-вторых, низкая стабильность, которая не превышает двух суток, что делает невозможным использование средства в течение длительного времени.

Таким образом, перед авторами стояла задача разработать способ получения средства для рентгенологического исследования на основе суспензии танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций, которое характеризовалось бы высокой контрастностью и высокой степенью стабильности, обеспечивающей длительный срок хранения средства.

Поставленная задача решена в предлагаемом способе получения средства для рентгенологических исследований путем обработки суспензии танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций в режиме ударных механических нагружений интенсивностью не менее 10 g, в котором обработку осуществляют в присутствии натриевой соли карбоксиметилцеллюлозы (Na-КМЦ), взятой в количестве 0,5-1,5 мас.% от общей массы.

В настоящее время из патентной и научно-технической литературы неизвестен способ получения средства для рентгенологических исследований путем обработки в режиме ударных механических нагружений суспензии в присутствии натриевой соли карбоксиметилцеллюлозы (Na-КМЦ), взятой в предлагаемом количестве.

Предлагаемый способ позволяет получить средство для рентгенологических исследований на основе суспензии танталата редкоземельного элемента, характеризующееся высокой контрастностью и стабильностью в течение длительного времени за счет получения суспендированных частиц танталата в наноразмерном состоянии. Как показали исследования, проведенные авторами, перевод твердых химически инертных сложных оксидов, содержащих в составе элементы с высоким порядковым номером, на наноразмерный уровень, позволяет повысить рентгеноконтрастность средства. Интенсивная механическая обработка, при которой происходит механохимическая активация, способствует уменьшению размера частиц обрабатываемых порошков и увеличению количества дефектов в кристаллической решетке. Однако только механоактивация не позволяет получить кристаллический порошок наноразмерного уровня. В результате исследований, проведенных авторами, было установлено, что качественно новый, наноразмерный уровень может быть достигнут при осуществлении механоактивации в присутствии полимера. При совместном помоле сложного оксида (танталата РЗЭ) и водного раствора полимера, последний выполняет роль расклинивающего агента. Раствор полимера проникает в образовавшиеся дефекты в кристаллической решетке и способствует дальнейшему разрушению твердой компоненты. Кроме того, полимер обволакивает частицы порошка и не дает им слипаться в более крупные конгломераты при ударах мелющих тел. Поскольку получаемая суспензия используется в качестве рентгенологического средства при рентгенодиагностики различных органов человека, в качестве полимера необходимо использовать фармацефтически приемлемый полимер. Этому условию отвечает натриевая соль карбоксиметилцеллюлозы, которая является нетоксичной и хорошо растворимой в воде. Экспериментальным путем авторами были установлены пределы необходимого и достаточного содержания полимера в обрабатываемой суспензии. При содержании натрий-карбоксиметилцеллюлозы более 1,5 мас.% от общей массы смеси получают слишком вязкую, густую суспензию, повышенная вязкость не дает возможности мелющим телам интенсивно разбивать подвергаемые дроблению компоненты. При содержании натрий-карбоксиметилцеллюлозы менее 0,5 мас.% от общей массы высокодисперсные частицы с развитой поверхностью недостаточно изолированы друг от друга, что ведет к образованию конгломератов.

На фиг.1 приведена микрофотография наночастицы танталата иттрия YTaO4.

На фиг.2 приведены фотографии опытного животного с введенными внутрижелудочно известным средством (патент RU 22050030)(a) и предлагаемым средством, полученным в соответствии с примером 1(6). Визуальные наблюдения показывают, что контрастность предлагаемого средства значительно ярче, при этом содержание танталата РЗЭ уменьшено в 10 раз по сравнению с известным средством.

Уменьшение содержания количества танталата РЗЭ в предлагаемом средстве имеет большое практическое значение, поскольку этим обеспечивается более быстрое его выведение из организма.

Предлагаемый способ может быть осуществлен следующим образом. Берут необходимое количество порошка танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций; с размером частиц 5-10 мк, добавляют воду для получения соотношения, равного 1:20, и натриевую соль карбоксиметилцеллюлозы в количестве 0,5-1,5 мас.% от общей массы смеси. Смесь помещают в шаровую мельницу немецкой фирмы FRITSCH с барабаном и шарами из оксида алюминия и обрабатывают в режиме ударных механических нагружений интенсивностью не менее 10 g в течение 50-60 мин. до получения суспензии, которая остается стабильной в течение нескольких месяцев. Размер частиц полученной суспензии измеряют на растровом электронном микроскопе (РЭМ) JEOL JSM-6390LA с возможностью проведения локального энергодисперсионного рентгеновского микроанализа. Полученную суспензию со средним размером частиц менее 50 нм используют для рентгенологических исследований гладкомышечных полых органов и других мягких тканей.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 10 г порошка танталата иттрия YTaO4 с размером частиц 5 мк, добавляют 200 г воды для получения соотношения, равного 1:20, и натриевую соль карбоксиметилцеллюлозы в количестве 3 г, что составляет 1,4 мас.% от общей массы смеси. Смесь помещают в шаровую мельницу фирмы FRITSCH и обрабатывают в режиме ударных механических нагружений интенсивностью 10 g в течение 50 мин. до получения суспензии с размером частиц 20 нм (см. фиг.1), которая остается стабильной в течение двух месяцев.

Пример 2. Берут 10 г порошка танталата лантана LaTaO4 с размером частиц 10 мк, добавляют 200 г воды для получения соотношения, равного 1:20, и натриевую соль карбоксиметилцеллюлозы в количестве 3,166 г, что составляет 1,5 мас.% от общей массы смеси. Смесь помещают в шаровую мельницу фирмы FRITSCH и обрабатывают в режиме ударных механических нагружений интенсивностью 10 g в течение 50 мин. до получения суспензии с размером частиц 20 нм, которая остается стабильной в течение двух месяцев.

Пример 3. Берут 10 г порошка танталата гадолиния GaTaO4 с размером частиц 8 мк, добавляют 200 г воды для получения соотношения, равного 1:20, и натриевую соль карбоксиметилцеллюлозы в количестве 1,055 г, что составляет 0,5 мас.% от общей массы смеси. Смесь помещают в шаровую мельницу и обрабатывают в режиме ударных механических нагружений интенсивностью 10 g в течение 60 мин. до получения суспензии с размером частиц 10 нм, которая остается стабильной в течение двух месяцев.

Таким образом, авторами предлагается способ получения рентгенологического средства для проведения рентгенодиагностики гладкомышечных полых органов и других мягких тканей, который обеспечивает высокую контрастность изображения и стабильность средства в течение длительного времени за счет получения суспензии, содержащей наноразмерные частицы.

Способ получения средства для рентгенологических исследований путем обработки суспензии танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций в режиме ударных механических нагружений интенсивностью не менее 10g, отличающийся тем, что обработку осуществляют в присутствии натриевой соли карбоксиметилцеллюлозы (Na-КМЦ), взятой в количестве 0,5-1,5 мас.% от общей массы.



 

Похожие патенты:

Изобретение относится к технологии получения основных углекислых солей цинка, которые могут быть использованы в качестве сырья и промежуточных продуктов в фармацевтике, микроэлектронике, химической, шинной, лакокрасочной и нефтеперерабатывающей промышленности.

Изобретение относится к области неорганической химии, а именно к способу выделения одностенных углеродных нанотруб (ОУНТ) из продуктов синтеза. .

Изобретение относится к технологии углеродных материалов, конкретно - к технологии получения углеродных наноматериалов, в частности нанотрубок и нановолокон, методом химического осаждения из газовой фазы.

Изобретение относится к области химии, а именно к механохимическим способам получения нанокристаллического кремний-замещенного гидроксилапатита, являющегося биологически активным материалом, который может быть использован для покрытия металлических и керамических имплантатов, в качестве наполнителя для восстановления дефектов костной ткани при изготовлении медицинской керамики и композитов для стоматологии и челюстно-лицевой хирургии, а также лечебных паст.

Изобретение относится к способам получения наноразмерных материалов, в частности к способу получения карбида молибдена с морфологией наночастиц, который используют в производстве сталей, в качестве антикоррозионного, жаропрочного и жаростойкого материала, в качестве восстановителя, раскислителя, катализатора.

Изобретение относится к области нанотехнологий и может быть использовано для получения нанотрубок и фуллеренов. .
Изобретение относится к порошковой металлургии, в частности к производству металлических наноразмерных порошков. .

Изобретение относится к области физической химии и может быть использовано в производстве фотонных кристаллов с заданными физическими свойствами. .

Изобретение относится к области медицины, в частности токсикологии и радиологии, к лекарственным средствам на основе антиоксидантных белков и способам их применения.
Изобретение относится к области косметологии и представляет собой увлажняющий крем, содержащий гелеобразующий компонент, увлажняющий компонент глицерин, циклометикон DC 345 консервант, отдушку, биологически активную добавку и воду, отличающийся тем, что содержит в качестве биологически активной добавки дисперсию твердых липидных наночастиц размером от 50 до 300 нм с включенными в них очищенной водой, карнаубским воском, УФ-фильтром Бензофенон-3, децилглюкозидом, маслом черной смородины и стабилизатором дисперсии - пентиленгликолем, а в основу входят пропиленгликолевые экстракты лекарственных растений: ромашки аптечной (Matricaria chamomilla), зверобоя продырявленного (Hypericum perforatum) и череды трехраздельной (Bidens tripartitus) в соотношении 1:1:1, абрикосовое косточковое масло, структурообразователь COVACRYL MV 60, консервант Sharomix MCI, эмульгатор Solubilisant LRI и очищенная вода, причем компоненты в композиции находятся в определенном соотношении в мас.%.

Изобретение относится к преобразователям энергии электромагнитного излучения в электрическую энергию и может быть использовано в производстве солнечных элементов.

Изобретение относится к подготовке нефти и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности на стадии подготовки нефти к ее транспортировке и переработке для разделения водонефтяных эмульсий.

Изобретение относится к негорючим слабодымящим полимерным нанокомпозитам на основе полибутилентерефталата. .

Изобретение относится к лакокрасочному материалу, модифицированному нанодисперсными слоистыми силикатами, диспергированными в растворе высокомолекулярного соединения при помощи ультразвуковой обработки.

Изобретение относится к способу модификации лакокрасочных материалов нанодисперсными слоистыми силикатами, диспергированными в растворе высокомолекулярного соединения при помощи ультразвуковой обработки.
Изобретение относится к полимерным материалам с повышенной электропроводностью и может быть использовано в токопроводящих изделиях конструкционного назначения. .

Изобретение относится к области медицины, в частности неврологии, и касается фармацевтической композиции, для лечения нейродегенеративных заболеваний, в частности бокового амиотрофического склероза.
Изобретение относится к химической промышленности для создания огнестойких и теплоизоляционных покрытий и касается огнезащитного силикатного покрытия по металлу.
Изобретение относится к химической промышленности и касается создания огнестойких и теплоизоляционных покрытий. .

Изобретение относится к способу получения композиции, содержащей полисахарид, имеющий одну или более комплексообразующих групп, полученных ковалентным связыванием путресцина, спермина, спермидина или кадаверина с указанным полисахаридом, при этом все или некоторые из указанных комплексообразующих групп образуют комплекс с радиоактивномеченым металлом 99mTc.
Наверх