Устройство пожаротушения с горячим аэрозолем

Изобретение относится к устройствам пожаротушения охлаждающего типа. Аэрозольное устройство пожаротушения содержит корпус, производящий аэрозоль реагент и инициирующий заряд. В корпусе расположена внутренняя камера с производящим аэрозоль реагентом. Охлаждающий слой в ячеистой структуре или охлаждающий слой, образованный ячеистой структурой, в сочетании с охлаждающей средой размещен между химическим реагентом и выпускными отверстиями корпуса. Охлаждающая среда имеет сферическую или неправильную форму. Ячеистая структура, используемая в устройстве, имеет большую площадь теплообмена, а также может поглощать большое количество тепла за короткое время и имеет хороший эффект охлаждения. Кроме того, ячеистая структура также может быть загружена катализатором для устранения вредных газов, таких как оксид азот, угарный газ и тому подобные газы, производимые аэрозолем. 14 з.п. ф-лы, 3 ил.

 

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Изобретение относится к области техники, связанной с устройствами пожаротушения, и относится к устройствам пожаротушения охлаждающего типа, особенно к аэрозольным устройствам пожаротушения.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Аэрозольные устройства пожаротушения представляют собой новые продукты пожаротушения, которые были разработаны в последние годы, и имеют такие преимущества, как высокая эффективность пожаротушения, без парникового эффекта и без повреждений озонового слоя, и т.д. При проектировании аэрозольного устройства пожаротушения подход охлаждения является важной частью дизайна.

Существующие охлаждающие структуры, как правило, имеют сферическую или другую неправильную форму, например, аэрозольное устройство пожаротушения, раскрытое в китайской патентной заявке №ZL02278270.2, в которой гранулы из керамики и глины используются в качестве фильтрующего и очищающего материала. Почти все другие способы охлаждения, раскрытые в литературе и патентных документах, также используют материалы сферической или другой неправильной формы. Эти охлаждающие среды имеют общие недостатки, такие как небольшая удельная площадь поверхности и высокая плотность, и т.д., в результате чего устройство является очень громоздким и трудным в обращении и установке. Кроме того, трудно собрать такие охлаждающие среды в однородное состояние; поэтому, охлаждающий эффект является неудовлетворительным. Кроме того, плотность охлаждающей среды может стать неоднородной после транспортировки, в результате чего это оказывает сильно негативное влияние на эффект охлаждения.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Чтобы преодолеть вышеупомянутые недостатки предшествующего уровня техники, настоящее изобретение обеспечивает аэрозольное устройство пожаротушения ячеистой структуры, которое имеет компактный размер, просто в установке и обеспечивает хороший эффект охлаждения. Техническое решение аэрозольного устройства пожаротушения описывается следующим образом.

Аэрозольное устройство пожаротушения содержит корпус, внутреннюю камеру, производящий аэрозоль реагент и инициирующий заряд, и охлаждающий слой ячеистой структуры или охлаждающий слой, образованный ячеистой структурой, в сочетании с охлаждающей средой сферической или неправильной формы, размещенной между химическим реагентом и выпускными отверстиями.

Корпус, описанный в настоящем изобретении, представляет собой гильзу с теплоизолирующим слоем или камеру с аэрозольным генератором; причем внутренняя камера представляет собой картридж, заполненный производящим аэрозоль реагентом.

Кроме того, ячеистая структура изготовлена из металла или неметаллического материала.

Кроме того, металлический материал представляет собой железо, алюминий, медь, титан, сплавы железа, сплавы алюминия, сплавы меди и сплавы титана.

Кроме того, неметаллический материал изготовлен из связующего реагента и одного или нескольких из следующих веществ: оксида, гидроксида, карбоната, сульфата, фосфата, хлорида, карбида или нитрида металла, или оксида, карбида или нитрида неметалла; или соли аммония, или аминосоединения.

Кроме того, неметаллический материал представляет собой керамический материал, такой как корунд, муллит, кордиерит, титанат алюминия, сподумен, цирконит, карборунд или нитрид кремния.

Кроме того, ячеистая структура представляет собой пористую структуру, имеющую правильную форму или неправильную форму.

Кроме того, ячейки в ячеистой структуре расположены в многоугольной, круговой, эллиптической или неправильной форме, предпочтительно прямоугольной форме.

Кроме того, ячеистая структура в аэрозольном устройстве пожаротушения содержит один слой, два слоя или большее количество слоев.

Кроме того, в ячеистой структуре, которая содержит два или большее количество слоев, размер ячеек в наружном слое меньше или равен размеру ячеек во внутреннем слое.

Кроме того, размер ячеек в ячеистой структуре меньше или равен 10 мм.

Кроме того, размер ячеек в ячеистой структуре меньше или равен 3,5 мм.

Кроме того, пористость ячеистой структуры выше или равна 10%, и ниже или равна 95%.

Кроме того, пористость ячеистой структуры выше или равна 20%, и меньше или равна 80%.

Кроме того, ячеистая структура поддерживает катализатор.

Кроме того, катализатор, поддерживаемый ячеистой структурой, представляет собой оксид переходных металлов, в том числе оксид железа, оксид меди, полуторный оксид никеля, перекись марганца или их композитный материал, или благородный металл, включающий платину, родий, палладий, или редкоземельный материал, в том числе оксид редкоземельного элемента, такой как оксид лантана и оксид церия, сульфат редкоземельного элемента, такой как сульфат самария и сульфат празеодима, нитрат редкоземельного элемента, такой как нитрат лантана и нитрат празеодима, фосфат редкоземельного элемента, такой как фосфат лантана и фосфат церия, хлорид редкоземельного элемента, такой как хлорид церия и хлорид самария, соль органической кислоты редкоземельного элемента, такой как ацетат лантана и ацетат самария, или какой-либо композитный материал из вышеупомянутых редкоземельных материалов.

По сравнению с известными устройствами предложенное аэрозольное устройство пожаротушения имеет следующие преимущества:

1. Ячеистая структура в устройстве имеет большую площадь теплообмена, которая может поглощать большое количество тепла в короткое время и, следовательно, обеспечивает хороший эффект охлаждения. 2. Ячеистая структура имеет правильную форму и легко собирается. Собранное аэрозольное устройство пожаротушения компактно по размерам и экономит пространство и просто в установке. 3. Ячеистая структура обеспечивает высокую воспроизводимость результатов испытаний и подходит для массового производства. 4. Ячеистая структура может легко поддерживать катализатор, для удаления токсичных газов, производимых аэрозолем, таких как оксид азота и моноксид углерода и пр.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 представляет собой структурное схематичное изображение аэрозольного устройства пожаротушения, выполненного в соответствии с настоящим изобретением;

Фиг.2 представляет собой структурное схематичное изображение другого аэрозольного устройства пожаротушения, выполненного в соответствии с настоящим изобретением;

Фиг.3 представляет собой структурное схематичное изображение другого аэрозольного устройства пожаротушения, выполненного в соответствии с настоящим изобретением.

На чертежах элементы представляют собой: 1 - выпускное отверстие, 2 - интерфейс электрического инициирующего заряда, 3 - наружная гильза, 4 - камера, 5 - химическое охлаждающее средство, 6 - мелкоячеистая керамическая структура, 7 - крупноячеистая керамическая структура, 8 - производящий аэрозоль реагент, 9 - система зажигания, 10 - выпускное отверстие, 11 - камера, 12 - интерфейс электрического инициирующего заряда, 13 - аэрозольный генератор, 14 - ячеистая металлическая структура, 15 - химическое охлаждающее средство, 16 - система зажигания, 17 - производящий аэрозоль реагент, 18 - выпускное отверстие, 19 - камера, 20 - интерфейс электрического инициирующего заряда, 21 - аэрозольный генератор, 22 - ячеистая карбонатная структура, 23 - система зажигания, 24 - производящий аэрозоль реагент.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ВЫПОЛНЕНИЯ

Аэрозольное устройство пожаротушения в настоящем изобретении будет далее более подробно описано со ссылкой на чертежи.

Фиг.1 представляет собой структурное схематичное изображение аэрозольного устройства пожаротушения, выполненного в соответствии с настоящим изобретением. Как показано на Фиг.1, устройство содержит выпускные отверстия 1, наружную гильзу 3, камеру 4, химическое охлаждающе средство 5, производящий аэрозоль реагент 8, систему 9 зажигания и инициирующий заряд, причем наружная гильза 3 образует корпус устройства, а картридж (камера 4), который наполнен производящим аэрозоль реагентом, образует внутреннюю камеру устройства.

В этом примере инициирующий заряд устройства представляет собой электрический инициирующий заряд с интерфейсом 2 электрического инициирующего заряда. Производящий аэрозоль реагент 8 установлен в картридже в наружной гильзе 3. После того, как производящий аэрозоль реагент 8 воспламеняется системой 9 зажигания, производится аэрозоль, который охлаждается химически химическим охлаждающим средством 5, расположенным на одном конце.

Для получения лучшего эффекта охлаждения также требуется и физическое охлаждение. Так, устройство дополнительно имеет охлаждающий слой в ячеистой структуре. В этом примере охлаждающий слой содержит два слоя в ячеистой керамической структуре, включая крупноячеистую керамическую структуру 6 и мелкоячеистую керамическую структуру 7, которые расположены рядом друг с другом для формирования физического охлаждающего слоя. Кроме того, размер ячейки ячеистой структуры в наружном слое меньше чем или равен размеру ячейки ячеистой структуры внутреннего слоя; наружный слой изготовлен из муллита с треугольными ячейками размером 2 мм, при 85% пористости; внутренний слой выполнен из корунда с круглыми ячейками размером 8 мм, при 45% пористости; ячеистые структуры дополнительно поддерживают катализатор (не показан), такой как пероксид марганца.

Катализатор, поддерживаемый ячеистой структурой, может представлять собой оксид переходного металла, благородный металл, редкоземельный материал или композитный материал из редкоземельных материалов.

В устройстве, выполненном, как описано выше, аэрозоль, охлаждаемый в первую очередь с помощью химического охлаждающего вещества 5, физически охлаждается ячеистыми структурами 6 и 7. Поскольку ячеистые структуры имеют, соответственно, большую площадь теплообмена, которая может поглощать большое количество тепла в течение короткого времени, аэрозоль, вытекающей из ячеистых структур, может удовлетворить всем техническим требованиям. Кроме того, катализатор, поддерживаемый ячеистой структурой, может удалять токсичные газы из аэрозоля, такие как оксид азота и моноксид углерода, чтобы минимизировать последствие влияния устройства на окружающую среду.

В другом примере устройство применяется в газовой среде. В этом примере ячеистая структура в наружном слое выполнена из кордиерита с квадратными ячейками размером 1,5 мм, при 65% пористости; ячеистая структура во внутреннем слое выполнена из корунда с круглыми ячейками размером 5 мм, при 35% пористости. Катализатор, поддерживаемый ячеистой структурой, может представлять собой оксид меди. Если ячеистая структура, используемая в настоящем изобретении, имеет ячейки размером менее 3,5 мм, температура в выпускных отверстиях и температура на стенках аэрозольного устройства будет ниже, чем 200 градусов Цельсия. В экспериментах по компьютерной симуляции доказано, что аэрозольное устройство пожаротушения, заявленное в настоящем изобретении, может безопасным образом быть использовано в газовой среде.

Кроме того, охлаждающий слой ячеистой структуры не ограничивается только охлаждающим слоем, образованным ячеистыми структурами, т.е. охлаждающий слой может быть образован ячеистой структурой, соединенной с охлаждающим материалом в сферической или неправильной форме. Как правило, охлаждающий слой расположен между химическим реагентом и выпускными отверстиями.

Фиг.2 представляет собой схематическую структурную диаграмму другого аэрозольного устройства пожаротушения, выполненного в соответствии с настоящим изобретением. Устройство содержит выпускные отверстия 10, камеру 11, интерфейс 12 электрического инициирующего заряда, аэрозольный генератор 13, ячеистую структуру 14, химическое охлаждающее вещество 15, систему зажигания 16 и производящий аэрозоль реагент 17, причем производящий аэрозоль реагент 17 размещен в аэрозольном генераторе 13, при этом ячеистая структура 14, используемая в этом примере, изготовлена из стали путем механической обработки на станке с ЧПУ, и имеет круглые ячейки размером 1,5 мм, при 20% пористости. Катализатор, поддерживаемый ячеистой структурой, представляет собой палладиевую мембрану.

Фиг.3 представляет собой схематическую структурную диаграмму другого аэрозольного устройства пожаротушения, выполненного в соответствии с настоящим изобретением. Устройство содержит выпускные отверстия 18, камеру 19, интерфейс 20 электрического инициирующего заряда, аэрозольный генератор 21, ячеистую структуру 22, систему 23 зажигания и производящий аэрозоль реагент 24, причем производящий аэрозоль реагент 24 размещен в аэрозольном генераторе 21, при этом ячеистая структура 22, используемая в этом примере, представляет собой один слой на основе карбоната кальция, выполненный формованием путем экструзии, с квадратными ячейками размером 1 мм, при 55% пористости. Кроме того, катализатор поддерживается ячеистой структурой и представляет собой хлорид лантана.

Следует отметить, что нет особого ограничения для формы ячеистой структуры, то есть ячеистая структура может представлять собой пористую структуру как правильной формы, так и неправильной формы, а ячейки в ячеистой структуре могут иметь многоугольную, круглую, эллиптическую или неправильную форму, предпочтительно прямоугольную форму. Более того, ячеистая структура может содержать один слой, два слоя или большее количество слоев.

Кроме того, чтобы получить лучший эффект охлаждения, размер ячейки ячеистой структуры предпочтительно меньше чем или равен 10 мм, более предпочтительно меньше чем или равен 3,5 мм.

Кроме того, пористость ячеистой структуры предпочтительно больше чем или равна 10% и меньше чем или равна 95%, более предпочтительно больше чем или равна 20% и меньше чем или равна 80%.

Следует отметить, что описанные выше данные и примеры являются иллюстративными. На основании представленного выше подробного описания настоящего изобретения, специалисты в данной области техники могут легко выполнять изменения или модификации вариантов выполнения без отхода от сущности настоящего изобретения; однако считается, что все эти модификации или изменения попадают в объем защиты настоящего изобретения. Специалисты в этой области техники должны понимать, что приведенное выше описание приведено исключительно для развития и объяснения цели настоящего изобретения, а не составляют какое-либо ограничение, накладываемое на настоящее изобретение. Объем защиты настоящего изобретения ограничивается исключительно формулой изобретения и ее эквивалентами.

1. Аэрозольное устройство пожаротушения, содержащее корпус, внутреннюю камеру, производящий аэрозоль реагент и инициирующий заряд, а также охлаждающий слой в ячеистой структуре или охлаждающий слой, образованный ячеистой структурой, в сочетании с охлаждающей средой, имеющей сферическую или неправильную форму, размещенной между химическим реагентом и выпускными отверстиями.

2. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что ячеистая структура изготовлена из металла или неметаллического материала.

3. Аэрозольное устройство пожаротушения по п.2, отличающееся тем, что металлический материал представляет собой железо, алюминий, медь, титан, сплавы железа, сплавы алюминия, сплавы меди и сплавы титана.

4. Аэрозольное устройство пожаротушения по п.2, отличающееся тем, что неметаллический материал изготовлен из связующего реагента и одного или нескольких из следующих веществ: оксида, гидроксида, карбоната, сульфата, фосфата, хлорида, карбида или нитрида металла, или оксида, карбида или нитрида неметалла, или соли аммония, или аминосоединения.

5. Аэрозольное устройство пожаротушения по п.2, отличающееся тем, что неметаллический материал представляет собой керамический материал, такой как корунд, муллит, кордиерит, титанат алюминия, сподумен, цирконит, карборунд или нитрид кремния.

6. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что ячеистая структура представляет собой пористую структуру, имеющую правильную форму или неправильную форму.

7. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что ячейки в ячеистой структуре расположены в многоугольной, круговой, эллиптической или неправильной форме, предпочтительно прямоугольной форме.

8. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что ячеистая структура содержит один слой, два слоя или большее количество слоев.

9. Аэрозольное устройство пожаротушения по п.8, отличающееся тем, что в ячеистой структуре, которая содержит два или большее количество слоев, размер ячеек в наружном слое меньше или равен размеру ячеек во внутреннем слое.

10. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что размер ячеек в ячеистой структуре меньше или равен 10 мм.

11. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что размер ячеек в ячеистой структуре меньше или равен 3,5 мм.

12. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что пористость ячеистой структуры выше или равна 10% и ниже или равна 95%.

13. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что пористость ячеистой структуры выше или равна 20% и меньше или равна 80%.

14. Аэрозольное устройство пожаротушения по п.1, отличающееся тем, что ячеистая структура дополнительно поддерживает катализатор.

15. Аэрозольное устройство пожаротушения по п.14, отличающееся тем, что катализатор, поддерживаемый ячеистой структурой, представляет собой оксид переходных металлов, в том числе оксид железа, оксид меди, полуторный оксид никеля, перекись марганца или их композитный материал, или благородный металл, включающий платину, родий, палладий или редкоземельный материал, в том числе оксид редкоземельного элемента, такой как оксид лантана и оксид церия, сульфат редкоземельного элемента, такой как сульфат самария и сульфат празеодима, нитрат редкоземельного элемента, такой как нитрат лантана и нитрат празеодима, фосфат редкоземельного элемента, такой как фосфат лантана и фосфат церия, хлорид редкоземельного элемента, такой как хлорид церия и хлорид самария, соль органической кислоты редкоземельного элемента, такой как ацетат лантана и ацетат самария, или любой композитный материал, выбранный из вышеупомянутых редкоземельных материалов.



 

Похожие патенты:

Изобретение относится к противопожарной технике. .

Изобретение относится к конструкции установки пожаротушения тонкораспыленной водой. .

Изобретение относится к запорному устройству для находящихся под давлением цилиндров, предназначенных для хранения огнетушащей текучей среды, с находящимся под давлением цилиндром и переходным элементом, предназначенным для соединения погружной трубы, расположенной в находящемся под давлением цилиндре, с соединительным элементом, расположенным снаружи находящегося под давлением цилиндра.

Изобретение относится к противопожарной технике, является автономным устройством объемного тушения, применимо в замкнутых или полузамкнутых помещениях, преимущественно отсеков транспортных средств, электрощитов, технологических установок, объектов, насыщенных электроникой.

Изобретение относится к противопожарной технике, а именно к модулям порошкового пожаротушения, которые являются универсальными средствами пожаротушения и могут быть использованы как для тушения локальных очагов пожара, так и для пожаротушения в помещении по площади или объему.

Изобретение относится к технике тушения пожаров с большой энергетикой на объектах народного хозяйства и промышленности посредством интенсивной подачи пены или воды на максимальное расстояние.

Изобретение относится к противопожарной технике, в частности к устройствам порошкового пожаротушения, предназначенным для тушения пожаров, как в помещениях различного назначения, так и на открытых пространствах и направлено на уменьшение остатка огнетушащего порошка в корпусе модуля после его срабатывания.

Изобретение относится к противопожарной технике и может быть использовано при тушении пожаров в жилых и производственных помещениях, в том числе для тушения развитых (интенсивных) пожаров в них.

Изобретение относится к противопожарной технике, а именно к конструкции установки пожаротушения тонкораспыленной водой, которая может быть использована для защиты замкнутых помещений и пожароопасных объектов. Технически достижимый результат - повышение эффективности пожаротушения при сокращении расхода исходных огнетушащих веществ и времени, необходимого для ликвидации пожара. Это достигается тем, что установка для тушения пожара тонкораспыленной водой содержит емкость с огнетушащей жидкостью, запорно-пусковое устройство, питающий трубопровод, соединенный с оросителями, установленными в защищаемом помещении, сифонную трубку, входной конец которой опущен в емкость с огнетушащей жидкостью, и узел формирования газожидкостной смеси, выполненный в виде переходника с газовой камерой, а в переходнике расположены имеющие цилиндрическую форму газовая камера, входная камера, камера смешивания и выходная камера, оси которых расположены в одной плоскости, при этом оси газовой камеры, входной камеры и камеры смешивания параллельны друг другу, камера смешивания сообщена с выходной камерой, камера смешивания посредством первого наклонного отверстия сообщена с газовой камерой, которая посредством второго наклонного отверстия сообщена с входной камерой, узел формирования газожидкостной смеси герметично закреплен в горловине емкости с огнетушащей жидкостью, к камере смешивания со стороны емкости с огнетушащей жидкостью прикреплен выходной конец сифонной трубки, газовая камера герметично соединена посредством газового шланга с емкостью с рабочим газом, выходная камера герметично соединена с входным концом питающего трубопровода, ороситель содержит корпус, который выполнен с каналом для подвода жидкости и содержит соосную, жестко связанную с ним втулку, с закрепленным в ее нижней части соплом, выполненным в виде цилиндрической двухступенчатой втулки, верхняя цилиндрическая ступень которой соединена посредством резьбового соединения с центральным сердечником, состоящим из цилиндрической части, и соосным с ней полым конусом, установленным с кольцевым зазором относительно внутренней поверхности цилиндрической втулки, а кольцевой зазор соединен, по крайней мере, с тремя радиальными каналами, выполненными в двухступенчатой втулке, соединяющими его с кольцевой полостью, образованной внутренней поверхностью втулки и внешней поверхностью верхней цилиндрической ступени, причем кольцевая полость связана с каналом корпуса для подвода жидкости, а к конусу, в его нижней части, жестко прикреплен с помощью винта распылитель, который выполнен в виде торцевой круглой пластины, края которой отогнуты в сторону кольцевого зазора между соплом и полым конусом, при этом на боковой поверхности конуса выполнено, по крайней мере, два ряда цилиндрических дроссельных отверстий, с осями, лежащими в плоскостях, перпендикулярных оси конуса, а в каждом ряду выполнено, по крайней мере, три отверстия, причем оси дроссельных отверстий одного ряда смещены относительно осей дроссельных отверстий другого ряда на угол, лежащий в диапазоне 15°-60°.

Изобретение относится к аэрозольному устройству пожаротушения со стойким к высокотемпературной абляции теплозащитным слоем, включающему корпус (6), теплозащитный слой (1), образующее аэрозоль химическое вещество (4), охлаждающий материал (3) и инициатор (2), причем теплозащитный слой (1) выполнен из кремнийорганической резины, включающей 30-50 масс.% кремнийорганической каучуковой основы, 1-10 масс.% сшивающего агента, 5-50 масс.% антипирена, 5-50 масс.% стойкого к высоким температурам материала, 0,1-5 масс.% связующего агента и 0,1-5 масс.% катализатора. Технический результат заключается в обеспечении стойкости к высокотемпературной абляции. 2 н. и 8 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к области пожаротушения и может быть использовано для тушения пожаров фонтанов на газовых, нефтяных и газонефтяных скважинах. Способ тушения горящих фонтанов на газовых, нефтяных и газонефтяных скважинах включает подачу в очаг пожара газодисперсного состава. При этом указанный состав получают путем смешения газового флегматизатора и жидкого и/или дисперсного ингибитора горения в емкости под давлением 1-12 МПа при соотношении газа-флегматизатора и ингибитора горения в соотношении от 1:3 до 1:1 с последующей подачей полученной газодисперсной смеси из вышеуказанной емкости по магистральному трубопроводу на щелевидный конфузорный распылитель. Причем распылитель установлен на расчетном расстоянии от устья скважины, обеспечивающем срыв горящего факела. Устройство содержит герметичную емкость с химическим ингибитором, баллонный источник газа, связанный с полостью указанной емкости трубным аэратором, обеспечивающим инжекцию огнетушащего состава через пускозапорное устройство и магистральный трубопровод. Трубопровод соединен через мембранный, механический или электрический клапан с сопловым распылителем. При этом сопло выполнено в виде щелевидного конфузора с углом схождения образующих в вертикальной плоскости, определяемым приведенным математическим выражением. Техническим результатом является повышение эффективности тушения пожаров и безопасности использования устройства, снижение трудоемкости технического обслуживания. 2 н. и 3 з.п. ф-лы, 5 ил.

Заявленное изобретение относится к системе пожаротушения, а именно к устройствам для ввода понизителя температуры замерзания в систему пожаротушения. Устройство для ввода активного вещества в текучую среду для пожаротушения включает в себя корпус с входным отверстием, выполненным с возможностью обеспечения поступления указанного активного вещества в корпус. Корпус также имеет выходное отверстие, выполненное с возможностью выпуска указанного активного вещества из корпуса. Запирающее устройство выполнено с возможностью перемещения между закрытым положением, в котором запирающее устройство предотвращает проход от входного отверстия к выходному отверстию, и открытым положением, в котором входное отверстие сообщается с выходным отверстием. Лопасть вызывает перемещение запирающего устройства из закрытого положения в открытое положение в качестве реакции на контакт между лопастью и текучей средой для пожаротушения, протекающей за лопасть. Заявленное изобретение обеспечивает ввод необходимого количества активного вещества в систему пожаротушения, что позволяет избежать коррозии в баке для хранения воды или в трубах системы пожаротушения, 2 н. и 18 з.п. ф-лы, 2 ил.

Способ предназначен для пожаротушения. Способ осуществляют посредством сосуда, в котором хранят огнетушащее вещество, а сосуд, в котором хранится огнетушащее вещество, крепят кронштейнами к строительной конструкции помещения и оснащают его устройством сброса газовой фазы, совмещенным с мерным щупом для огнетушащего вещества и запорно-пусковым устройством, которое соединяют трубопроводами с пеногенератором, содержащим системы подачи жидкости и газа, подачу газа или воздуха осуществляют через ввод подачи газа в камеру смешения пеногенератора от турбокомпрессора, а подачу жидкости осуществляют по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло, а тангенциальную подачу жидкости осуществляют через коаксиальный с цилиндрическим соплом корпус, выполненный в виде цилиндро-конической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполняют два ряда подводящих жидкость тангенциальных каналов, при этом в каждом ряду имеется, по крайней мере, три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикрепляют круглую пластину, расположенную перпендикулярно оси вихревой кольцевой камеры, а перпендикулярно круглой пластине прикрепляют щелевое сопло из двух взаимно перпендикулярных прямоугольных параллелепипедов с дроссельными сквозными отверстиями прямоугольного сечения, соединенными с полостью корпуса. Технический результат - повышение эффективности пожаротушения за счет использования высокократной пены. 1 ил.

Изобретение относится к противопожарной технике. Модуль газопорошкового объёмного пожаротушения содержит средство для хранения порошка и средство для хранения газа-вытеснителя, средство формирования газопорошкового потока, коммутатор газового потока с подключенным к нему модулем управления, один из информационных входов которого предназначен для подключения к пожарным извещателям. Средство для хранения порошка представляет собой баллон, который соединен с соответствующим выходом коммутатора газового потока посредством питающего трубопровода. На одном из участков трубопровода установлен датчик давления, соединенный с соответствующим информационным входом модуля управления. Запорно-пусковое устройство баллона подключено к соответствующему управляющему выходу модуля управления, а посредством трубопровода соединено с соответствующим входом коммутатора газового потока. Средство формирования газопорошкового потока состоит из сопла, которое посредством выравнивающей трубки сообщается с камерой смешения, снабженной форсунками, внутри сопла размещены разделитель потоков и распылитель. Технический результат изобретения заключается в увеличенном расстоянии до очага возгорания и регулировании параметров потока газопорошковой смеси в условиях увеличения времени непрерывной работы модуля. 5 з.п. ф-лы, 2 ил.

Способ предназначен для пожаротушения. Способ осуществляют посредством сосуда, в котором хранят огнетушащее вещество, а сосуд, в котором хранится огнетушащее вещество, крепят кронштейнами к строительной конструкции помещения и оснащают его устройством сброса газовой фазы, совмещенным с мерным щупом для огнетушащего вещества и запорно-пусковым устройством, которое соединено трубопроводом с трубкой для ввода огнетушащей жидкости в пеногенератор, который оснащают вводами для одновременной подачи жидкости и газа, при этом подачу жидкости осуществляют по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло, а тангенциальную подачу жидкости осуществляют через коаксиальный с цилиндрическим соплом корпус в виде цилиндро-конической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполняют два ряда подводящих жидкость тангенциальных каналов, имеющих, по крайней мере, три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикрепляют круглую пластину, расположенную перпендикулярно оси вихревой кольцевой камеры, и жестко соединяют ее с цилиндрической полостью корпуса, а в ее концевом сечении перпендикулярно круглой пластине прикрепляют щелевое сопло, состоящее из двух взаимно перпендикулярных прямоугольных параллелепипедов с дроссельными сквозными отверстиями прямоугольного сечения, соединенными с полостью корпуса. Технический результат - повышение эффективности пожаротушения за счет использования высокократной пены. 3 ил.

Система содержит линию вывода газа; клапан, соединяющий линию вывода газа, и трубу; а также блок управления, генерирующий команды для открытия и закрытия клапана, причем блок управления открывает клапан для выпуска газа из трубы и закрывает клапан в течение определенного периода времени. Способ заключается в получении команды на открытие клапана для выведения газа из трубы спринклерной системы через линию, соединенную с клапаном, причем эта команда соответствует команде на включение насосной установки спринклерной системы, в определении того, что жидкость, имеющаяся на выходе насосной установки, присутствует и в трубе, и в получении команды на закрытие клапана с целью остановки потока жидкости через линию. 3 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. Это достигается тем, что в способе прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте, заключающемся в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют со входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. 2 ил.

Изобретение относится к противопожарной технике. Технический результат - повышение быстродействия системы пожаротушения. Это достигается тем, что в способе пожаротушения с применением газожидкостной смеси, который осуществляют посредством сосуда, в котором хранят огнетушащее вещество и соединяют его с пусковым баллоном с рабочим газом, сосуд, в котором хранится огнетушащее вещество, крепят кронштейнами к строительной конструкции помещения и оснащают его устройством сброса газовой фазы, совмещенным с мерным щупом для огнетушащего вещества и устройством формирования газожидкостной смеси вихревого типа, которое выполняют в виде конической камеры смешения с тангенциальным вводом газа в верхней части, затем подсоединяют посредством гибкого шланга высокого давления рабочего газа, например азота или СО2, к сосуду из пускового баллона, при этом подвод газа осуществляют по вихревому элементу, соосному камере и выполненному в виде конической перфорированной спирали с коэффициентом перфорации, лежащим в диапазоне 50÷80%, а подачу газожидкостной смеси в центральный трубопровод осуществляют из нижней части камеры, соединенной с устройством слива огнетушащего вещества, совмещенным с предохранительным клапаном, при этом вертикальный патрубок камеры через тройник соединяют с устройством залива огнетушащего вещества и сигнализатором давления, а сформированную газожидкостную смесь по центральному трубопроводу направляют к узловой точке распределительной сети, а затем через распределительную сеть ко всем оросителям, причем каждый ороситель или блок оросителей снабжают устройством ориентации в одной или двух плоскостях, а каждый ороситель выполняют из основания в виде штуцера с каналом и рассекателя, закрепленного на держателях, при этом основание оросителя соединяют с по крайней мере двумя дугообразными держателями, которые удерживают втулку с закрепляемым на ней рассекателем, выполненным в виде диффузора с отогнутым в сторону основания пояском с расположенными по образующим конической поверхности пояска лепестками, а внутри рассекателя дополнительно устанавливают распылитель, выполненный в виде чашки, крепящейся посредством по крайней мере трех радиальных, горизонтально расположенных, плоских лепестков к внутренней поверхности рассекателя, при этом ось чашки совпадает с осями сквозного канала штуцера и втулки, а ее внутренняя полость направлена в сторону втулки. 2 ил.
Наверх