Парогенераторная установка одноконтурной атомной электростанции

Изобретение относится к области теплоэнергетики и может быть использовано при создании одноконтурных атомных электростанций с принудительной циркуляцией и водоводяным энергетическим реактором. Сущность изобретения: парогенераторная установка одноконтурной атомной электростанции содержит реактор, участок нагрева воды, участок перегрева пара, турбину, электрогенератор, конденсатор, конденсатный насос, циркуляционный насос, блок подачи добавочной воды, вихревой парогенератор, подключенный на входе к участку нагрева воды, с подачей ее в перегретом состоянии, а на выходе - к трубопроводу участка перегрева пара. Технический результат заключается в повышении эффективности и надежности парогенераторной установки, а также возможности работать как в земных условиях, так и в условиях невесомости. Задавая определенные параметры жидкости на входе в вихревой парогенератор, скорость всплытия паровых пузырей в камере закручивания можно увеличить, как минимум, в несколько раз, тем самым повысить удельный паросъем с единицы поверхности зеркала испарения, что, в свою очередь, позволит снизить габариты парогенераторной установки. Перенос процесса частичного испарения воды из зоны нагрева в ядерном реакторе в зону закрученной жидкости вихревого парогенератора позволяет избавиться от пульсаций расхода в зоне нагрева жидкости, что способствует увеличению надежности работы установки. 1 ил.

 

Изобретение относится к области теплоэнергетики, а именно к парогенераторной установке, которая может быть использована при создании одноконтурных атомных электростанций (АЭС) с принудительной циркуляцией и водоводяным энергетическим реактором (ВВЭР), при этом работающей как в земных условиях, так и в условиях невесомости.

Создание надежных парогенераторных установок, обеспечивающих безопасность АЭС в аварийных режимах, является одной из основных задач развития атомной энергетики в настоящее время. Новые конструктивные решения парогенераторных установок позволяют повысить их эффективность и надежность.

Известна парогенераторная установка, содержащая соединенные между собой посредством питательного трубопровода парогенератор и гидроаккумулирующую емкость, подключенную к трубопроводу подвода питательной воды, при этом питательный трубопровод со стороны гидроаккумулирующей емкости выполнен с входным элементом в виде перфорированного коллектора, установленного вертикально в гидроаккумулирующей емкости (SU, №1603907, F22B 1/02, 1996 г.).

Также известна парогенераторная установка, преимущественно для АЭС, содержащая парогенератор с испарителем и основным перегревателем острого пара, последний из которых соединен с турбиной, и включенные между цилиндрами высокого и низкого давлений промежуточные сепаратор и паровой перегреватель, в которых для промежуточного перегрева пара используют острый перегретый пар, отбираемый из паропровода непосредственно перед цилиндром высокого давления турбины (патент Франции №2116671, F22G, 1972 г.).

Недостатками указанных установок являются большие размены установок и как следствие большие капитальные затраты. Кроме того, как показала практика, в установке по патенту Франции имеет место увеличение поверхности нагрева основного перегревателя и повышенное падение давления в нем, что снижает коэффициент полезного действия установки. К тому же падение давления приводит к существенному снижению температуры конденсации пара в промежуточном перегревателе по сравнению с температурой кипения в парогенераторе, соответствующему уменьшению температурного напора в промежуточном перегревателе и увеличению его поверхности нагрева.

Наиболее близкой по технической сущности является парогенераторная установка одноконтурной АЭС с принудительной циркуляцией с ВВЭР, использующая тепло от ядерного реактора для выработки подаваемого на турбину пара, информация о которой представлена в: Н.Г. Рассохин, «Парогенераторные установки атомных электростанций», Атомиздат, Москва, 1972, с.7-9.

Указанная установка включает: реактор, участок нагрева воды, участок перегрева пара, турбину, электрогенератор, конденсатор, конденсатный насос, циркуляционный насос и блок подачи добавочной воды. Установка работает следующим образом: питательную воду подают насосом в испарительную зону ядерного реактора, где ее нагревают до температуры насыщения с частичным ее испарением в количестве, соответствующем расходу пара на турбину. Далее пароводяная смесь поступает в разделительное устройство-сепаратор, в котором пароводяную смесь в сепаратор вводят на определенной заданной глубине от поверхности зеркала испарения сепаратора. Осажденная в сепараторе вода вместе с питательной водой снова поступает в испарительную зону ядерного реактора, а выделившийся и осушенный в сепараторе до заданной температуры пар по паропроводу направляется в турбогенератор.

Недостатком такой установки является низкий выход пара с единицы поверхности зеркала испарения сепаратора, что обусловлено незначительной скоростью всплытия паровых пузырей, и которая составляет не более 0,4 м/сек. Кроме того, для получения насыщенного пара высокой степени сухости следует: высоту парового объема в сепараторе задавать до значительных показателей (0,5-0,6 м), устанавливать различные дополнительные сепарационные устройства, например, в виде жалюзей или дроссельных листов с отверстиями. Все эти действия требуют значительных габаритов сепаратора и приводят к утяжелению конструкции установки. Далее указанная установка не может работать в условиях невесомости, поскольку скорость всплытия паровых пузырей относительно жидкости в условиях невесомости - нулевая. Другим недостатком является также и то, что частичное испарение жидкости в испарительной зоне ядерного реактора ведет к пульсациям расхода пароводяной смеси в нагревательных каналах и, как следствие, к снижению надежности работы установки.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении эффективности и надежности парогенераторной установки, а также возможность работать как в земных условиях, так и в условиях невесомости.

Указанный технический результат достигается тем, что в парогенераторной установке одноконтурной атомной электростанции, содержащей реактор, участок нагрева воды, участок перегрева пара, турбину, электрогенератор, конденсатор, конденсатный насос, циркуляционный насос, блок подачи добавочной воды, согласно изобретению, она дополнительно снабжена вихревым парогенератором, подключенным на входе к участку нагрева воды с подачей ее в перегретом состоянии, а на выходе - к трубопроводу участка перегрева пара.

Указанные признаки являются существенными и взаимосвязаны с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата.

Настоящее изобретение поясняется конкретным примером исполнения, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения требуемого технического результата.

На чертеже показан схематично общий вид предлагаемой парогенераторной установки одноконтурной атомной электростанции.

Парогенераторная установка содержит ядерный реактор 1, в котором имеется участок нагрева воды 2, участок перегрева пара 3, вихревой парогенератор 4, турбину 5, электрогенератор 6, конденсатор 7, конденсатный насос 8, циркуляционный насос 9, блок подачи добавочной воды 10. Вихревой парогенератор 4 имеет цилиндрическую входную камеру 11, выходную камеру 15. Входная камера 11 имеет центральную полость 18, соединена с выходной камерой 15 расширяющимся по ходу движения жидкости (воды) диффузором 13, внутри которого с зазором установлен в виде усеченного конуса дроссель 14, а входная камера 11 имеет входной тангенциальный канал 12. Установка снабжена паропроводами 16 и 17.

Работает парогенераторная установка следующим образом.

С помощью циркуляционного насоса 9 жидкость (вода) под заданным давлением подают в участок нагрева воды 2 ядерного реактора 1, в котором при заданном давлении ее нагревают до температуры ниже температуры насыщения, т.е. до перегретого состояния. Далее жидкость в перегретом состоянии с участка нагрева воды 2 поступает по входному тангенциальному каналу 12 в цилиндрическую входную камеру 11, а затем по кольцевому зазору, образованному между расширяющимся диффузором 13 и дросселем в виде усеченного конуса 14, поступает в выходную камеру 15, а из нее к трубопроводу участка перегрева пара и далее через циркуляционный насос 9 - к участку нагрева воды.

При движении жидкости в цилиндрической входной камере 11, закручиваясь с большего радиуса на меньший за счет сохранения момента количества движения, скорость воды будет возрастать, а статическое давление в соответствии с законом Бернулли падать. На определенном радиусе закрутки оно станет ниже давления насыщения для заданной температуры и на участке, где давление стало ниже давления насыщения, наступит термодинамическое неравновесие и произойдет частичное испарение жидкости за счет отбора от нее тепла. Образовавшийся в жидкости пар понизит ее температуру до равновесного состояния. Однако, если жидкость и далее будет закручиваться на еще меньший радиус, то скорость ее еще более возрастет, а давление в жидкости вновь станет ниже давления насыщения, что приведет к образованию новой порции пара.

Таким образом, во входной камере 5 вихревого парогенератора 4 на участке, начиная с некоторого радиуса закрутки, на котором давление в жидкости снизилось до величины меньшей давления насыщения при первоначальной температуре и, кончая радиусом свободной поверхности закрученной жидкости, будет происходить объемное кипение, так как при этом тепло на образование пара отбирается от самой жидкости, то температура ее в зоне кипения будет понижаться. Поскольку в жидкости имеется градиент давления по радиусу закрутки, то на образовавшиеся пузырьки пара будет действовать сила, обусловленная действием градиента давления, под действием которой они будут всплывать к свободной поверхности закрученной жидкости и собираться в центральной полости 18 входной камеры 11 вихревого парогенератора 4. При своем движении в зоне кипения пузырьки пара буду поступать из области повышенного давления, вследствие чего объем их будет увеличиваться, что должно привести к изменению параметров пара внутри самих пузырьков. При этом определенное влияние на изменение параметров пара внутри пузырьков будет оказать также и его теплообмен с окружающей жидкостью. Конечное значение температуры пара внутри пузырька в момент вылета его из жидкости будет зависеть от многих причин: теплопроводности пара, скорости испарения с поверхности жидкости внутри пузырька, теплоемкости, времени контакта с жидкостью, инерционных сил пленки, окружающей пузырек, величины поверхности и т.д. В общем случае, можно ожидать, что температура пара отдельных пузырьков, покидающих жидкость, будет отличаться от температуры поверхности жидкости. Однако, за счет того, что в паровой полости молекулы пара обладают тепловой скоростью, и за счет постоянного обмена энергией между ними и поверхностью закрученной жидкости, средние температуры их выравниваются, и обе фазы будут находиться в термодинамическом равновесии, т.е. температура и давление на поверхности жидкости будут равны по величине температуре и давлению, находящемуся над ней пара.

Пар над поверхностью закрученной жидкости в вихревом парогенераторе будет насыщенным и сухим, так как всплывающие пузырьки пара участвуют во вращательном движении вместе с жидкостью и вылетающие из жидкости капли при разрыве пленки пузыря снова возвращаются на ее поверхность.

Выработанный в вихревом парогенераторе 4 пар по паропроводу 16 поступает в участок перегрева пара 3, перегревается до заданной температуры и по паропроводу 17 подается в турбину 5. Из турбины 5 отработанный пар поступает в конденсатор 7 и далее в виде конденсата конденсатным насосом 8 подается на вход циркуляционного насоса 9. Возможные утечки из контура воды и пара восполняются с помощью работы блока подачи добавочной воды 10.

Таким образом, задавая определенные параметры жидкости на входе в вихревой парогенератор: расход, давление, температуру, при соответствующих геометрических размерах вихревого парогенератора скорость всплытия паровых пузырей в камере закручивания можно увеличить, как минимум, в несколько раз, тем самым повысить удельный паросъем с единицы поверхности зеркала испарения, что, в свою очередь, позволит снизить габариты парогенераторной установки.

При этом закрученная жидкость обладает одновременно хорошими сепарационными действиями, что позволяет обходиться без дополнительных сепарационных устройств в виде жалюзей или дренажных дырчатых устройств, как в известной установке по прототипу.

Перенос процесса частичного испарения воды из зоны нагрева в ядерном реакторе в зону закрученной жидкости вихревого парогенератора позволяет избавиться от пульсаций расхода в зоне нагрева жидкости, что способствует увеличению надежности работы установки.

Кроме того, предлагаемая установка способна работать в условиях невесомости, поскольку всплытие паровых пузырей происходит в потенциальном поле закрученной жидкости.

Парогенераторная установка одноконтурной атомной электростанции, содержащая реактор, участок нагрева воды, участок перегрева пара, турбину, электрогенератор, конденсатор, конденсатный насос, циркуляционный насос, блок подачи добавочной воды, отличающаяся тем, что она дополнительно снабжена вихревым парогенератором, подключенным на входе к участку нагрева воды с подачей ее в перегретом состоянии, а на выходе - к трубопроводу участка перегрева пара.



 

Похожие патенты:

Изобретение относится к энергетике и может использоваться на парогенераторах с жидкометаллическим теплоносителем. .

Изобретение относится к теплообменной технике и может быть использовано в прямоточных вертикальных парогенераторах модульного типа, работающих в режиме переменных нагрузок.

Изобретение относится к области атомной энергетики и может быть использовано в теплообменном оборудовании ядерных энергетических установок. .

Изобретение относится к конструкционным элементам теплообменных аппаратов. .

Изобретение относится к ядерным энергетическим установкам, а более конкретно - к парогенераторам атомных электростанций. .

Изобретение относится к области энергетики и может быть использовано на атомных электростанциях в двухконтурных ядерных энергетических установках с водо-водяным энергетическим реактором с водой под давлением и ядерной паропроизводящей установкой, разделенной на несколько самостоятельных циркуляционных контуров (петель), для повышения надежности работы парогенератора за счет эффективного удаления шлама.

Изобретение относится к области энергетики и может быть использовано на атомных электростанциях в двухконтурных ядерных энергетических установках с водо-водяным энергетическим реактором с водой под давлением и ядерной паропроизводящей установкой, разделенной на несколько самостоятельных циркуляционных контуров (петель).

Изобретение относится к ядерной технике и может быть использовано в парогенераторах атомных электростанций. .

Изобретение относится к атомной энергетике и может быть использовано в установках с водо-водяными энергетическими реакторами. .

Изобретение относится к теплоэнергетике и может быть использовано для получения пара в различных отраслях промышленности. Способ генерации пара в жаротрубном котле со сквозными вертикальными трубами для потоков горячего твердого теплоносителя заключается в том, что горячий сыпучий теплоноситель в виде нагретого циркулирующего потока извлекают из источника тепла, например топки с псевдоожиженным слоем сыпучего материала, и через распределитель, расположенный над котлом, подают на расширенные входы сквозных вертикальных труб с образованием нисходящих гравитационных течений в тепловом контакте со стенками труб. Гравитационные течения твердых теплоносителей обеспечивают высокие коэффициенты теплоотдачи от твердых теплоносителей к стенкам труб и высокие тепловые потоки к воде в котле. Сужающиеся к выходу трубы, вследствие внутреннего перемешивания сыпучего твердого теплоносителя, создают равномерное распределение температуры теплоносителя по сечению трубы. Суженные выходы труб в нижней части котла соединяют с регулятором расхода твердого теплоносителя типа шибера. Такое выполнение позволит повысить коэффициент теплоотдачи. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области использования атомной энергетики, в частности к системе паровыделения в проектах серийной реакторной установки ВВЭР-1000. Парогенератор содержит горизонтальный корпус с коллекторами подвода и отвода теплоносителя и трубный пучок, набранный из горизонтально расположенных U-образных теплообменных трубок и снабженный устройством дистанционирования в виде профильных и плоских металлических полос. Теплообменные трубки уложены в профильные металлические полосы устройства дистанционирования и закреплены своими концами в коллекторах. При этом теплообменные трубки в местах укладки на профильные металлические полосы устройства дистанционирования изолированы от них посредством использования диэлектрических втулок, а профильные и плоские металлические полосы устройства дистанционирования изолированы между собой через диэлектрические прокладки. Диэлектрические втулки и диэлектрические прокладки могут быть выполнены из полимерных композиционных материалов. Техническим результатом изобретения является увеличение рабочего ресурса парогенератора путем устранения останова реакторной установки по причине образования накоплений хлоридов, возникновения коррозионных трещин в теплообменных трубках, повышение безопасной эксплуатации реакторной установки. 6 з.п. ф-лы, 5 ил.

Изобретение относится к энергетике, в частности к парогенераторам, которые могут быть использованы в ядерных энергетических установках. Сущность изобретения заключается в том, что в парогенераторе на каждом днище корпуса выполнены коллекторные камеры подвода и отвода греющего теплоносителя, причем часть труб теплообменной поверхности подключена к коллекторным камерам подвода и отвода греющего теплоносителя, расположенным на одном днище, а другая часть - соответственно на втором днище, образуя секции, кроме того по высоте теплообменные трубы размещены слоями с чередованием по секциям так, что слои «горячих» или «холодных» ветвей одной секции размещены между слоями «холодных» или «горячих» ветвей другой секции. Выполнение парогенератора предложенным образом позволяет выравнять нагрузку зеркала испарения, что обеспечивает получение требуемых параметров по влажности вырабатываемого пара, повысить надежность и тепловую эффективность работы парогенератора. 6 ил.

Изобретение относится к области энергетики, а именно к парогенераторной установке, которая может быть использована при создании двухконтурных атомных электростанций с принудительной циркуляцией. Парогенераторная установка содержит ядерный реактор, блок нагрева воды, насос, вихревой парогенератор, турбину, электрогенератор, конденсатор, конденсатный насос, циркуляционный насос, блок подачи добавочной воды, дополнительные парогенераторы, подкачивающие насосы, паропровод, биологический защитный элемент, при этом каждый из вихревых парогенераторов имеет одинаковое конструктивное выполнение и включает цилиндрическую входную камеру, имеющую входной тангенциальный канал, центральную полость, диффузор, дроссель и выходную камеру. Причем каждый из подкачивающих насосов установлен перед каждым дополнительным вихревым парогенератором и соединяет выход предыдущего вихревого парогенератора со входом последующего, а все вихревые парогенераторы соединены между собой последовательно и каждый из них имеет одинаковое конструктивное исполнение, при этом выход последнего дополнительного вихревого парогенератора соединен со входом циркуляционного насоса. 1 ил.

Изобретение относится к электроэнергетике и может быть использовано в горизонтальных парогенераторах атомных электростанций (АЭС) с водо-водяным энергетическим реактором (ВВЭР). Заявлен коллектор теплоносителя первого контура парогенератора с U-образными трубами горизонтального теплообменного пучка, выполненный в виде сварного толстостенного сосуда, имеющего перфорированную среднюю цилиндрическую часть, выполненную с возможностью установки и закрепления в ней пучка U-образных теплообменных труб, которые сформированы в пакеты и разделены в пучке вертикальными межтрубными коридорами, нижнюю цилиндрическую часть, выполненную с возможностью сварного соединения с патрубком корпуса парогенератора, и верхнюю цилиндрическую часть с коническим переходом к фланцевому соединению люка с крышкой. Наружный диаметр Dкол коллектора первого контура в средней части выбран из заданного соотношения шага между теплообменными трубами, ширины коридора теплообменного пучка, наружного диаметра теплообменных труб, количества труб в горизонтальном ряду, минимального радиуса изгиба труб в теплообменном пучке. При этом отверстия для закрепления теплообменных труб размещены на средней цилиндрической части коллектора в шахматной компоновке. Технический результат изобретения заключается в обеспечении прочности перемычек стенки коллектора между отверстиями для закрепления теплообменных труб и герметичности соединения теплообменных труб с коллектором при том, что наружная поверхность перфорированной части коллектора наиболее эффективно используется для заведения труб в него. 2 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к парогенераторам, в частности к горизонтальным парогенераторам для атомных электростанций с водо-водяным энергетическим реактором (ВВЭР). Заявлен горизонтальный парогенератор атомной электростанции, содержащий цилиндрический корпус, два эллиптических днища, по меньшей мере один патрубок подвода питательной воды и отвода пара, входной коллектор и выходной коллектор, а также присоединенный к указанным коллекторам пучок теплообменных труб, причем количество Nтр теплообменных труб в пучке выбрано в заявленной зависимости от наружного диаметра dтp теплообменной трубы, причем величина зазора между соседними теплообменными трубами в вертикальном направлении не превышает величину вертикального шага между теплообменными трубами в пучке. Техническим результатом изобретения является повышение эффективности теплопередачи в объеме парогенератора с одновременным ограничением количества и максимальной длины теплообменных труб, что позволяет использовать трубы, освоенные промышленностью. 2 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к энергетике, в частности к горизонтальным парогенераторам для атомных электростанций с водо-водяным энергетическим реактором (ВВЭР) и к реакторной установке с ВВЭР и горизонтальным парогенератором. Реакторная установка с ВВЭР с горизонтальным парогенератором включает в себя ядерный реактор с четырьмя циркуляционными петлями, каждая из которых содержит парогенератор с горизонтальным пучком теплообменных труб, разделенных на пакеты межтрубными коридорами и соединенных с коллекторами теплоносителя первого контура внутри цилиндрического корпуса с эллиптическими днищами, главный циркуляционный насос, а также главный циркуляционный трубопровод теплоносителя первого контура. Внутренний диаметр корпуса Dкорп, расстояние S между осями коллекторов теплоносителя первого контура в поперечном направлении и длина парогенератора Lк по внутренним поверхностям эллиптических днищ выбраны из указанных соотношений. При этом угол α изгиба теплообменных труб и расстояние Δ выбраны из диапазонов: 90°≤α≤150° и 300 мм≤Δ≤1000 мм. Изобретение повышает интенсивность теплопередачи, надежность и долговечность парогенератора. 2 н. и 9 з.п. ф-лы, 10 ил.

Изобретение относится к конструкции печей и способу генерации перегретого пара и может быть использовано при оборудовании бань стационарного и мобильного типов, а также для обогрева бытовых и производственных помещений. Парогенератор для банных печей содержит вертикально ориентированный корпус, образованный внешней и внутренней обечайками, установленных с радиальным зазором по отношению друг к другу с образованием между ними кольцевого зазора и соединенных между собой по торцам. Нижняя часть корпуса парогенератора выполнена профилированной с посадочным местом для состыковки с выходной частью печной трубы. Верхняя часть корпуса парогенератора выполнена профилированной для состыковки с входной частью дымохода. В кольцевой зазор между обечайками открывается канал для подачи воды внутрь кольцевого зазора. Внутри корпуса установлена с радиальным зазором между ее стенками и стенками внутренней обечайки емкость, имеющая каналы для подачи воды внутрь ее полости и отвода пара из упомянутой полости. Полость упомянутой емкости соединена с полостью упомянутого зазора между внешней и внутренней обечайками при помощи указанного канала для подачи воды, а канал для отвода пара из упомянутой емкости проходит через кольцевой зазор между обечайками и соединяет полость емкости с окружающей средой/потребителем пара. В варианте исполнения площадь кольцевого зазора между стенкой емкости и стенкой внутренней обечайки равна или больше площади выходной части печной трубы, в выходной части канала, соединяющего полость емкости с кольцевым зазором между внешней и внутренней обечайками, установлен отбойник, канал для подачи воды внутрь полости емкости выполнен наклоненным в сторону емкости, поверхность емкости выполнена волнистой, в виде чередующихся выступов и впадин, емкость выполнена в виде полого цилиндра. 6 з.п. ф-лы, 4 ил.

Изобретение относится к конструкции печей и способу генерации перегретого пара и может быть использовано при оборудовании бань стационарного и мобильного типов, а также для обогрева бытовых и производственных помещений. Парогенератор для банных печей содержит вертикально ориентированный корпус, образованный внешней и внутренней обечайками, установленными с радиальным зазором по отношению друг к другу с образованием между ними кольцевого зазора и соединенными между собой по торцам. Нижняя часть корпуса парогенератора выполнена профилированной с посадочным местом для соединения с выходной частью печной трубы, а верхняя часть корпуса парогенератора выполнена профилированной для соединения с входной частью дымохода. Внутри корпуса установлена с радиальным зазором между ее стенками и стенками внутренней обечайки емкость, имеющая каналы для подачи воды внутрь ее полости и отвода подогретой воды из упомянутой полости. Каналы для подвода и отвода воды из упомянутой емкости проходят через кольцевой зазор между обечайками и соединяют полость емкости с источником воды и накопительным баком для нагретой воды/потребителем горячей воды. Кольцевой зазор между внутренней и внешней обечайками разделен в осевом направлении на изолированные кольцевые полости, нижнюю и верхнюю, при помощи перемычки, в которой установлен вертикальный патрубок, полость которого соединяет полости упомянутых кольцевых полостей между собой. Верхняя кольцевая полость имеет патрубок подвода воды, а нижняя кольцевая полость имеет патрубок выхода пара из упомянутой полости. В варианте исполнения площадь кольцевого зазора между стенкой емкости и стенкой внутренней обечайки равна или больше площади выходной части печной. Технический результат - повышение теплоотдачи продуктов сгорания топлива. 3 з.п. ф-лы, 4 ил.

Изобретение относится к оборудованию для бань стационарного и мобильного типов, а также для обогрева бытовых и производственных помещений. Технический результат - повышение теплоотдачи продуктов сгорания топлива, упрощение конструкции с обеспечением возможности получения перегретого пара с регулируемой температурой и влажностью. Пароиспаритель для банных печей содержит вертикально ориентированный корпус, образованный внешней и внутренней обечайками, установленными с радиальным зазором по отношению друг к другу с образованием между ними кольцевого зазора для парообразующей жидкости и соединенными между собой по торцам. Нижняя часть корпуса пароиспарителя выполнена профилированной с посадочным местом для состыковки с выходной частью печной трубы, а верхняя часть корпуса парогенератора выполнена профилированной для состыковки с входной частью дымохода. В кольцевой зазор между обечайками открываются патрубки для подачи парообразующей жидкости внутрь кольцевого зазора и отвода из него пара, при этом внутри корпуса пароиспарителя, с радиальным зазором между его стенками и стенками внутренней обечайки, установлен рассекатель потока печных газов, поступающих из выходной части печной трубы. 6 з.п. ф-лы, 3 ил.
Наверх