Способ получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом

Изобретение относится к металлургии и может быть использовано для получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом, используемого в сталеплавильном и литейном производствах. В способе подготавливают углеродсодержащую композицию, содержащую, мас.%: антрацит 50-85, графитовый лом 5-25, электродный бой 5-25, графитовую стружку 5-15, которую дробят до фракции 0,1-3,2 мм, прокаливают при температуре 500-1500°C, формируют графитовые сфероиды в структуре материала при высоком удельном давлении до 20 ГПа и подвергают высокотемпературной выдержке при 1800-2500°C в восстановительной среде с образованием наноструктур графита до 100 нм, представляющими собой нанокластеры графита с гексагональной решеткой. Изобретение обеспечивает производство отливок ответственного назначения из высокопрочных чугунов. 2 табл., 1 ил.

 

Изобретение относится к металлургии, к литейному производству, в частности к способам получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом, применяемым для корректировки состава чугуна и стали по содержанию углерода, выплавляемым в литейном и сталеплавильном производствах.

Близких к заявляемому техническому решению аналогов не обнаружено.

Заявляемое изобретение направлено на обеспечение производства отливок ответственного назначения из высокопрочных чугунов с шаровидным и вермикулярным графитом при последующей внепечной модифицирующей обработке.

Для реализации способа получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом, подготавливают углеродсодержащую композицию, содержащую, масс.%: антрацит 50-85, графитовый лом 5-25, электродный бой 5-25 и графитовую стружку 5-15, которую дробят до фракции 0,1-3,2 мм, прокаливают при температуре 500-1500°C, формируют графитовые сфероиды в структуре материала при высоком удельном давлении до 20 ГПа и подвергают высокотемпературной выдержке при 1800-2500°C в восстановительной среде с образованием наноструктур графита до 100 нм, представляющими собой нанокластеры графита с гексональной решеткой

На фиг.1 изображены нанокластеры графита с гексагональной решеткой.

В настоящее время при выплавке чугуна возникает необходимость увеличения содержания углерода путем введения науглероживателя в жидкий металл. Для науглероживания металла применяют графит и композиции, состоящий из отходов углеродсодержащих материалов, кокса, древесного угля и др.

Для осуществления заявляемого способа получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом подготавливают углеродсодержащую композицию, содержащую, масс.%: антрацит 50-85, графитовый лом 5-25, электродный бой 5-25 и графитовую стружку 5-15. Компоненты данной композиции в совокупности обеспечивают требуемую степень усвоения углерода в железоуглеродистом сплаве.

Антрацит, входящий в состав, является одним из основных компонентов науглероживателя, определяющих функциональность и технологическую ценность всего углеродсодержащего материала. Введение в состав антрацита менее 50% влечет за собой снижение эффективности науглероживания железоуглеродистого сплава и повышение температуры усвоения. Наличие же антрацита свыше 85% в составе науглероживателя получить невозможно.

Графитовый лом является важной составляющей науглероживателя. При введении в состав менее 5% графитовый лом малоперспективен - его слишком мало для того, чтобы обеспечить равномерное распределение слоев графита в качестве подложек для роста графитовой фазы. При содержании графитового лома более 25% необходимо повышение температуры для усвоения науглероживателя, что технологически неприемлемо.

Электродный бой - важный элемент в снижении себестоимости производства науглероживателя. Наличие его менее 5% практически не влияет на снижение себестоимости. Введение электродного боя свыше 25% ведет к повышению суммарного расхода науглероживателя и, следовательно, к общему увеличению себестоимости при удовлетворительных технологических и эксплуатационных показателях.

Графитовая стружка - мелкодисперсная составляющая науглероживателя. Содержание графитовой стружки менее 5% ухудшает способность науглероживателя в образовании центров кристаллизации графитной фазы в чугунах. Введение в состав графитовой стружки более 15% провоцирует образование "графитной спели" в чугунах, что недопустимо при дальнейшем производстве высокопрочных чугунов.

Заявляемый способ получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом производится трехстадийным технологическим процессом.

На первой стадии компоненты науглероживателя: антрацит, графитовый лом, электродный бой и графитовую стружку дробят до фракции 0,1-3,2 мм и прокаливают в роторных прокалочных печах или вращающихся печах барабанного типа при температурах 500-1500°C. При использовании фракции менее 0,1 мм происходит значительное пылеобразование, за счет чего увеличивается расход материала. Фракция более 3,2 мм - снижает степень усвоения углерода из материала, за счет того что частично уходит в печной шлак. Температурный диапазон 500-1500°C при прокаливании в роторных прокалочных печах или вращающихся печах барабанного типа при температурах является оптимальным для удаления из материала влаги и летучих веществ, при этом также происходит улучшение физико-механических свойств. При температуре прокаливания ниже 500°C удаление летучих веществ не будет происходить, выше 1500°C - начнется интенсивный углерода из материала.

На второй стадии прокаленный углеродсодержащий материал в специальных реакторах формируют графитовые сфероиды в структуре материала при высоком удельном давлении до 20 ГПа. При меньшем давлении не будет обеспечено формирование графитовых сфероидов в структуре материала. Большее давление обеспечить достаточно сложно и экономически неэффективно.

На третьей стадии материал подвергают высокотемпературной выдержке - 1800-2500°C в восстановительной среде с образованием наноструктур графита до 100 нм, представляющими собой нанокластеры графита с гексональной решеткой. При температуре меньше 1800°C не будет происходить нейтрализации молекулярных газов и получение графита «особой» чистоты, температура более 2500°C нецелесообразна из-за значительных энергозатрат. В данных печах, под действием высокотемпературного фактора происходит образование наноструктур графита с параметрами до 100 нм, которые представляют собой нанокластеры графита с гексагональной решеткой. Указанные размеры и форма графита является оптимальными для формирования зародышей вермикулярного и шаровидного графита в чугуне. При этом нанокластерные частицы графита находятся на углеграфитовом макроносителе - частицах науглероживателя фракцией 0,1-3,2 мм.

Проводилось электронно-микроскопическое исследование в сканирующем электронном микроскопе Quanta 3D FEG (двулучевая установка SDB производства FEI) в диапазоне увеличений × 10000 - ×100000. Образцы для исследования были предоставлены ОАО «КАМА3-Металлургия». Проводилось сравнение двух образцов порошкового углеродного материала:

- образец №1 (контрольный) - измельченный, высушенный, не активизированный графитовый порошок;

- образец №2 - измельченный, высушенный, активизированный обработкой при высокой температуре (~ 2000°C) и высоком давлении (до 20 гПа).

Препараты готовились путем нанесения на предметный столик порошка в исходном состоянии, без последующей обдувки.

По результатам испытаний выявлено, что образец №1, не подвергавшийся воздействию высокого удельного давления и высокотемпературной обработке имеет выраженную крупнокристаллическую слоистую структуру, характерную для графита.

Образец №2, подвергавшийся высокому удельному давлению и высокотемпературной обработке, показал наличие сфероидов (отдельных частиц и кластеров), в том числе наноразмерных - 100 нм, как правило, ассоциированных с более крупными частицами графита.

Результаты испытаний приведены в таблице 1.

Таблица 1
Исследуемые образцы Обработка материала Структура
Образец №1 Без высокотемпературной обработки и обработки давлением Крупнокристаллическая слоистая структура, характерная для графита
Образец №2 Высокотемпературная обработка (1800-2500°C) и обработка давлением (до 20 ГПа) Слоистая структура сферолитов, на поверхности которых присутствуют частицы (капли) размером 100 нм и менее

В производстве чугунного литья ОАО «КАМА3-Металлургия» подвергались сравнительным испытаниям 3 варианта композиции заявляемого способа. Результаты сравнительных данных приведены в таблице 2.

Таблица 2
№ п/п Наименование материала Температура усвоения, °C Наличие цементита Содержание азота в металле, % Усвоение углерода от массы материала, %
1 Вариант №1 композиции (нижний уровень) 1450 нет 0,005 97
2 Вариант №2 композиции (средний уровень) 1400 нет 0,004 98
3 Вариант №3 композиции (верхний уровень) 1350 нет 0,003 99

По таблице сравнительных данных очевидно, что все варианты отличаются высокой степенью усвоения углерода в жидком расплаве металла на всех уровнях: 97-99% против 80%, равномерным зарождением центров кристаллизации графитных включений, отсутствием внесения вредных примесей и газов в расплав металла, а так же более низкой температурой науглероживания расплава 1350-1450°C против 1500°C.

Заявляемое изобретение обеспечивает производство отливок ответственного назначения из высокопрочных чугунов с шаровидным и вермикулярным графитом при последующей внепечной модифицирующей обработке за счет создания большего количества центров графитизации.

Заявляемое техническое решение имеет следующие преимущества:

- более высокая степень усвоения углерода;

- более низкие температуры расплава обрабатываемого материала;

- нанокластерная структура графита с гексогональной решеткой для получения чугуна с шаровидным и вермикулярным графитом.

Способ получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом, характеризующийся тем, что подготавливают углеродсодержащую композицию, содержащую, мас.%: антрацит 50-85, графитовый лом 5-25, электродный бой 5-25, графитовую стружку 5-15, дробят до фракции 0,1-3,2 мм, прокаливают при температуре 500-1500°C, формируют графитовые сфероиды в структуре материала при высоком удельном давлении до 20 ГПа и подвергают высокотемпературной выдержке при 1800-2500°C в восстановительной среде с образованием наноструктур графита до 100 нм, представляющими собой нанокластеры графита с гексагональной решеткой.



 

Похожие патенты:
Изобретение относится к области черной металлургии и может быть использовано при получении высокопрочных чугунов с шаровидным или вермикулярным графитом. Способ включает расплавление шихты в плавильном агрегате, температурную обработку расплава при 1300…1650°С, при этом при получении чугуна с шаровидным графитом первичное модифицирование проводят наноструктурированным науглероживателем в количестве 0,10…0,25% от массы расплава, а вторичное сфероидизирующее модифицирование осуществляют модификатором, содержащим 5…7% магния, в количестве 1,2…2,0% от массы расплава, а при получении чугуна с вермикулярным графитом первичное модифицирование проводят наноструктурированным науглероживателем в количестве 0,10…0,25% от массы расплава, а вторичное вермикуляризирующее модифицирование осуществляют модификатором, содержащим 3…5% магния и 3…6% редкоземельных элементов, в количестве 0,3…0,8% от массы расплава.
Изобретение относится к металлургии и может быть использовано в машиностроении и тракторостроении для изготовления деталей повышенной прочности, например коленчатые валы автомобилей.
Изобретение относится к области литейного производства, в частности к составам модификаторов, используемых в производстве легированного чугуна с шаровидным графитом.

Изобретение относится к способу влияния на свойства чугуна посредством добавки магния к расплаву чугуна и сенсору для измерения содержания кислорода в расплаве чугуна в этом способе.

Изобретение относится к металлургии, в частности к способам производства чугуна с вермикулярным графитом. .
Изобретение относится к металлургии, в частности к способу получения чугуна с шаровидным графитом. .
Изобретение относится к области металлургии и предназначено для десульфурации и модифицирования железоуглеродистого расплава для изготовления изделий из серого чугуна, а также чугуна с графитом шаровидной и вермикулярной формы.
Изобретение относится к черной металлургии, в частности к выплавке железоуглеродистых сплавов в индукционных печах. .
Изобретение относится к металлургии, в частности к лигатуре для модифицирования сплавов. .

Изобретение относится к неорганической фуллереноподобной наночастице формулы A1-x-Bx-халькогенид, где В встроен в решетку A1-x-халькогенида, А представляет собой металл или сплав металлов, выбранных из Мо и W, В является металлом, выбранным из V, Nb, Та, Mn и Re, а х≤0,3; при условии, что х не равен нулю и А≠В.
Изобретение относится к способу получения корундовой нанопленки. Способ состоит в осаждении нанослоя алюминия на пленочную основу, или барабан, или диск (далее «основа») из материала с пониженной адгезией, последующее окисление этого нанослоя до корунда, и снятие корундовой нанопленки с основы.
Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода - остальное.
Изобретение относится к медицине, в частности к хирургии, ожогово-лучевой терапии. Повязка включает вискозную ткань, которая на первой стадии производства углеродной ткани подвергнута ионизирующему облучению пучком быстрых электронов в токе пучка электронов 1-3 µa и энергии 0,5-0,7 МеВ при транспортировке через камеру облучения ускорителя электронов со скоростью 1-4 м/мин, а полученная углеродная ткань характеризуется плотностью 1,3-1,4 г/см3; поверхностная плотность 2,5-3,5 м2/г; содержание углерода 99,6-99,9 мас.%; содержание золы 0,1-0,4 мас.%; поглощение хлоргексидина 0,6-0,7 г/г при непрерывных сроках нахождения на поверхности раны 4 суток.

Изобретение относится к металлургии и литейному производству, в частности к получению чугуна с высоким содержанием углерода. Способ включает выплавку исходного расплава чугуна в печи, инжекционный ввод науглероживателя и выпуск расплава металла, при этом выплавку исходного расплава чугуна в электродуговых, индукционных печах или в газовых вагранках с копильником осуществляют перегрев расплава при температуре выше температуры ликвидуса на 10…400°С и используют науглероживатель с расположенными на его поверхности наноструктурированными частицами графита с размером 0,00001…0,01 мкм и в количестве 0,0001-0,01%, обеспечивающем образование заданной концентрации центров зарождения графитной фазы.
Изобретение относится к изготовлению керамических изделий из материала на основе частично стабилизированного диоксида циркония: сверхострых и износостойких высокопрочных режущих инструментов для хирургии, травматологии, ортопедии и протезирования, безызносных пар трения для подшипников, мелющих тел, поршней тормозных дисков, фильер, вальцов, сопел, пружин и др.
Изобретение относится к области порошковых технологий, цветной металлургии. Способ получения наноразмерных порошков нитрида алюминия с размерами частиц 10-150 нм и удельной поверхностью 30-170 м2/г, включающий подачу порошка глинозема потоком плазмообразующего газа азота в реактор газоразрядной плазмы при температуре в реакторе 4000-7000°C, охлаждение продуктов термического разложения охлаждающим инертным газом и конденсацию полученного порошка нитрида алюминия в водоохлаждаемой приемной камере, в котором порошок глинозема - пыль, уловленная в электрофильтрах печей кальцинации гидроксида алюминия при производстве глинозема.

Изобретение относится к области нанотехнологии и может быть использовано для получения атомно-тонких монокристаллических пленок различных слоистых материалов. Технический результат - упрощение технологии изготовления атомно-тонких монокристаллических пленок.

Изобретение относится к способу получения полимерных нанокомпозитов, которые могут быть использованы в разработке и создании новых видов полимерных материалов и покрытий.

Изобретение относится к способу и устройству маркировки поверхности и может найти применение для маркировки объекта или документа для его идентификации, отслеживания и аутентификации.
Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Технический эффект - повышение эффективности модификации электрохимических катализаторов и их эксплуатационных характеристик. 1. з.п. ф-лы.
Наверх