Способ образования двумерного линейного высокочастотного электрического поля и устройство для его осуществления

Изобретение относится к области фокусировки, энерго и масс-анализа заряженных частиц в линейных высокочастотных электрических полях и может использовано для улучшения конструкторских и коммерческих характеристик приборов для микроанализа вещества. Технический результат - усовершенствование конструкции электродных систем для образования двумерных линейных высокочастотных электрических полей с целью достижения при изготовлении высокой точности реализации их расчетной геометрии с помощью современных технологий. Способ основан на формировании на плоских поверхностях дискретно-линейных распределений высокочастотного потенциала с помощью параллельных емкостных делителей. Система состоит из 3-х плоских электродов, одного заземленного и двух с противофазными дискретно-линейными распределениями вдоль одной оси высокочастотных потенциалов. Дискретные электроды выполнены из тонких диэлектрических пластин с нанесенными на них проводящими поверхностями. Внешние поверхности разделены по диагонали на две половины, одни из которых заземлены, а к другим приложены высокочастотные потенциалы. Внутренние поверхности, гальванически не соединенные с другими частями анализатора, образованы из равномерно распределенных вдоль одной оси проводящих полосок. Между внутренними и внешними проводящими поверхностями образуются емкостные делители высокочастотного напряжения с линейно изменяющимся по одной координате коэффициентом деления. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области фокусировки, энерго и масс-анализа заряженных частиц в линейных высокочастотных [ВЧ] электрических полях и может быть использовано для улучшения конструкторских и коммерческих характеристик приборов для микроанализа вещества. Задачу образования двумерных линейных электрических полей для радиочастотных времяпролетных масс-анализаторов с протяженными вдоль оси дрейфа ионов рабочими областями можно решить с помощью систем из гиперболических электродов [1] или плоских дискретных и непрерывных [2, 3, 4]. Использование гиперболических электродов нерационально из-за значительных размеров анализатора по всем трем осям. Способы и устройства, предлагаемые в [2, 3, 4], решают проблему габаритных размеров, но не вполне совершенны с конструкторско-технологической точки зрения из-за сложности достижения требуемой точности геометрических параметров дискретных электродов. В качестве прототипа принята система из плоских дискретных электродов, образованных из равномерно распределенных вдоль оси Z не эквипотенциальных элементов [2]. На дискретных поверхностях в плоскостях x=±x0 такой системы с помощью делителей напряжения из n=n/Δy одинаковых емкостей или индуктивностей создается дискретно-линейные по оси Y распределения ВЧ напряжения, образующее в рабочем пространстве |x|<x0, 0≤y<y0 двумерное линейное электрическое поле.

Практическая реализация таких электродных систем для анализаторов заряженных частиц высокого разрешения R>103 затрудняется сложностью изготовления в вакуумном варианте высокоточных (относительная погрешность δ<10-3) элементов делителей ВЧ напряжения.

Техническая задача предлагаемого изобретения состоит в усовершенствовании конструкции электродных систем анализаторов заряженных частиц с двумерными линейными электрическими полями с целью достижения высокоточной расчетной геометрии при их практической реализации с применением современных технологий обработки диэлектрических поверхностей и нанесения на них проводящих покрытий.

При создании дискретно-линейных распределений ВЧ потенциала в плоскостях x=±x0 радиочастотных времяпролетных масс-анализаторов с помощью емкостных делителей линейность распределения зависит от точности емкостей делителей. В линейном последовательном делителе ВЧ напряжения (Фиг.1, а) все емкости имеют одинаковое значение С0.

Отклонения значения одной емкости искажает распределение потенциала всего делителя. В ионно-оптических системах с линейными ВЧ электрическими полями из-за конструктивных ограничений емкость C0 последовательного делителя не может превышать единиц пФ. При этом на распределение потенциала в делителе будут в сильной степени влиять паразитные связи элементов делителя с другими элементами конструкции электродных систем. Поэтому в анализаторах с протяженными в вдоль одной координаты рабочими областями с помощью последовательных емкостных делителей сложно получить линейность распределения потенциала с погрешностью ниже уровня δφ<10-2.

Параллельные линейные делители ВЧ напряжения (Фиг.1, б), составляются из емкостей, величина которых изменяется в зависимости от их номера i по линейным законам:

С 1 i = C m ( 1 Δ y y 0 i ) , С 2 i = C m Δ y y 0 i , ( 1 )

где Сm - наибольшее значение емкости делителя ВЧ напряжения, Δy=y0/n - шаг дискретности проводящих поверхностей, n - число дискретных элементов поверхностей. Параллельные делители с емкостями формируют в плоскостях х=±x0 дискретно-линейные по оси Y распределения ВЧ потенциалов, определяемые выражением:

u i = C 2 i C 2 i + C 1 i u = u n i ( 2 )

Линейность распределений потенциала не нарушается, если ко всем емкостям С1i добавляется постоянная величина Сn, так как и в этом случае значение знаменателя С2i1in остается постоянным при всех i.

Формирование дискретно-линейных напряжений с помощью параллельных емкостных делителей дает ряд преимуществ с точки зрения их практической реализации:

- все напряжения ui формируются независимыми друг от друга элементами делителей и поэтому погрешность емкости С1i или С2i искажает распределение потенциала только i-ой точке, т.е. погрешности распределения имеют локальный характер;

- в параллельных делителях ВЧ напряжения достаточно простыми методами минимизируются и учитываются емкостные связи между заземленными и незаземленными элементами делителей;

- для практической реализации параллельных емкостных делителей ВЧ напряжения могут использоваться современные технологии формирования на диэлектрических основах проводящих поверхностей с высокоточными геометрическими параметрами, что позволяет создавать ионно-оптические системы из плоских дискретных электродов с отклонениями распределения ВЧ потенциала от линейного ниже уровня δφ<10-3.

Способ образования двумерного линейного высокочастотного поля на основе параллельных емкостных делителей напряжения заключается в создании в плоскостях x=±x0 двух дискретных поверхностей, составленных из n=y0/Δy равномерно с шагом Δy распределенных по оси Y проводящих полосок шириной Δyn<Δy, первые из которых шириной Δyn/2 заземлены, а остальные гальванически не соединены с другими проводящими, поверхностями, одной в плоскости y=0 непрерывной заземленной поверхности с размерами 2x0, L, по осям X, Z и четырех непрерывных поверхностей треугольной формы в плоскостях x=±(x0+d), где d<<x0, две из которых с координатами вершин (x0+d; 0; Δz), (x0+d; y0; L), (x0+d; 0; L) и (-x0-d; 0; Δz), (-x0-d; y0; L), (-x0-d; 0; L), где Δz≥2d, заземлены, а к двум другим с координатами вершин (x0+d; 0; 0), (x0+d; y0; 0), (x0+d; y0; L-Δz) и (-x0-d; 0; 0), (-x0-d; y0; 0) (-x0-d; y0; L-Δz) приложены противофазные высокочастотные потенциалы u1=u и u2=-u. Пространство между проводящими поверхностями, лежащими в плоскостях x0 и x0+d, -x0, и - x0-d заполняют диэлектриком. Между проводящими полосками и поверхностями треугольной формы образуются емкости С1i и С2i, значения которых изменяются в соответствии с выражением (1). При этом распределение потенциала на проводящих полосках в зависимости от их номера i будет подчиняться линейному закону (2).

Схема электродной системы для образования двумерного линейного высокочастотного поля в рабочей области -x0<х<х0, 0≤y<y0, построенная по принципу параллельно емкостного делителя ВЧ напряжения, показана на Фиг.2. Система состоит из заземленного электрода 1 с размерами 2x0, L по осям X, Z и двух плоских дискретных электродов 2, 3 с размерами y0, L по осям Y, Z. Электроды 2, 3 выполнены в виде диэлектрических пластин толщиной d с нанесенными на них с обеих сторон тонкими проводящими поверхностями 4, 5, 6. Проводящие поверхности на внешних сторонах электродов 2, 3 состоят из двух частей 4 и 5 в форме прямоугольных треугольников, разделенных зазорами Δz<<L. Поверхности 4 электродов 2, 3 заземлены, а на поверхности 5, подаются противофазные ВЧ напряжения u1=-u2. На внутренние поверхности 6 электродов 2, 3 нанесены параллельные оси Z длиной L, шириной Δyn=Δy-h проводящие полоски 7 с зазорами между соседними полосками величиной h<<Δy. Первые проводящие полоски дискретных поверхностей 6 электродов 2, 3 имеют ширину Δyn/2 и заземлены. Между проводящими полосками 7 и проводящими поверхностями 4, 5 образуются емкости С1i2i, величина которых зависит от площадей перекрытия S1i и D2i полосок с поверхностями 4 и 5.

S 1 i = ( Δ y h ) ( y 0 y i ) , S 2 i = ( Δ y h ) y i ( 3 )

В этом случае емкости C1i и С2i будут являться функциями координаты yi:

С 1 i = C 0 ( 1 y i y 0 ) , С 2 i = C 0 y i y 0 , ( 4 )

где С0=εε0(Δy-n)·L/d, ε0=8.85·10-122/Нм2, ε - относительная диэлектрическая проницаемость пластин. При этом в соответствии с (2) ВЧ потенциал полосок будет линейно зависеть от координаты y.

u i = u C 0 y i / y 0 C 0 ( 1 y i / y 0 ) + C 0 y i / y 0 = u i n ( 5 )

Таким образом плоские диэлектрические пластины с проводящими покрытиями, изображенные на Фиг.2, выполняют функцию параллельных емкостных делителей ВЧ напряжения. При этом на проводящих полосках в соответствии с (2) будут создаваться ВЧ напряжения, изменяющиеся в зависимости от координаты yi по линейному закону, а в рабочей области -x0<x<x0, 0≤y<y0 образуется двумерное линейное ВЧ электрическое поле.

Достоинство предлагаемой электродной системы заключается в возможностях достижения высокой линейности (с погрешностью δφ<10-3) распределения потенциала в рабочих областях при минимальных размерах анализаторов по оси X.

Это достигается за счет:

- простой и технологичной конструкции анализаторов из плоских электродов.

- регулярной геометрии поверхности дискретных электродов.

- минимизации влияния заземленных элементов анализатора на распределение потенциала в ВЧ делителе и учета этого влияния путем коррекции величины емкостей С1i.

- отсутствие влияния взаимных емкостей между элементами дискретного электрода на линейность распределения ВЧ потенциала в делителе.

Для устранения накопления зарядов и установки постоянных потенциалов на элементах дискретных поверхностей они могут соединяться с заземленными электродами или с источниками постоянного напряжения через высокоомные сопротивления.

Простые и технологичные устройства, основанные на предлагаемом способе образования двумерных линейных электрических полей с помощью' плоских непрерывных и дискретных проводящих поверхностей, нанесенных на диэлектрическую пластину, позволяют создавать эффективные ионнооптические системы фокусировки, энерго и масс-анализа заряженных частиц для конкурентоспособных аналитических приборов.

ЛИТЕРАТУРА

1. Мамонтов Е.В., Гуров B.C., Дягилев А.А., Грачев Е.Ю. Масс-разделение ионов по времени пролета в радиочастотных двумерных линейных электрических полях. Масс-спектрометрия 2011, т.8, №8, с.195-200.

2. Патент RU №2327245 от 03.05.2006, Способ масс-селективного анализа ионов по времени пролета и устройство для его осуществления.

3. Патент RU №2387043 от 10.04.2008, Способ формирования линейного поля и устройство для его осуществления.

4. Патент RU №2422939 от 25.11.2009, Способ образования двумерного линейного электрического поля и устройство для его осуществления.

1. Способ образования двумерного линейного высокочастотного электрического поля, заключающийся в создании в плоскостях x0=±x0 двух дискретных поверхностей с размерами y0 и L по осям Y, Z, составленных из параллельных оси Z проводящих элементов, равномерно с шагом Δy распределенных по оси Y, и в плоскости y=0 непрерывной заземленной поверхности с размерами 2х0, L по осям X, Z, отличающийся тем, что используют дискретные поверхности, состоящие из n=y0/Δy проводящих полосок, первые из которых шириной Δyn/2 заземлены, а остальные Δyn<Δy гальванически не соединены с другими проводящими поверхностями, а также четыре непрерывные в форме треугольников поверхности в плоскостях х=±(х0+d), где d<<x0, две из которых заземленные с координатами вершин (х0+d; 0; Δz), (х0+d; y0; L), (xQ+d; 0; L) и (-х0-d; 0; Δz), (-х0-d; y0; L), (-x0-d; 0; L), а две другие с противофазными высокочастотными потенциалами u1=u и u2=-u с координатами вершин (х0+d; 0; 0), (x0+d; y0; 0), (х0+d; y0; L-Δz) и (-х0-d; 0; 0), (-х0-d; y0; 0), (-x0-d; y0; L-Δz), где Δz<<L, причем пространство между проводящими поверхностями, лежащими в плоскостях х0 и х0+d, -х0 и -х0-d, заполняют диэлектриком.

2. Устройство для образования двумерного линейного высокочастотного электрического поля, содержащее в плоскостях х=±х0 дискретные электроды с размерами y0 и L по осям Y, Z, составленные из равномерно с шагом Δy распределенных по оси Y проводящих элементов, и в плоскости y=0 заземленный электрод с размерами 2х0 и L по осям X, Y, отличающееся тем, что используют два дискретных электрода, составленные из n=у0/n тонких металлических полосок, первые из которых шириной Δyn/2 заземлены, а остальные шириной Δyn<Δy гальванически не соединены с другими электродами и источниками высокочастотного напряжения; а также используют два заземленных электрода в форме треугольников с координатами вершин (х0+d; 0; Δz), (х0+d; y0; L), (x0+d; 0; L) и (-х0-d; 0; Δz), (-х0-d; y0; L), (-х0-d; 0; L) и два электрода с противофазными высокочастотными потенциалами u1=u, u2=-u в форме треугольников с координатами вершин (x0+d; 0; 0), (х0+d; y0, 0), (x0+d; y0; L-Δz) и (-х0-d; 0; 0), (-х0-d; y0; 0), (-х0-d; y0; L-Δz), причем пространство между электродами, расположенными в плоскостях х0 и x0+d, -х0 и -x0-d, заполняют диэлектриком.



 

Похожие патенты:

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела, и может быть использовано для улучшения аналитических и потребительских свойств электронных спектрометров, используемых для исследования объектов твердотельной электроники методами электронной спектроскопии.

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых рентгеновским излучением с поверхности твердого тела, и может быть использовано для улучшения аналитических, эксплуатационных и потребительских свойств электронных спектрометров, используемых для исследования объектов микро- и наноэлектроники методами рентгено-электронной спектроскопии.

Изобретение относится к области масс-спектрометрии, в основе которой лежит движение заряженных частиц в двумерных линейных высокочастотных электрических полях, и может быть использовано для усовершенствования конструкций приборов для масс-анализа и улучшения их аналитических и коммерческих характеристик.

Изобретение относится к области масс-спектрометрических приборов, основанных на движении заряженных частиц в двумерных линейных электрических полях, и может быть использовано для улучшения аналитических и потребительских характеристик таких приборов.

Изобретение относится к области масс-селективного анализа заряженных частиц в двумерных линейных ВЧ полях и может быть использовано для улучшения аналитических, эксплуатационных и потребительских свойств масс-спектрометров времяпролетного типа.

Изобретение относится к области динамической масс-спектрометрии и может быть использовано для совершенствования способов развертки масс, улучшения аналитических и потребительских свойств гиперболоидных и времяпролетных масс-спектрометров.

Изобретение относится к динамической масс-спектрометрии и может быть использовано для улучшения потребительских свойств и увеличения срока службы масс-спектрометров с гиперболоидными электродными системами.

Изобретение относится к динамической масс-спектрометрии и может быть использовано для улучшения технологических и аналитических свойств гиперболоидных масс-спектрометров.

Изобретение относится к масс-спектрометрии и может быть использовано для создания гиперболоидных масс-спектрометров с простыми анализаторами и высокими аналитическими показателями.

Способ разделения заряженных частиц по величине отношения массы к заряду относится к области масс-спектрометрии. Технический результат - повышение чувствительности и стабильности масс-анализа и улучшение масс-габаритных и конструктивно-технологических показателей масс-спектрометров. Способ включает воздействие на заряженные частицы неоднородного высокочастотного поля, при этом поле имеет градиент потенциала вдоль оси Y и близкий к нулевому градиент вдоль оси X, а пучок заряженных частиц с заданной величиной отношения кинетической энергии к заряду вводят в высокочастотное поле непрерывно в плоскости XY под острым углом α к оси Y. 3 ил.
Наверх