Способ измерения скорости движения облаков

В наблюдаемое облако с установленного на поверхности Земли или вблизи этой поверхности лазерного излучателя в тело облака посылают импульсное лазерное излучение с длительностью импульсов излучения 10-20 нс и с промежутком времени между импульсами не более 2 с. Лазерное излучение посылают в облако таким образом, чтобы оно было направлено вертикально вверх или вниз. Определяют направление и скорость перемещения самого лазерного излучателя, в случае если он установлен на подвижном объекте и перемещается вместе с ним. В том же месте где установлен лазерный излучатель принимают рассеянное излучение и фиксируют время прихода. Выделяют из этих сигналов, по меньшей мере, два, отстоящих друг от друга по времени не более чем на 2 с. С помощью оптического телескопического устройства формируют изображения от каждого из принятых сигналов, представляющие собой картины двумерного распределения интенсивности. По этим изображениям формируют двумерную взаимно-корреляционную функцию. По положению максимума взаимно-корреляционной функции определяют величину пространственного сдвига двух изображений относительно друг друга. По этому сдвигу с учетом времени между полученными изображениями вычисляют скорость и направление перемещения наблюдаемого облака. Технический результат - получение высококонтрастных изображений малых частей облака, разделенных друг от друга временным интервалом. 6 з.п. ф-лы.

 

Настоящее изобретение относится к средствам для измерения расстояния или скорости с использованием радиоволн объектов, с использованием отражения радиоволн, звуковых или других волн и может быть использовано для дистанционного определения скорости движения облаков с помощью лазерных локаторов, например, в метеорологии.

Известен способ измерения скорости облаков, описанный в статье А.И. Гришин «О возможности определения высоты и скорости облачности пассивными методами зондирования», журнал «Оптика атмосферы и океана», 1999 г., №7, с.640-642. В соответствии с этим способом визуально или с помощью теодолита, в одной точке расположенной на поверхности Земли, наблюдают за перемещением одного и того же крупного фрагмента облака по небосводу, фиксируют положение этого фрагмента на небосводе и в определенные моменты времени, определяют пройденное облаком расстояние за данный промежуток времени и, зная пройденное облаком расстояние и время, вычисляют скорость перемещения облака. Данный способ не позволяет получить высокую точностью измерений скорости перемещения облака, т.к. для данного метода, во-первых, серьезным ограничивающим фактором является сама структура облачности, во-вторых, точность этих наблюдений сильно зависит от состояния видимости в атмосфере, и данный метод становится полностью неприменимым в темное время суток и при наблюдении за облаками, находящимися на больших высотах.

Ближайшим из известных является способ измерения скорости облаков, описанный в статье Ю.С. Балин, А.Д. Ершов, П.А. Коняев, Д.С. Ломакин «Контроль скорости перемещения атмосферных аэрозольных образований с использованием видео- и лидарной информации», журнал «Оптика атмосферы и океана». Т.17, №12. 2004 г. В соответствии с этим способом с помощью видеокамеры подключенной к компьютеру через плату видео ввода на экран компьютера в реальном времени выводится изображение исследуемого объекта, в частности облака. В определенный момент выбирают опорный кадр, т.е. некоторую область изображения на экране, по команде запоминают часть изображения облака входящего в этот кадр в виде матрицы значений яркости пикселей в окне анализа. После этого через заданный интервал времени получают текущий кадр, также представляющий собой изображение некоторой части облака в этом прямоугольнике и запоминают матрицу яркости пикселей данного кадра. После этого рассчитывают двумерную взаимно корреляционную функцию опорного и текущего кадра, находят координаты максимума этой функции, и учитывая время между получением этих кадров, вычисляют скорость и направление смещения облака. При этом соблюдают условие, чтобы направление смещения исследуемого объекта было перпендикулярно вектору наблюдений за ним через видеокамеру (с помощью лазера измеряют дальность до краев облака).

Данный способ не позволяет измерить скорость перемещения облаков с высокой точностью, т.к. видеокамера позволяет получить изображение большой по размеру части облака, внутри которой происходит перемещение фрагментов этой части независимо друг от друга. Это приводит к существенному снижению точности при определении скорости и направления смещения облачности. При этом видеокамера исключает возможность получения изображения малой, монотонной части облака с нечеткими границами неоднородностей, т.к. получение изображения осуществляется за счет рассеянного солнечного света, то от малой части облака поток света будет недостаточным для получения изображения с высокой контрастностью всех неоднородностей этой части. Эта ситуация настолько усугубляется в темное время суток или для облаков находящихся на большой высоте, что измерение скорости движения облаков ночью или перистых облаков с малой оптической толщью исключается этим способом полностью. Кроме того, т.к. видеокамера не позволяет получить четкие изображения малых частей облака, то она не позволяет получить изображения этих частей за малый промежуток времени, что также существенно снижает точность измерения скорости облаков.

Задачей данного изобретения является получение высококонтрастных изображений малых частей облака разделенных друг от друга временным интервалом, не превышающим 2 секунды, в любое время суток. Решение этой задачи обеспечит получение нового технического эффекта, который заключается в том, что в результате будет существенно повышена точность измерения скорости движения облаков и, к тому же, будут существенно расширены возможности проведения таких измерений, т.к. измерение скорости облаков можно будет осуществлять и в темное время суток, и для облаков, находящихся на большой высоте, и для облаков, имеющих малые оптические толщи.

Поставленная задача решается тем, что, как и в описанном выше способе с помощью оптического телескопического устройства от облака по направлению вертикально вверх или вниз принимают рассеянное оптическое излучение, формируют изображение, полученное от освещенного слоя облака и запоминают его в виде картины двумерного распределения интенсивности; после этого рассчитывают взаимно-корреляционную функцию, соответствующую двум последовательным изображениям, по положению максимума взаимно-корреляционной функции оценивают величину пространственного сдвига двух изображений относительно друг друга, и по этому сдвигу с учетом времени между полученными изображениями судят о скорости и направлении перемещения облака.

В отличие от известного способа, в наблюдаемое облако с установленного на поверхности Земли или вблизи этой поверхности лазерного излучателя в тело облака посылают импульсное лазерное излучение с длительностью импульсов излучения (10-20) не и с промежутком времени между импульсами не более 2 с, причем это лазерное излучение посылают в облако таким образом, чтобы оно было направлено вертикально вверх или вниз, при этом определяют направление и скорость перемещения самого лазерного излучателя в случае если он установлен на подвижном объекте и перемещается вместе с ним; в том же месте где установлен лазерный излучатель, в моменты, когда импульсы лазера попадая в облако и постепенно распространяясь вглубь, будут формировать поток рассеянного назад излучения от некоторого освещаемого в данный момент слоя, принимают рассеянное излучение и фиксируют время прихода, выделяют из этих сигналов, по меньшей мере, два, отстоящих друг от друга по времени не более чем на 2 секунды; с помощью оптического телескопического устройства формируют от каждого из принятых сигналов, как указано выше, изображения, представляющие собой картины двумерного распределения интенсивности, по этим изображениям рассчитывают двумерную взаимно-корреляционную функцию, по положению максимума взаимно-корреляционной функции оценивают величину пространственного сдвига двух изображений относительно друг друга, и по этому сдвигу с учетом времени между полученными изображениями судят о скорости и направлении перемещения наблюдаемого облака.

В данном способе сформированное оптическим телескопическим устройством изображение части облака, которая рассеивает указанное излучение, подают на поляризационное устройство и запоминают с помощью запоминающего устройства.

В данном способе сформированное оптическим телескопическим устройством изображение той части облака, которая рассеивает указанное излучение, подают на ПЗС-матрицу, а сигнал с этой ПЗС-матрицы выводят на экран компьютера и заносят в его память.

В данном способе сформированное оптическим телескопическим устройством изображение части облака, которая рассеивает указанное излучение, подают на многоканальный ФЭУ (фотоэлектронный умножитель), а сигнал с этого ФЭУ запоминают с помощью запоминающего устройства.

В данном способе лазерный излучатель может быть установлен на поверхности Земли неподвижно, при этом излучение от этого излучателя посылают вертикально вверх.

В данном способе лазерный излучатель может быть установлен на поверхности Земли на движущемся объекте, например, на автомобиле, при этом излучение от этого излучателя посылают вертикально вверх.

В данном способе лазерный излучатель может быть установлен на летающем аппарате, например, на самолете или на искусственном спутнике, при этом лазерное излучение посылают вертикально вверх, если указанный аппарат расположен ниже наблюдаемого облака, или вертикально вниз, если указанный аппарат расположен выше наблюдаемого облака.

При этом впервые установлено, что при «подсвечивании» облака лазерным излучением, получаемое изображение от подсвеченной части облака, рассеивающей данное излучение, сохраняет очень высокую контрастность всех рассеивающих фрагментов облака. Этот эффект установлен, прежде всего, экспериментально, и основан он на специфических свойствах лазерного излучения, таких как высокая степень коллимирования пучка и когерентность излучения. Т.о., специфические свойства лазерного излучения позволяют получить новый технический эффект при определении скорости движения облака, причем этот технический эффект не мог быть известен среднему специалисту даже в области лазерного зондирования без проведения соответствующего эксперимента, что позволяет утверждать наличие изобретательского уровня в заявляемом изобретении.

Способ реализуется следующим образом. В облако с поверхности Земли вертикально вверх посылают импульсное лазерное излучение с длинной волны 532 нм и частотой 10 Гц. Каждый импульс, попадая в облако и постепенно распространяясь вглубь, будет формировать поток рассеянного назад излучения от некоторого освещаемого в данный момент слоя. С помощью объектива от облака по направлению вертикально вниз к приемнику в момент попадания импульса в нижнюю границу облака принимают рассеянное оптическое излучение, и создают изображение части облака, которая рассеивает указанное излучение, например, с помощью видеокамеры с ПЗС-матрицей. Данное изображение может выводиться на экран компьютера и заносится в его память. В полученном таким образом изображении определяют распределение интенсивности (в виде матрицы значений яркости пикселей). После этого указанные изображения обрабатывают при помощи корреляционно-экстремального метода, описанного, например, в работе Орлов В.М., Матвиенко Г.Г., Самохвалов И.В. и др. «Применение корреляционных методов в атмосферной оптике». - Новосибирск: Наука, 1983. Получают взаимно-корреляционную функцию между двумя последовательно зарегистрированными изображениями. По положению максимума взаимно-корреляционной функции оценивают величину пространственного сдвига двух изображений относительно друг друга, и по этому сдвигу с учетом времени между полученными изображениями судят о скорости и направлении перемещения облака.

Данный способ будет реализован на высотном лидаре кафедры ОЭС и ДЗ Радиофизического факультета Томского государственного университета, в котором установлены видеокамера Andor iStar DH712 и YAG:Nd3+лазер. Параметры камеры: область чувствительности - 0,115-0,920 мкм, размер ПЗС-матрицы камеры -512×512 пикселей, размер пикселя - 24 мкм, входной диаметр - 18 мм. Параметры лазера: длина волны излучения лазера - 0,532 мкм, частота импульсов излучения лазера - 10 Гц, энергия в импульсе на 0,532 мкм - 400 мДж, длительность импульса излучения лазера - 7 нс.

1. Способ измерения скорости движения облаков, по которому с помощью оптического телескопического устройства от облака по направлению вертикально вверх или вниз принимают рассеянное оптическое излучение, формируют изображение, полученное от освещенного слоя облака, и запоминают его в виде картины двумерного распределения интенсивности; после этого формируют взаимно-корреляционную функцию, соответствующую двум последовательным изображениям, по положению максимума взаимно-корреляционной функции определяют величину пространственного сдвига двух изображений относительно друг друга и по этому сдвигу с учетом времени между полученными изображениями вычисляют скорость и направление перемещения облака, отличающийся тем, что в наблюдаемое облако с установленного на поверхности Земли или вблизи этой поверхности лазерного излучателя в тело облака посылают импульсное лазерное излучение с длительностью импульсов излучения 10-20 нс и с промежутком времени между импульсами не более 2 с, причем это лазерное излучение посылают в облако таким образом, чтобы оно было направлено вертикально вверх или вниз, при этом определяют направление и скорость перемещения самого лазерного излучателя, в случае если он установлен на подвижном объекте и перемещается вместе с ним, в том же месте, где установлен лазерный излучатель, в моменты, когда импульсы лазера, попадая в облако и постепенно распространяясь вглубь, будут формировать поток рассеянного назад излучения от освещаемого в данный момент слоя, принимают рассеянное излучение и фиксируют время прихода, выделяют из этих сигналов, по меньшей мере, два, отстоящих друг от друга по времени не более чем на 2 с; с помощью оптического телескопического устройства формируют изображения от каждого из принятых сигналов, представляющие собой картины двумерного распределения интенсивности, по этим изображениям формируют двумерную взаимно-корреляционную функцию, по положению максимума взаимно-корреляционной функции определяют величину пространственного сдвига двух изображений относительно друг друга и по этому сдвигу с учетом времени между полученными изображениями вычисляют скорость и направление перемещения наблюдаемого облака.

2. Способ измерения скорости облаков по п.1, отличающийся тем, что созданное оптическим телескопическим устройством изображение части облака, которая рассеивает указанное излучение, подают на поляризационное устройство и запоминают с помощью запоминающего устройства.

3. Способ измерения скорости облаков по п.1, отличающийся тем, что сформированное оптическим телескопическим устройством изображение части облака, которая рассеивает указанное излучение, подают на ПЗС-матрицу (прибор с зарядовой связью), а сигнал с этой ПЗС-матрицы выводят на экран компьютера и заносят в его память.

4. Способ измерения скорости облаков по п.1, отличающийся тем, что сформированное оптическим телескопическим устройством изображение части облака, которая рассеивает указанное излучение, подают на многоканальный ФЭУ (фотоэлектронный умножитель), а сигнал с этого ФЭУ запоминают с помощью запоминающего устройства.

5. Способ измерения скорости облаков по п.1, отличающийся тем, что лазерный излучатель установлен на поверхности Земли неподвижно, при этом излучение от этого излучателя посылают вертикально вверх.

6. Способ измерения скорости облаков по п.1, отличающийся тем, что лазерный излучатель установлен на движущемся по поверхности Земли объекте, например на автомобиле, при этом излучение от этого излучателя посылают вертикально вверх.

7. Способ измерения скорости облаков по п.1, отличающийся тем, что лазерный излучатель установлен на летательном аппарате, например на самолете или на искусственном спутнике Земли, при этом лазерное излучение посылают вертикально вверх, если указанный аппарат расположен ниже наблюдаемого облака, или вертикально вниз, если указанный аппарат расположен выше наблюдаемого облака.



 

Похожие патенты:

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик слабо рассеивающей атмосферы. Согласно способу осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по неколлинеарным направлениям.

Изобретение относится к метеорологии, к способам для определения физических параметров атмосферы, и позволяет определять направление и скорость движения нижней границы облачности (НГО).

Изобретение относится к измерениям турбулентностей атмосферы с помощью лидарной системы, в частности на борту летательных аппаратов. .

Изобретение относится к измерительной технике и может быть использовано, в частности, в прикладной метеорологии для оперативного дистанционного определения скорости и направления ветра.

Изобретение относится к области систем оптической локации для метеорологических целей и может быть использовано для бесконтактного измерения профилей температуры пограничного слоя атмосферы.

Изобретение относится к способу обнаружения и определения местонахождения лесных пожаров на ранней стадии с использованием лидара. .

Изобретение относится к оптическому приборостроению. .

Изобретение относится к приборостроению, а именно к технике измерения оптических характеристик атмосферы с целью определения высоты обнаружения взлетно-посадочной полосы (ВПП) в интересах метеорологического обеспечения полетов авиации.

Изобретение относится к области метеорологии, а более конкретно к способам определения характеристик загрязнения атмосферы, и может быть использовано для измерения прозрачности неоднородной атмосферы лидарными системами при определении аэрозольного загрязнения воздуха. Согласно способу в неоднородную атмосферу излучают световые импульсы малой длительности и принимают эхо-сигналы. Эхо-сигналы корректируют на геометрический фактор лидара. Скорректированные сигналы накапливают в течение заданного промежутка времени в зависимости от общей протяженности исследуемого участка. Отклоняют световые импульсы не менее чем в двух точках трассы зондирования в направлениях на общий рассеивающий объем. Для определения прозрачности атмосферы учитывают оптическую толщину участка, заключенного между точками, в которых отклоняют импульсы. Технический результат - повышение точности определений за счет корректного учета влияющих факторов. 1 ил.

Оптический блок может быть использован для измерения характеристик облачности, преимущественно, на аэродроме с целью метеообеспечения взлета/посадки информацией о высоте нижней границы облаков. Оптический блок содержит линзовый объектив и полупроводниковый импульсный лазер, установленный в его фокусе, установленные перед зеркальным объективом соосно с ним, первый фотоприемник, установленный в фокусе зеркального объектива, содержащего главное и вторичное зеркала, полупрозрачное плоское зеркало размещено в центральном отверстии главного зеркала. Второй фотоприемник установлен соосно с первым за дополнительной фокальной поверхностью зеркального объектива, образованной полупрозрачным плоским зеркалом. Блок содержит блок обработки фотоэлектрических сигналов на два входа и один выход, один вход которого сопряжен с полупроводниковым импульсным лазером, второй - с первым фотоприемником, и сумматор фотоэлектрических сигналов на два входа и один выход, выход которого подключен ко второму входу блока обработки фотоэлектрических сигналов, а первый и второй входы - к выходам первого и второго фотоприемников соответственно. Технический результат - компенсация уменьшения эхо-сигнала в ближней зоне и расширение диапазона измерения в сторону низких значений высоты нижней границы облаков. 1 ил.
Изобретение относится к технике измерения оптических характеристик атмосферы. Одновременно с первым зондирующим импульсом производят включение фотоприемника излучения первым стробом-импульсом питания. Принимают эхо-сигнал и передают значение времени задержки между зондирующим импульсом и регистрацией эхо-сигнала в многоканальный сумматор и далее в блок управления и обработки сигналов. Каждый последующий строб-импульс питания фотоприемника смещают на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания. При завершении измерений осуществляют формирование в ячейках памяти гистограммы распределения числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства. В течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов. Технический результат - повышение эффективности использования энергии зондирующего импульса при увеличении вероятности приема эхо-сигнала.

Предложен способ определения атмосферного потенциала обледенения. Способ содержит испускание (304) допплеровским гетеродинным лидаром (прибором светового обнаружения и определения дальности) (108а, 108b) электромагнитного излучения в атмосферу и прием излучения, обратнорассеянного от аэрозоля, в частности, от облака. Определяют (306) указание интенсивности сигнала, в частности ОСШ-отношения (отношение сигнал-шум на несущей частоте), на основе принятого обратнорассеянного сигнала для одного или более расстояний, в частности высот над заданным базовым уровнем, в частности над местоположением лидара. Сравнивают (308) указания интенсивности сигнала с по меньшей мере одним заданным базовым значением для того, чтобы получить величину вероятности присутствия облака (110) на указанном одном или более расстояниях. Определяют (310) величину потенциала обледенения на указанных нескольких расстояниях на основе указанного сравнения и величины температуры на указанном одном или более расстояниях. Представлена также система для выполнения указанного способа. Технический результат - повышение точности определения условий атмосферного обледенения. 5 н. и 10 з.п. ф-лы, 4 ил.
Изобретение относится к метеорологии, а именно к способам обнаружения штормовой погоды в океане. Согласно способу обнаружения шторма в океане со спутника облучают поверхность океана оптическим излучением и принимают отраженный сигнал. При этом площадь наличия шторма определяют по соотношению мощности всего отраженного спектра «белого» излучения и узкополосных участков ближней инфракрасной области с длиной волны 0,72; 0,82; 0,93; 1,13 микрометров. Технический результат - упрощение определения штормовых зон в океане.

Способ дистанционного оптического зондирования неоднородной атмосферы содержит этап посылки в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении. На основании сигналов определяют характеристики неоднородной атмосферы по их мощностям. Также уменьшают область зондирования путем осуществления посылки световых импульсов по дополнительным трассам, поочередно, под углами наклона, меньшими и большими угла наклона на заданную точку. Также осуществляют посылку световых импульсов по дополнительным третьим трассам, проходящим через точки пересечения трасс, в которых определяют характеристики атмосферы. Технический результат заключается в повышении точности определений за счет корректного установления связи коэффициента обратного рассеяния и коэффициента ослабления. 1 ил.

Предложен способ определения скорости ветра над водной поверхностью, в котором получают более двух пространственно-временных изображений водной поверхности из оптических изображений, полученных с помощью более чем двух оптических систем на основе линеек ПЗС-фотодиодов, синхронизированных между собой единым задающим генератором и установленных с разными направлениями визирования в заданном угловом секторе, определяемом азимутальным углом между крайними линейками ПЗС-фотодиодов, причем каждая линейка ПЗС-фотодиодов регистрирует одномерные оптические изображения с захватом линии горизонта и части неба под малыми углами наблюдения, стыкуют по дальности два полученных с соседних линеек ПЗС-фотодиодов изображения по дальности, определяют направления распространения ветровых порывов (определяют углы между направлениями визирования соседних линеек ПЗС-фотодиодов и направлением движения полос ветровых порывов между соседними линейками ПЗС-фотодиодов) и скорость ветровых порывов для соседних линеек ПЗС-фотодиодов по углам наклона полос ветровых порывов на пространственно-временных изображениях, полученных соседними линейками ПЗС-фотодиодов, и известному углу между направлениями визирования соседних линеек ПЗС-фотодиодов, скорость ветра определяют над каждой точкой водной поверхности в направлении визирования каждой линейки ПЗС-фотодиодов из известной модельной зависимости дисперсии уклонов волн от скорости ветра с учетом направления ветровых порывов, а значение дисперсии уклонов волн в направлении визирования в каждой точке водной поверхности получают решая задачу «обращения» зависимости яркости водной поверхности от дисперсии уклонов волн с учетом углового распределения яркости неба, причем для решения задачи «обращения» используют в каждой точке водной поверхности в направлении визирования каждой линейки ПЗС-фотодиодов сравнение измеренной яркости водной поверхности, нормированной на яркость неба у горизонта, зарегистрированной в оптическом изображении водной поверхности, и модельной (расчетной) нормированной яркости водной поверхности, при этом в формуле для яркости водной поверхности используют либо аналитическое выражение для углового распределения яркости неба в зависимости от условий освещения, либо используют угловое распределение яркости неба и окологоризонтного участка водной поверхности, зарегистрированное в цифровом виде в случае необходимости достижения высокого пространственного разрешения на водной поверхности в направлении визирования линеек ПЗС-фотодиодов либо с помощью двух взаимно откалиброванных видеокамер, на объективы которых установлены поляроиды с вертикально и горизонтально расположенными осями пропускания, либо с помощью одной видеокамеры, на объектив которой, как и на объективы линеек ПЗС-фотодиодов, установлены поляроиды или с вертикально, или с горизонтально расположенной осью пропускания, при этом в линейках ПЗС-фотодиодов используют длиннофокусные узкоугольные объективы, а в случае необходимости достижения широкой полосы обзора - с помощью самих линеек ПЗС-фотодиодов с установленными на них широкоугольными объективами и установленными на объективах поляроидами с вертикально или горизонтально расположенной осью пропускания. 4 ил.

Изобретение относится к метеорологии и может быть использовано в системах мониторинга опасных явлений погоды, а также в исследованиях электрических процессов в атмосфере и геофизических исследованиях. Достигаемый технический результат – упрощение определения объемной плотности грозоопасного заряда на основе использования сетевых геомагнитных, метеорологических и спутниковых данных, а также расширение возможностей его определения в случае движущихся облаков по их собственному магнитному полю, что в свою очередь открывает возможность получения прогностических оценок развития грозы. Указанный результат достигается за счет того, что: величину объемной плотности движущегося на определенной высоте заряда облака определяют по величине скорости движения V, индукции его собственного магнитного поля ΔВ и по геометрическим параметрам расположения центральной части объемного заряда относительно точки регистрации магнитной индукции в соответствии с формулой: ,где ρ - объемная плотность заряда облака (Кл/м3);ΔВ - магнитная индукция движущегося объемного заряда облака (Тл);V - скорость движения объемного заряда (м/с);Hh и - высоты верхней и нижней границ облаков, соответственно (м);L - ширина массива движущихся облаков по линии, перпендикулярной вектору скорости (м);α - угол между вертикалью и направлением на центр объемного заряда от точки регистрации магнитной индукции (рад);μ0 - магнитная постоянная, равная 4π×10-7 (Гн/м).Среднюю скорость и направление движения облаков V в районе наблюдения определяют по результатам измерения вертикального профиля скорости ветра на сетевых аэрологических станциях с помощью радиозондов, а также по спутниковым наблюдениям. Величину индукции ΔВ движущегося объемного заряда облаков определяют по разности индукций геомагнитного поля, регистрируемых на ближайшей сетевой геомагнитной обсерватории, где по спутниковым снимкам не наблюдается облаков, и на аналогичной геомагнитной обсерватории, где наблюдается прохождение потенциально опасной облачности. Ширину облачного массива L по линии, перпендикулярной вектору скорости движения, и высоту верхней границы облаков Hh определяют по данным спутниковых наблюдений. Высоту нижней границы облаков определяют по данным измерителя нижней границы облачности на ближайшей метеостанции, входящей в состав гидрометеорологической сети.
Наверх