Способ светолокационного измерения высоты облачных слоев

Изобретение относится к технике измерения оптических характеристик атмосферы. Одновременно с первым зондирующим импульсом производят включение фотоприемника излучения первым стробом-импульсом питания. Принимают эхо-сигнал и передают значение времени задержки между зондирующим импульсом и регистрацией эхо-сигнала в многоканальный сумматор и далее в блок управления и обработки сигналов. Каждый последующий строб-импульс питания фотоприемника смещают на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания. При завершении измерений осуществляют формирование в ячейках памяти гистограммы распределения числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства. В течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов. Технический результат - повышение эффективности использования энергии зондирующего импульса при увеличении вероятности приема эхо-сигнала.

 

Изобретение относится к технике измерения оптических характеристик атмосферы с целью определения высоты обнаружения взлетно-посадочной полосы и мониторинга аэрозольного следа, образованного продуктами сгорания топлива летательных аппаратов, в интересах обеспечения безопасности полетов авиации.

Известен способ светолокационного измерения высоты облачных слоев (Бухарин А.В., Першин С.М. «Теоретическое рассмотрение лидара обратного рассеяния с безопасным для глаз уровнем излучения» // Оптика атмосферы и океана, т. 7, 1994 г., с. 521-537), заключающийся в направлении зондирующих импульсов света к облачным слоям и включении фотоприемника излучения строб-импульсом питания, в течение которого может произойти только одно срабатывание фотоприемника, приеме эхо-сигнала, срабатывании фотоприемника, передаче значения задержки времени между зондирующим импульсом и срабатыванием фотоприемника в блок управления и обработки сигналов, где находятся ячейки памяти, причем строб разделяется на целое число равных по величине временных интервалов и каждому временному интервалу соответствует своя ячейка памяти. При приеме эхо-сигналов в ячейку памяти, соответствующую временному интервалу строба, в который произошло это событие, поступает единичный импульс, то есть содержимое этой ячейки памяти увеличивается на единицу. Прием эхо-сигнала с другой временной задержкой будет увеличивать на единицу содержимое другой, соответствующей этой временной задержке, ячейки памяти. Причем в случае слабых фоновых потоков и эхо-сигнала фотоприемник может не регистрировать эти сигналы. В этом случае содержимое ячеек памяти остается без изменения. После чего содержимое ячеек памяти считывается и передается в компьютер, который формирует гистограмму распределения числа приема эхо-сигналов фотоприемником по номерам ячеек памяти и, следовательно, по дальности расположения облачных слоев-источников эхо-сигналов в данном стробе. Затем строб перемещается на фиксированную задержку, равную или меньшую длительности строба, относительно первого светового импульса зондирования, и цикл измерения повторяется. Число смещений строба определяется дальностью зондирования. Причем уровень фонового потока (шума) измеряется отдельно, для чего импульс строба подается на приемник также в середине интервала между световыми импульсами. Таким образом, компьютер формирует две гистограммы распределения числа приема эхо-сигналов фотоприемником по номерам ячеек, одна из которых отражает распределение «сигнал + шум», а другая - только «шум». Полная гистограмма по всей трассе зондирования составляется как последовательность отдельных гистограмм, измеренных в каждом положении строба при его «сшивке» на границе совмещения. Гистограмма распределения эхо-сигнала получается вычитанием гистограмм «сигнал + шум» - «шум».

Недостаток: низкая эффективность использования энергии излученного импульса из-за отсутствия компенсации фонового излучения от первого слоя облачности.

Известен принятый за прототип способ светолокационного измерения высоты облачных слоев (Патент РФ №2361237, МПК G01S 17/10, опубликован 10.07.2009, Бюл. №19), заключающийся в направлении зондирующих импульсов света к облачным слоям, включении фотоприемника излучения первым стробом-импульсом питания одновременно с первым зондирующим импульсом, причем фотоприемник во время строба периодически включается и выключается, при этом время выключения равно или больше времени восстановления фотоприемника, приеме эхо-сигнала, определении времени задержки между зондирующим импульсом и срабатыванием фотоприемника, направлении в момент срабатывания фотоприемника единичного импульса в ячейку памяти, соответствующую времени срабатывания фотоприемника, смещении каждого последующего строба-импульса питания фотоприемника на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания, повторении измерений, суммировании единичных импульсов в соответствующих ячейках памяти и передаче данных на компьютер для построения гистограммы, а число смещений равно отношению длительности выключения фотоприемника в стробе к длительности строба включения фотоприемника, и после завершения измерений - формирование в ячейках памяти гистограммы - распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства.

Недостаток способа: низкая эффективность использования энергии излученного импульса из-за отсутствия компенсации фонового излучения от первого слоя облачности.

Техническим результатом заявляемого способа является увеличение эффективности использования энергии зондирующего импульса при увеличении вероятности приема эхо-сигнала.

Технический результат достигается тем, что в способе светолокационного измерения высоты облачных слоев, заключающемся в направлении зондирующих импульсов света к облачным слоям, включении фотоприемника излучения первым стробом-импульсом питания одновременно с первым зондирующим импульсом, причем фотоприемник во время строба периодически включается и выключается, причем время выключения равно или больше времени восстановления фотоприемника, приеме эхо-сигнала, определении времени задержки между зондирующим импульсом и срабатыванием фотоприемника, направлении в момент срабатывания фотоприемника единичного импульса в ячейку памяти, соответствующую времени срабатывания фотоприемника, смещении каждого последующего строба-импульса питания фотоприемника на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания, повторении измерений, суммировании единичных импульсов в соответствующих ячейках памяти и передаче данных на компьютер для построения гистограммы, а число смещений равно отношению длительности выключения фотоприемника в стробе к длительности строба включения фотоприемника, и при завершении измерений - формирование в ячейках памяти гистограммы - распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства, дополнительно в течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ формируемой последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов.

Техническая сущность предлагаемого изобретения заключается в фиксировании фонового сигнала от первого слоя облачности для компенсации при последующих включениях фотоприемника.

Способ осуществляется следующим образом.

Зондирующие импульсы света направляются к облачным слоям, одновременно с первым зондирующим импульсом производится включение фотоприемника первым стробом-импульсом питания, причем в стробе происходит последовательное включение и выключение фотоприемника излучения, прием эхо-сигнала, срабатывание фотоприемника, передача значения задержки времени между зондирующим импульсом и регистрацией эхо-сигнала в многоканальный сумматор и далее в блок управления и обработки сигналов, где находятся ячейки памяти, причем интервал между включением и выключением фотоприемника выбирается равным или большим времени восстановления фотоприемника после регистрации эхо-сигнала, а число включений определяется дальностью зондирования, и каждому включению соответствует своя ячейка памяти. При срабатывании фотоприемника в ячейку памяти, номер которой соответствует номеру включения фотоприемника в стробе, при котором произошло это событие, поступает единичный импульс, то есть содержимое этой ячейки памяти увеличивается на единицу. Регистрация эхо-сигнала в другой временной интервал будет увеличивать на единицу содержимое другой соответствующей этой временной задержке ячейки памяти. Одновременно в течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ формируемой последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов. Далее происходит смещение второго строба-импульса питания на величину, равную времени между началом первого зондирующего импульса и окончанием включения фотоприемника первым импульсом в первом стробе-импульсе питания. Повторение измерений, заполнение соответствующих ячеек памяти, вновь смещение строб-импульса питания на величину, равную времени между началом первого зондирующего импульса и окончанием включения фотоприемника вторым импульсом питания. Число смещений периодической последовательности импульсов в стробе питания фотоприемника определяется отношением длительности интервала между импульсами в стробе к длительности строба включения фотоприемника.

После завершения последнего цикла измерения в ячейках памяти формируется распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса. Это распределение передается для отображения и хранения.

Эффективность предложенного способа определяется тем, что сигнал от второго слоя облачности принимается вместе с фоновым солнечным сигналом от первого слоя облачности. Компенсация фонового сигнала позволит повысить отношение сигнал/фон при приеме сигнала от второго слоя облачности и, как следствие, - увеличить вероятность приема эхо-сигнала при меньшей мощности зондирующего светового импульса.

Способ светолокационного измерения высоты облачных слоев, заключающийся в направлении зондирующих импульсов света к облачным слоям, включении фотоприемника излучения первым стробом-импульсом питания одновременно с первым зондирующим импульсом, причем фотоприемник во время строба периодически включается и выключается, причем время выключения равно или больше времени восстановления фотоприемника, приеме эхо-сигнала, определении времени задержки между зондирующим импульсом и срабатыванием фотоприемника, направлении в момент срабатывания фотоприемника единичного импульса в ячейку памяти, соответствующую времени срабатывания фотоприемника, смещении каждого последующего строба-импульса питания фотоприемника на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания, повторении измерений, суммировании единичных импульсов в соответствующих ячейках памяти и передаче данных на компьютер для построения гистограммы, а число смещений равно отношению длительности выключения фотоприемника в стробе к длительности строба включения фотоприемника, и при завершении измерений - формирование в ячейках памяти гистограммы - распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства, отличающийся тем, что в течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ формируемой последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов.



 

Похожие патенты:

Оптический блок может быть использован для измерения характеристик облачности, преимущественно, на аэродроме с целью метеообеспечения взлета/посадки информацией о высоте нижней границы облаков.

Изобретение относится к области метеорологии, а более конкретно к способам определения характеристик загрязнения атмосферы, и может быть использовано для измерения прозрачности неоднородной атмосферы лидарными системами при определении аэрозольного загрязнения воздуха.
В наблюдаемое облако с установленного на поверхности Земли или вблизи этой поверхности лазерного излучателя в тело облака посылают импульсное лазерное излучение с длительностью импульсов излучения 10-20 нс и с промежутком времени между импульсами не более 2 с.

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик слабо рассеивающей атмосферы. Согласно способу осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по неколлинеарным направлениям.

Изобретение относится к метеорологии, к способам для определения физических параметров атмосферы, и позволяет определять направление и скорость движения нижней границы облачности (НГО).

Изобретение относится к измерениям турбулентностей атмосферы с помощью лидарной системы, в частности на борту летательных аппаратов. .

Изобретение относится к измерительной технике и может быть использовано, в частности, в прикладной метеорологии для оперативного дистанционного определения скорости и направления ветра.

Изобретение относится к области систем оптической локации для метеорологических целей и может быть использовано для бесконтактного измерения профилей температуры пограничного слоя атмосферы.

Предложен способ определения атмосферного потенциала обледенения. Способ содержит испускание (304) допплеровским гетеродинным лидаром (прибором светового обнаружения и определения дальности) (108а, 108b) электромагнитного излучения в атмосферу и прием излучения, обратнорассеянного от аэрозоля, в частности, от облака. Определяют (306) указание интенсивности сигнала, в частности ОСШ-отношения (отношение сигнал-шум на несущей частоте), на основе принятого обратнорассеянного сигнала для одного или более расстояний, в частности высот над заданным базовым уровнем, в частности над местоположением лидара. Сравнивают (308) указания интенсивности сигнала с по меньшей мере одним заданным базовым значением для того, чтобы получить величину вероятности присутствия облака (110) на указанном одном или более расстояниях. Определяют (310) величину потенциала обледенения на указанных нескольких расстояниях на основе указанного сравнения и величины температуры на указанном одном или более расстояниях. Представлена также система для выполнения указанного способа. Технический результат - повышение точности определения условий атмосферного обледенения. 5 н. и 10 з.п. ф-лы, 4 ил.
Изобретение относится к метеорологии, а именно к способам обнаружения штормовой погоды в океане. Согласно способу обнаружения шторма в океане со спутника облучают поверхность океана оптическим излучением и принимают отраженный сигнал. При этом площадь наличия шторма определяют по соотношению мощности всего отраженного спектра «белого» излучения и узкополосных участков ближней инфракрасной области с длиной волны 0,72; 0,82; 0,93; 1,13 микрометров. Технический результат - упрощение определения штормовых зон в океане.
Наверх