Когерентно-импульсный радиолокатор



Когерентно-импульсный радиолокатор
Когерентно-импульсный радиолокатор
Когерентно-импульсный радиолокатор

 


Владельцы патента RU 2503972:

Закрытое акционерное общество "Комплексный технический сервис" (RU)

Предлагаемое устройство относится к области радиолокации, в частности к системам, предназначенным для распознавания различия между неподвижными и подвижными объектами, а также для определения величины и знака доплеровской частоты. Достигаемый технический результат - повышение чувствительности и точности обнаружения движущейся цели путем определения величины и знака доплеровской частоты при ее малых значениях. Когерентно-импульсный радиолокатор содержит определенным образом соединенные между собой: модулятор, усилитель мощности, переключатель прием-передача, четыре смесителя, два усилителя промежуточной частоты, четыре полосовых фильтра, два детектора, два накопителя, задающий генератор, генератор промежуточной частоты, приемопередающую антенну, пороговое устройство, блок удвоения промежуточной частоты, блок вычитания, фильтр разностной частоты, фильтр суммарной частоты, фазовращатель на 90°, два перемножителя, ключ, фазовый детектор и блок регистрации. 3 ил.

 

Предлагаемое устройство относится к области радиолокации, в частности к системам, предназначенным для распознавания различия между неподвижными и подвижными объектами, а также для определения величины и знака доплеровской частоты подвижных объектов.

Известны когерентно-импульсные радиолокаторы (АС СССР №1.259.823; патенты РФ №№2.003.133, 2.035.052, 2.045.128, 2.054.693, 2.058.565, 2.071,081, 2.073.883, 2.082.987, 2.151.407, 2.251.122, 2.252.430, 2.332.681, 2.366.970, 2.405.169; патенты США №№3.680.098, 4.043.373, 4.377.811, 4.456.911, 4.829.306, 5.500.649, 6.081.226, 7.362.261; патенты Великобритании №№1.514.158, 1.273.138, 2.148.649; патенты Франции №2.635.195; патенты ЕР №№0.490.578, 1.041.398, 1.608.999; Бакулев П.А. Радиолокация движущихся целей. М. Сов. Радио, 1964, с.157 и другие).

Из известных устройств наиболее близким к предлагаемому является «Когерентно-импульсный радиолокатор» (патент РФ №2.252.430, G01S 13/50, 2004), который и выбран в качестве прототипа.

Известный радиолокатор обеспечивает повышение точности обнаружения движущейся цели за счет снижения влияния пассивной помехи. Он состоит из модулятора 1, усилителя 2 мощности, переключателя 3 прием-передача, смесителей 4, 10 и 15, усилителя 5 промежуточной частоты, полосовых фильтров 6 и 16, детекторов 7 и 17, накопителей 8 и 18, задающего генератора 9, генератора 11 промежуточной частоты, приемопередающей антенны 12, порогового устройства 13, блока 14 удвоения промежуточной частоты, вычитателя 19, соединенных соответствующими связями.

Однако известный радиолокатор обеспечивает только обнаружение движущейся цели, но не позволяет определять величину и знак ее доплеровской частоты.

Технической задачей изобретения является повышение чувствительности и точности обнаружения движущейся цели путем определения величины и знака доплеровской частоты при ее малых значениях.

Поставленная задача решается тем, что когерентно-импульсный радиолокатор, содержащий, в соответствии с ближайшим аналогом, последовательно включенные модулятор, усилитель мощности, второй вход которого соединен с выходом задающего генератора, переключатель прием-передача, вход-выход которого связан с приемопередающей антенной, первый смеситель, первый усилитель промежуточной частоты, первый полосовой фильтр, первый детектор, первый накопитель, блок вычитания и пороговое устройство, последовательно включенные задающий генератор и второй смеситель, второй вход которого соединен с выходом генератора промежуточной частоты, последовательно подключенные к выходу генератора промежуточной частоты блок удвоения промежуточной частоты, третий смеситель, второй вход которого соединен с выходом первого усилителя промежуточной частоты, второй полосовой фильтр, второй детектор и второй накопитель, выход которого соединен с вторым входом блока вычитания, отличается от ближайшего аналога тем, что он снабжен фильтром разностной частоты, фильтром суммарной частоты, четвертым смесителем, вторым усилителем промежуточной частоты, фазовращателем на 90°, двумя перемножителями, третьим и четвертым полосовыми фильтрами, ключом, фазовым детектором и блоком регистрации, причем второй вход первого смесителя через фильтр разностной частоты соединен с выходом второго смесителя, к выходу второго смесителя последовательно подключены фильтр суммарной частоты, четвертый смеситель, второй вход которого соединен с выходом переключателя прием-передача, второй усилитель промежуточной частоты, первый перемножитель, второй вход которого соединен с выходом первого усилителя промежуточной частоты, третий полосовой фильтр, ключ, второй вход которого соединен с выходом порогового устройства, фазовый детектор и блок регистрации, второй вход которого соединен с выходом порогового устройства, к выходу первого усилителя промежуточной частоты последовательно подключены фазовращатель на 90°, второй перемножитель, второй вход которого соединен с выходом второго усилителя промежуточной частоты, и четвертый полосовой фильтр, выход которого соединен с вторым входом фазового детектора.

Структурная схема когерентно-импульсного радиолокатора представлена на фиг.1. Частотная диаграмма, поясняющая преобразование сигналов, показана на фиг.2. Спектры сигналов и амплитудно-частотные характеристики блоков, поясняющие работу предлагаемого когерентно-импульсного радиолокатора для случая приближения цели к радиолокатору, изображены на фиг.3, где

A) спектр сигналов на выходе УПЧ 5 при движении цели на радиолокатор;

Б) спектр сигнала на выходе генератора 11 промежуточной частоты;

B) спектр сигнала на выходе блока 14 удвоения промежуточной частоты;

Г) спектр сигналов на выходе третьего смесителя 15;

Д) амплитудно-частотные характеристики первого 6 W6(ω) и второго 16 W16(ω) полосовых фильтров;

Е) спектр сигналов на выходе первого полосового фильтра 6;

Ж) спектр сигналов на выходе второго полосового фильтра 16.

Когерентно-импульсный радиолокатор, содержащий последовательно включенные модулятор 1, усилитель 2 мощности, второй вход которого соединен с выходом задающего генератора 9, переключатель 3 прием-передача, вход-выход которого связан с приемопередающей антенной 12, первый смеситель 4, первый усилитель 5 промежуточной частоты, первый полосовой фильтр 6, первый детектор 7, первый накопитель 8, блок 19 вычитания, пороговое устройство 13, ключ 29, фазовый детектор 30 и блок 31 регистрации, второй вход которого соединен с выходом порогового устройства 13, последовательно включенные задающий генератор 9, второй смеситель 10, второй вход которого соединен с выходом генератора 11 промежуточной частоты, и фильтр 20 разностной частоты, выход которого соединен с вторым входом первого смесителя 4, последовательно включенные генератор 11 промежуточной частоты, блок 14 удвоения промежуточной частоты, третий смеситель 15, второй вход которого соединен с выходом первого усилителя 5 промежуточной частоты, второй полосовой фильтр 16, второй детектор 17 и второй накопитель 18, выход которого соединен с вторым выходом блока 19 вычитания. К выходу второго смесителя 10 последовательно подключены фильтр 21 суммарной частоты, четвертый смеситель 22, второй вход которого соединен с выходом переключателя 3 прием-передача, второй усилитель 23 промежуточной частоты, первый перемножитель 25, второй вход которого соединен с выходом первого усилителя 5 промежуточной частоты, и третий полосовой фильтр 27, выход которого соединен с вторым входом ключа 29. К выходу первого усилителя 5 промежуточной частоты последовательно подключены фазовращатель 24 на 90°, второй перемножитель 26, второй вход которого соединен с выходом второго усилителя 23 промежуточной частоты, и четвертый полосовой фильтр 28, выход которого соединен с вторым входом фазового детектора 30.

Когерентно-импульсный радиолокатор работает следующим образом.

Приемопередающая антенна 12 излучает зондирующие импульсы, поступающие через переключатель 3 прием-передача от передатчика, построенного по многокаскадному принципу, в котором колебания задающего генератора 9 усиливаются в усилителе 2 мощности, в котором одновременно происходит импульсная модуляция сигнала с частотой повторения, задаваемой модулятором 1.

Отраженные сигналы принимаются приемопередающей антенной 12 и через переключатель 3 прием-передача поступают на первые входы смесителей 4 и 22. Колебания задающего генератора 9 на частоте ωс одновременно поступают на первый вход второго смесителя 10, на второй вход которого подаются колебания на частоте ωпр с выхода генератора 11 промежуточной частоты. На выходе второго смесителя 10 образуются напряжения комбинационных частот. Фильтрами 20 и 21 выделяются напряжения разностной и суммарной частот соответственно:

ωспрг1,

ωспрг2,

которые используются в качестве напряжений первого и второго гетеродинов с частотами ωг1 и ωг2 соответственно (фиг.2). При наличии эффекта Доплера частоты отраженных сигналов будет равна

ωс±ωg,

где ωg - частота, обусловленная эффектом Доплера, возникающим при перемещении наблюдаемой цели.

Для конкретности далее рассмотрим процессы, когда цель движется на радиолокатор и доплеровская составляющая увеличивает частоту спектральных составляющих сигналов движущейся цели, как показано на фиг.3.

Тогда в процессе преобразования на выходе первого смесителя 4 будем иметь напряжение с частотой

сg)-ωг1cг1gпрg.

Аналогично на выходе четвертого смесителя 22 будем иметь напряжение с частотой

ωг2-(ωcg)=ωг2cgпрg.

На выходах смесителей 4 и 22 образуются комбинационные составляющие, но в данном случае интерес представляют только указанные составляющие. Напряжения с частотами ωпрg и ωпрg выделяются усилителями 5 и 23 промежуточной частоты соответственно.

Усиленный в усилителе 5 промежуточной частоты сигнал (фиг.3, а) поступает на вход первого полосового фильтра 6, полоса пропускания которого в пределах одной парциальной области спектра на промежуточной частоте W6(ω) (фиг.3, д) перекрывает диапазон ожидаемых доплеровских частот сигнала движущейся цели. Сигнал с выхода первого полосового фильтра 6 детектируется в первом детекторе 7 (фиг.3, е) и накапливается в первом накопителе 8. В результате формируется сигнал, величина которого пропорциональна мощности сигнала в пределах полосы пропускания первого полосового фильтра 6.

Одновременно на выходе блока 14 удвоения промежуточной частоты формируется сигнал, частота которого равна удвоенной промежуточной частоте 2ωпр (фиг.3, в) и который подается на первый (опорный) вход третьего смесителя 15, на второй (сигнальный) вход которого поступает сигнал с выхода первого усилителя 5 промежуточной частоты (фиг.3, а). В результате гетеродинирования разностная частотная составляющая выходного сигнала третьего смесителя 15 имеет спектр сигнала, что и на выходе первого усилителя 5 промежуточной частоты, но симметрично повернутый относительно промежуточной частоты (фиг.3, г).

Сигнал с выхода второго полосового фильтра 16 детектируется во втором детекторе 17 (фиг.3, ж) и накапливается во втором накопителе 18. В результате формируется сигнал, величина которого пропорциональна мощности сигнала в пределах полосы пропускания второго полосового фильтра 16.

Постоянная составляющая сигналов с выходов первого 8 и второго 18 накопителей поступает на входы блока 19 вычитания, выходной сигнал которого поступает на вход порогового устройства 13, в котором он сравнивается с порогом обнаружения, и формируется сигнал об обнаружении движущейся цели, если произошло превышение порога. Указанный сигнал поступает на управляющий вход ключа 29, открывая его, и на первый вход блока 31 регистрации, фиксируя обнаружение движущейся цели. Ключ 29 в исходном состоянии всегда закрыт.

В полосе прозрачности первого полосового фильтра 6 будут находиться спектральные составляющие сигнала движущейся цели и часть спектральных составляющих сигналов пассивных помех (фиг.3, е). В полосе прозрачности второго полосового фильтра 16, имеющего точно такую же амплитудно-частотную характеристику, как и первый полосовой фильтр 6, будут находиться только спектральные составляющие сигнала пассивной помехи (фиг.3, ж). При этом мощности остатков сигнала пассивной помехи на выходе первого 6 и второго 16 полосовых фильтров, при условии идентичности амплитудно-частотных характеристик каналов и симметрии (наиболее часто встречающейся на практике) спектра пассивной помехи, будут равны друг другу.

Видно, что продетектировав на первом детекторе 7 и накопив в первом накопителе 8 сигнал движущейся цели и остаток пассивной помехи, и продетектировав на втором детекторе 17 и накопив во втором накопителе 18 только остаток пассивной помехи, можно получить на выходе блока 19 вычитания, производящем вычитание постоянных составляющих выходных сигналов первого8 и второго 18 накопителей, подавление сигнала пассивной помехи на входе порогового устройства 13, причем степень подавления будет зависеть от степени симметричности центральной парциальной составляющей спектра сигнала пассивной помехи. При идеально симметричном спектре сигнала пассивной помехи, что обычно существует на практике, произойдет полное подавление сигнала пассивной помехи на выходе блока 19 вычитания. С выхода блока 19 вычитания сигнал поступает на вход порогового устройства 13 и при наличии сигнала цели на входе радиолокатора происходит обнаружение цели с малой вероятностью ложных тревог, так как сигнал пассивной помехи на входе порогового устройства 13 скомпенсирован и отсутствует.

При движении цели от радиолокатора результат работы когерентно-импульсного радиолокатора будет аналогичен рассмотренному выше (при движении цели на радиолокатор) с уменьшенным влиянием пассивной помехи.

Напряжения с частотами ωпрg и ωпрg выходов усилителей 5 и 23 промежуточной частоты поступают на два входа перемножителей 25 и 26 непосредственно и через фазовращатель 24 на 90° соответственно. На выходах перемножителей 25 и 26 образуются напряжения с удвоенной доплеровской частотой

прg)-(ωпрg)=2ωg,

которые выделяются полосовыми фильтрами 27 и 28. причем на выходах указанных полосовых фильтров 27 и 28 формируются напряжения одинаковой частоты, но сдвинутые друг относительно друга на 90°.

Но так как в процессе преобразования в перемножителях 25 и 26 появляется всегда разностная частота двух промежуточных частот, но кроме абсолютной величины этой разностной частоты необходимо знать еще и знак этой разности.

Для определения этого знака напряжения с выходов полосовых 27 и 28 подаются на два входа фазового детектора 30 непосредственно и через открытый ключ 29. На выходе фазового детектора 30 формируется постоянное напряжение того или иного знака. Напряжение с выхода фазового детектора 30 со знаком плюс или минус поступает на второй вход блока 31 регистрации, где и фиксируется. Причем амплитуда и полярность этого напряжения характеризуют величину и знак доплеровской частоты, т.е. перемещение движущейся цели.

Таким образом, предлагаемый когерентно-импульсный радиолокатор по сравнению с прототипом обеспечивает не только обнаружение движущейся цели, но и определение величины и знака доплеровской скорости при ее малых значениях. При этом повышение чувствительности при измерении малых значений доплеровской частоты достигается за счет ее увеличения в 2 раза.

Когерентно-импульсный радиолокатор, содержащий последовательно включенные модулятор, усилитель мощности, второй вход которого соединен с выходом задающего генератора, переключатель прием-передача, вход-выход которого связан с приемопередающей антенной, первый смеситель, первый усилитель промежуточной частоты, первый полосовой фильтр, первый детектор, первый накопитель, блок вычитания и пороговое устройство, последовательно включенные задающий генератор и второй смеситель, второй вход которого соединен с выходом генератора промежуточной частоты, последовательно подключенные к выходу генератора промежуточной частоты блок удвоения промежуточной частоты, третий смеситель, второй вход которого соединен с выходом первого усилителя промежуточной частоты, второй полосовой фильтр, второй детектор и второй накопитель, выход которого соединен с вторым входом блока вычитания, отличающийся тем, что он снабжен фильтром разностной частоты, фильтром суммарной частоты, четвертым смесителем, вторым усилителем промежуточной частоты, фазовращателем на 90°, двумя перемножителями, третьим и четвертым полосовыми фильтрами, ключом, фазовым детектором и блоком регистрации, причем второй вход первого смесителя через фильтр разностной частоты соединен с выходом второго смесителя, к выходу второго смесителя последовательно подключены фильтр суммарной частоты, четвертый смеситель, второй вход которого соединен с выходом переключателя прием-передача, второй усилитель промежуточной частоты, первый перемножитель, второй вход которого соединен с выходом первого усилителя промежуточной частоты, третий полосовой фильтр, ключ, второй вход которого соединен с выходом порогового устройства, фазовый детектор и блок регистрации, второй вход которого соединен с выходом порогового устройства, к выходу первого усилителя промежуточной частоты последовательно подключены фазовращатель на 90°, второй перемножитель, второй вход которого соединен с выходом второго усилителя промежуточной частоты, и четвертый полосовой фильтр, выход которого соединен с вторым входом фазового детектора.



 

Похожие патенты:

Изобретение относится к области наблюдения движущихся судов радиолокационными станциями и предназначено для сопровождения траектории судна путем оценки его координат и вектора скорости движения.

Изобретение относится к системам для обнаружения объектов путем отражения от его поверхности радиоволн и может быть использовано в радиолокации для распознавания класса цели.

Изобретение относится к радиотехнике и может быть использовано в радиолокации. .

Изобретение относится к системам и способам для ослабления влияния ветровых турбин на расположенную вблизи радарную систему. .

Изобретение относится к системам распознавания протяженных целей и может быть использовано для определения класса цели. .

Изобретение относится к системам для обнаружения объекта путем отражения от его поверхности радиоволн. .

Изобретение относится к системам для обнаружения объекта путем отражения от его поверхности радиоволн и может быть использовано в радиолокации для распознавания протяженной по дальности цели.

Изобретение относится к радиолокации и может быть использовано для радиолокационного сопровождения воздушных и наземных целей. .

Изобретение относится к области радиолокации. .
Заявляемые технические решения относятся к области радиолокации. Достигаемый технический результат в первом варианте - исключение перегрузки устройств при распознавании трасс целей и ложных трасс. Указанный результат в первом варианте решается тем, что в способе распознавания трассы цели и ложной трассы, формируемой синхронной ответной помехой в пространстве между ее постановщиком и радиолокационной станцией (РЛС), основанном на вобуляции периода повторения зондирующих сигналов, при вобуляции выставляют два строба: один для сигналов предполагаемой ложной трассы и другой для сигналов предполагаемой трассы цели, принимают решение по проверяемой трассе в зависимости от того, в каком стробе принят сигнал, а если сигнал принят в обоих стробах, то принимают решение о том, что это трасса цели, прикрываемая ложной трассой. Достигаемый технический результат во втором варианте - распознавание ложной трассы и трассы цели при эпизодическом применении изменения параметров сигнала РЛС. Указанный результат достигается тем, что в способе распознавания трассы цели и ложной трассы, формируемой синхронной ответной помехой в пространстве между ее постановщиком и РЛС, основанном на изменении параметров зондирующих сигналов в соседних периодах зондирования, сохраняют возможность приема сигналов предшествующего периода зондирования, принимают решение по проверяемой трассе: ложная трасса, если принят сигнал с параметрами предшествующего периода зондирования, трасса цели, если принят сигнал с параметрами текущего периода зондирования, трасса цели, прикрываемая ложной трассой, если приняты сигналы с параметрами предшествующего и текущего периода зондирования. 2 н.п. ф-лы.

Изобретение относится к области радиоэлектроники и может быть использовано при создании средств комплексной разведки объектов. Достигаемый технический результат - повышение достоверности идентификации объектов за счет уточнения экстраполированных оценок координат в обоих каналах и параметра идентификации с использованием дополнительно определяемых вероятностей появления полезных и ложных оценок координат, а также дисперсий отклонения ложных оценок от экстраполированных оценок координат в первом информационном канале. Указанный результат достигается за счет того, что дополнительно определяют вероятности появления полезных и ложных оценок координат, а также дисперсии отклонения ложных оценок от экстраполированных оценок координат в первом канале, которые используют для уточнения экстраполированных оценок координат в обоих каналах и параметра идентификации. Уточнение экстраполированных оценок координат и параметра идентификации достигается в результате весового объединения экстраполированных оценок, рассчитанных при гипотезе о появлении полезных оценок координат, с аналогичными оценками, рассчитанными при гипотезе о появлении ложных оценок координат с известными статистическими характеристиками. 2 ил.
Наверх