Времяпролетный масс-спектрометр с нелинейным отражателем

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований. Технический результат - повышение разрешения и чувствительности при анализе ионного нейтрального газа. Времяпролетный масс-спектрометр с нелинейным отражателем содержит трубку дрейфа, источник ионов, ускоряющую сетку, источник тока и напряжения, источник изменяемого во времени импульсного напряжения, сетку, ограничивающую нелинейный отражатель, нелинейный отражатель и приемник ионов в виде микроканальной пластины. Нелинейный отражатель выполнен в виде набора колец различного диаметра, источник тока и напряжения подключен к кольцам, источник изменяемого во времени импульсного напряжения подключен к ускоряющей сетке, трубка дрейфа и сетка, ограничивающая нелинейный отражатель, заземлены. 2 ил.

 

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований.

Известен времяпролетный масс-спектрометр, содержащий мишень, ускоряющие сетки выталкивающего промежутка, электростатический линейный отражатель, приемник ионов (статья: Мамырин Б.А., Шмикк Д.В. Линейный массрефлектрон - ЖЭТФ, 1979, т.76, в.5, с.1500-1505). За счет использования линейно изменяющегося электрического поля в массрефлектроне достигается более высокое значение разрешающей способности по сравнению с классической схемой масс-спектрометра при тех же габаритах и потенциале ускоряющего промежутка.

Недостатками прибора являются низкая разрешающая способность и малый диапазон измеряемых масс.

Более совершенным является масс спектрометр с нелинейным по продольной оси электрическим полем (патент №1651327 H01J 49/40 опубл. БИ №19, 23.05.91 г.). Времяпролетный масс-спектрометр, у которого сеточная сборка источника ионов с целью повышения чувствительности выполнена в виде кольца, внутренний диаметр которого больше или равен диаметру детектора, а в трубке установлена коаксиальная цилиндрическая система, внутренний и внешний диаметр которой соответственно равен внутреннему и внешнему диаметру сеточной сборки источника ионов. Недостатком данной конструкции является сложность точного формирования напряжений на элементах коаксиальной цилиндрической системы, которые авторы предлагают подбирать экспериментально.

Наиболее близким по технической сущности к заявляемому масс-спектрометру является времяпролетный масс-спектрометр (патент: №2239910, 7 H01J 49/40 опубл. Бюл. №31, 10.11, 2004 г.), содержащий источник ионов, приемник ионов, трубку дрейфа, отражатель ионов, который выполнен в виде сплошной резистивной пленки.

Недостатком прототипа являются: невозможность перестройки нелинейности поля в нелинейном отражателе за счет использования непрерывного принципа образования поля и вследствие этого недостаточно высокая разрешающая способность прибора в области тяжелых масс при жестких массогабаритных ограничениях, сложность изготовления ионного отражателя.

В основу изобретения поставлена задача создания устройства для анализа нейтрального газа ионов с более высоким разрешением, высокой чувствительностью при минимизации массогабаритных характеристик.

Поставленная задача достигается тем, что времяпролетный масс-спектрометр с нелинейным отражателем, содержащий трубку дрейфа, источник ионов, ускоряющую сетку, источник тока и напряжения, источник изменяемого во времени импульсного напряжения, сетку, ограничивающую нелинейный отражатель, нелинейный отражатель и приемник ионов в виде микроканальной пластины, согласно изобретению, нелинейный отражатель выполнен в виде набора колец, различного диаметра, источник тока и напряжения подключен к кольцам, источник изменяемого во времени импульсного напряжения подключен к ускоряющей сетке, трубка дрейфа и сетка, ограничивающая нелинейный отражатель заземлены.

Сущность устройства поясняется чертежами, где:

на Фиг.1 изображена схема времяпролетного масс-спектрометра с нелинейным отражателем,

на Фиг.2 - зависимость электростатического поля от продольной координаты в отражателе.

Времяпролетный масс-спектрометр с нелинейным отражателем содержит трубку дрейфа 1, источник ионов 2, ускоряющую сетку 3, источник тока и напряжения 4, источник изменяемого во времени импульсного напряжения 5, сетку 6, ограничивающую нелинейный отражатель 7, приемник ионов в виде микроканальной пластины 8 и кольца 9.

Источник тока и напряжения 4 подключен к кольцам 9, источник изменяемого во времени импульсного напряжения 5 подключен к ускоряющей сетке 3, трубка дрейфа 1 и сетка 6 заземлены.

Особенностью устройства является то, что при линейном распределении потенциала на кольцах 9, электростатическое поле нелинейного отражателя 7 будет нелинейным. Это достигается за счет особенностей формирования электростатического поля кольцевым электродом. Поле от такого электрода может быть описано уравнением:

Где Q - заряд, распределенный по кольцу, R - радиус кольца, z - расстояние от плоскости кольца до точки, в которой рассчитывается электростатическое поле на оси симметрии кольца.

Как видно из (1) максимум Ez будет в точке:

Тогда для достижения максимального значения поля в нелинейном отражателе примем, что радиус кольца зеркала вычисляется из условия (3) по формуле:

где ai - расстояние от кольца до точки максимального поля зеркала.

Тогда электростатическое поле всей сборки колец (фиг.2) будет определяться из выражения:

При этом максимальное поле будет наблюдаться внутри первого кольца, а потенциал на нем будет равен нолю.

Расстояние между кольцами может быть выбрано постоянным, для простоты изготовления. Потенциал на кольцах растет линейно и для отражения ионов должен в 2 раза превышать потенциал на ускоряющей сетке. Таким образом, при линейном потенциале реализуется нелинейность поля отражателя, а так как линейный делитель потенциала намного проще в изготовлении и обладает высокой точностью, то достигается непрерывность и высокая точность реализации функции изменения электростатического поля внутри нелинейного отражателя 7. Изменяя потенциал на кольцах 9, можно перестраивать нелинейный отражатель 7 на различные диапазоны масс ионов. Таким образом, достигается увеличение диапазона исследуемых масс.

Времяпролетный масс-спектрометр, содержащий трубку дрейфа, источник ионов, ускоряющую сетку, источник тока и напряжения, источник изменяемого во времени импульсного напряжения, сетку, ограничивающую нелинейный отражатель, нелинейный отражатель и приемник ионов в виде микроканальной пластины, отличающийся тем, что нелинейный отражатель выполнен в виде набора колец, диаметр которых увеличивается по мере отдаления от источника ионов, источник тока и напряжения подключен к кольцам, источник изменяемого во времени импульсного напряжения подключен к ускоряющей сетке, трубка дрейфа и сетка, ограничивающая нелинейный отражатель, заземлены.



 

Похожие патенты:

Изобретение относится к области газового анализа и предназначено для обнаружения микропримесей веществ в газовых средах, в частности атмосфере воздуха, имеет применение в газовой хроматографии в качестве чувствительного детектора.

Изобретение относится к аналитическому приборостроению и может быть использовано в конструкторских разработках и в производстве приборов для быстрого масс-спектрометрического анализа твердотельных проб и сухих остатков растворов.

Изобретение относится к области масс-спектрометрии, в частности времяпролетной масс-спектрометрии. .

Изобретение относится к области газового анализа и может использоваться для определения микропримесей различных веществ в газах. .
Изобретение относится к области аналитического приборостроения для исследования и анализа веществ и преимущественно может быть использовано в целях испытаний, например, при проверке работоспособности приборов спектрометрии подвижности ионов, которые предназначены для обнаружения и идентификации паров следовых количеств органических веществ, прежде всего, наркотических, взрывчатых, психотропных, отравляющих или экологически опасных веществ.

Изобретение относится к устройству транспортировки заряженных частиц. .

Изобретение относится к области газового анализа и предназначено для обнаружения и идентификации следовых концентраций микропримесей различных веществ в атмосферном воздухе.

Изобретение относится к конструкции спектрометров ионной подвижности, которые находят широкое применение для контроля содержания различных веществ в воздухе и, в частности, для обнаружения малых концентраций взрывчатых и наркотических веществ.

Изобретение относится к способам разделения ионов, а именно к спектрометрам, работающим по принципу измерения времени пролета ионов, в частности к определению состава жидких и газовых проб, и может применяться в медицине, фармацевтике, криминалистике.

(57) Изобретение относится к области спектрометрии заряженных частиц и может быть использовано для измерения зарядового и массового состава ионов плазмы. Времяпролетный спектрометр содержит вакуумную камеру (1), в которой последовательно расположены труба дрейфа (2) и детектор ионов (7), на входном и выходном торцах трубы дрейфа (2) установлены электроды (3, 4), прозрачные для ионов и электрически связанные с ней, перед входным электродом (3) размещен заземленный электрод (5), труба дрейфа (2) электрически соединена с импульсным источником ускоряющего напряжения (8). Между выходным электродом (4) трубы дрейфа (2) и детектором ионов (7) установлен дополнительный электрод (9), прозрачный для ионов, электрически подключенный к отрицательному выходу источника постоянного напряжения (10), второй выход которого подключен к вакуумной камере (1). Технический результат - повышение точности измерения зарядово-массового состава ионов плазмы, создаваемой любым источником плазмы и на любом расстоянии от него. 3 ил.

Изобретение относится к области газового анализа и предназначено для обнаружения малых концентраций целевых веществ в газовых средах со сложным составом примесей, концентрации которых превышают концентрации целевых веществ. Технический результат - снижение порога обнаружения целевого вещества в газовой фазе со сложным составом примесей. Дифференциальный спектрометр ионной подвижности с ионной ловушкой состоит из камеры ионизации, системы электродов, дополнительной камеры для ввода потока ионизируемого газа, источника ионизации, генератора периодического несимметричного по полярности напряжения, генератора компенсирующего напряжения, источника высокочастотного напряжения, генератора выталкивающего напряжения, коллектора ионов, аналитического зазора, ионного регистратора, системы очистки газа. Изобретение применимо для обнаружения в воздухе следов взрывчатых, отравляющих, наркотических веществ, мониторинга промышленных загрязнений в атмосфере, контроля пищевых продуктов по выделяемым испарениям, медицинской диагностики по составу выдыхаемого воздуха. 4 з.п. ф-лы, 9 ил.

Изобретение относится к области обнаружения веществ в образце, в частности к спектрометрам ионной подвижности. Устройство обнаружения, содержащее участок ионизации, ионный затвор, содержащий два электрода, ионный модификатор, содержащий два электрода, дрейфовую камеру и коллектор. Ионный затвор и ионный модификатор скомбинированы так, что ионный затвор является одним из электродов ионного модификатора. Технический результат - минимизация времени исследования. 2 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к области масс-спектрометрии и направлено на совершенствование методов и устройств масс-разделения по времени пролета в линейных высокочастотных полях. Технический результат - повышение разрешающей способности и решение проблемы конструктивного совмещения устройств ввода и вывода радиочастотных времяпролетных масс-анализаторов ионов. Для достижения результата предлагается минимизировать начальные координаты ионов по оси X и вводить ионы в анализатор с начальными скоростями по оси Z, обратно пропорциональными массам ионов. Способ реализуется в электродной системе с планарными дискретными электродами и заземленным электродом, в котором вдоль оси Z, симметрично относительно его середины, прорезаны две узкие щели для ввода и вывода ионов. Начальные скорости выбирают так, чтобы за время возвратного дрейфа по оси Y ионы по оси Z проходили расстояние, равное расстоянию между центрами щелей. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области газового анализа и может быть использовано для обнаружения микропримесей веществ в газовых средах, в частности атмосфере воздуха. Устройство включает цилиндрический корпус, внешний и внутренний цилиндрические электроды, расположенные концентрически относительно цилиндрического корпуса и образующие аналитический канал спектрометра, диэлектрический цилиндр, изолирующий внешний цилиндрический электрод от корпуса, источник ионизации, расположенный на входе в аналитический канал, входную камеру, штуцера для ввода пробы исследуемой газовой фазы, штуцеры для ввода чистого газа носителя, обтекатель, установленный на входе в аналитический канал и изолированный от внутреннего цилиндрического электрода диэлектрической вставкой; выходной штуцер, апертурную сетку, электрод электрометра, кольцевой блокирующий электрод, фокусирующие электроды. Технический результат - снижение порога обнаружения целевого вещества. 6 з.п. ф-лы, 5 ил.

Изобретение относится к области газового анализа и может быть использовано для бесконтактного дистанционного отбора проб воздуха с твердых поверхностей и подачи их в аналитический тракт приборов газового анализа для обнаружения следов взрывчатых веществ. Устройство дистанционного отбора воздушной пробы включает корпус воздухозаборника, насадку для формирования воздушных потоков, на внутренней поверхности которой расположены сопла, внутреннюю кольцевую полость между корпусом и насадкой для накачки газа, трубку, расположенную внутри корпуса и насадки, обеспечивающую ввод в аналитическую камеру прибора, аналитическую камеру прибора, насос, обеспечивающий всасывание воздуха, содержащего целевое вещество, и одновременно нагнетание воздуха во внутреннюю кольцевую полость, нагреватель (опционально) для предварительного нагревания газа, нагнетаемого насосом в полость для накачки газа, трубопроводы, соединяющие устройство для отбора воздушной пробы с насосом. Изобретение применимо для обнаружения следовых количеств взрывчатых, отравляющих, наркотических веществ, мониторинга промышленных загрязнений в атмосфере, контроля пищевых продуктов по выделяемым испарениям, медицинской диагностики по составу выдыхаемого воздуха. Технический результат - повышение эффективности отбора пробы, упрощение конструкции и снижение энергопотребления. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области спектрометрии. Модификатор ионов может применяться для модификации части ионов, которые входят в дрейфовую камеру через затвор, управляющий входом ионов в дрейфовую камеру. Контроллер, который связан с модификатором ионов, конфигурирован для управления модификатором ионов для выбора части ионов, которые будут модифицированы, и выбирает эту часть ионов на основе предшествующей реакции на другие ионы, полученные от того же образца. Упомянутые другие ионы соответствуют, например, ионам, которые связаны с пиком, имевшим место при предшествующем измерении с помощью спектрометра. Технический результат - упрощение идентификации молекул образца. 4 н. и 18 з.п. ф-лы, 4 ил.

Изобретение относится к спектрометрам ионной подвижности, которые находят широкое применение для контроля содержания различных веществ в воздухе и, в частности, для обнаружения малых концентраций взрывчатых, наркотических, опасных и токсичных веществ, проведения медицинской диагностики, контроля качества пищевой продукции и промышленных материалов. Один из вариантов реализации устройства формирования напряжения на защитной сетке коллектора ионного тока заключается в использовании повторителя напряжения, который может быть реализован на операционном усилителе с обратной связью, на эмиттерном или истоковом повторителе, при этом для стабилизации уровня напряжения и исключения пульсаций на защитной сетке на выходе повторителя напряжения устанавливается по крайней мере один конденсатор и один резистор. Другой вариант реализации устройства формирования напряжения на защитной сетке коллектора ионного тока заключается в использовании управляемого двухполярного источника напряжения с быстрым переключением полярности выходного напряжения, например реализованного на основе двух независимых управляемых источников напряжения, один для положительной, а другой для отрицательной полярности, оснащенные каждый по крайней мере одним конденсатором и одним резистором для ограничения пульсаций и дрейфа выходного напряжения и по крайней мере одним ключом для коммутации выходного напряжения на защитную сетку при переключении полярности. Технический результат - возможность регулирования уровня напряжения на защитной сетке независимо для положительной и отрицательной полярностей для гибкой настройки электрического поля в области коллектора и оптимизации сбора ионов разных полярностей, высокая скорость переключения полярности напряжения на защитной сетке, отсутствие дрейфа напряжения на защитной сетке после переключения полярности, снижение требований к частотной компенсации и времени установления потенциалов на делителе высокого напряжения. 2 н. и 3 з.п. ф-лы, 6 ил.

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов. Способ основан на выталкивании ионов из ускоряющего промежутка нелинейным полем и отклонении ионов в бесполевом пространстве двумя парами отклоняющих пластин, формирующих динамическое электрическое поле. Технический результат - повышение разрешающей способности и чувствительности времяпролетных масс-спектрометров, работающих в режиме сепарации массовых линий. 2 ил.

Изобретение относится к области масс-спектрометрии. Двухканальный масс-спектрометр по времени пролета с однонаправленными каналами включает параллельные двухканальные ускорители (1), вакуум-камеру (2), источник (3) ионов в виде лазерной установки ионного распыления, два детектора (4, 5) ионов и ионный коллиматор (6); при этом, когда ионные пучки, создаваемые источником (3) ионов в виде лазерной установки ионного распыления, поступают в двухканальные ускорители (1), части ионных пучков соответственно ускоряются в одном направлении к двум детекторам (4, 5) ионов и регистрируются. Ионные пучки, созданные источником (3) ионов в виде лазерной установки ионного распыления, проходят через ионный коллиматор (6) и разделяются двухканальным масс-спектрометром по времени пролета на верхнюю часть и нижнюю часть, при этом верхняя часть и нижняя часть, соответственно, отклоняются под косым углом и фокусируются на верхний и нижний детекторы (4, 5) ионов, и, таким образом, формируется спектр масс ионов по времени пролета. Если один детектор ионов заменить электронным анализатором энергии, то одновременно с этим можно провести эксперимент с фотоэлектронным энергетическим спектром для отбора определенного иона. Данное изобретение можно сочетать с электронным анализатором энергии для того, чтобы быстро выполнить эксперимент с лазерным облучением на ионах, имеющих множество пиков масс, и электронный спектр обнаруженного иона может строго соответствовать времени пролета для его максимума масс. Технический результат - повышение отношения сигнал-шум и разрешения по энергии. 8 з.п. ф-лы, 5 ил.
Наверх