Способ изготовления чувствительного элемента термолюминесцентного дозиметра


 


Владельцы патента RU 2504802:

Общество с ограниченной ответственностью "ПК СТ" (RU)

Изобретение относится к технологии изготовления термолюминесцентных дозиметров и может быть использовано в исследованиях воздействия радиации на вещества и биологические объекты, а также в аппаратуре дозиметрического контроля. Способ изготовления чувствительного элемента термолюминесцентного дозиметра включает изготовление кристаллического синтетического алмаза при температуре 1480°C и давлении 50 ГПа. Полученный кристаллический синтетический алмаз дополнительно отжигают при температуре 1400-2000°C и давлении 4,5-7,0 ГПа и охлаждают до комнатной температуры. Далее кристаллический синтетический алмаз подвергают термообработке повышением температуры до 470-530°C в течение 1,5-2,5 часов и плавно охлаждают до комнатной температуры. Алмаз содержит примеси бора и азота в концентрации менее 0,1 ppm и не более 1 ppm соответственно. Технический результат - расширение диапазона регистрируемых чувствительным элементом термолюминесцентного детектора доз облучения, особенно в области доз, близких к природным фоновым излучениям, обеспечение простоты, безопасности подготовки детектора к работе и увеличение времени хранения накопленной дозы облучения. 1 табл., 1 пр.

 

Изобретение относится к области измерения ядерных излучений, в частности, к технологии изготовления термолюминесцентных дозиметров и может быть использовано в исследованиях воздействия радиации на вещества и биологические объекты, а также в аппаратуре дозиметрического контроля.

Известен способ изготовления рабочего вещества для термолюминесцентных детекторов, включающий получение синтетического ультрадисперсного алмаза с размерами частиц около 5 нм, изготовление его смеси с двуокисью кремния с использованием в качестве связующего силикатного клея, формовку смеси и ее сушку.

(RU 2408900, G01T 1/11, опубликовано 10.01.2011)

Недостатком этого известного способа является то, что полученный таким образом чувствительный элемент будет иметь значительное поглощение люминесцентного излучения в ультрадисперсном алмазе из-за развитой поверхности.

Известен способ изготовления детектора термолюминесцентного дозиметра нейтронов и электронов, включающий получение синтетического алмаза в ультрадисперсной форме детонационным способом, выделение фракции с размером частиц 40 A, прессование в таблетки и предварительный перед облучением отжиг при температуре до 400°C. Термостимулирование люминесценции детектора после облучения осуществляют при температурах до 350°C.

(RU 2200965, G01T 1/11, опубликовано 20.03.2003)

Недостатком этого известного способа является то, что этот чувствительный элемент также будет иметь значительное поглощение люминесцентного излучения в алмазе из-за развитой поверхности.

К недостаткам данного рабочего вещества также следует отнести чрезвычайно высокое содержание примесей в решетке «детонационных» алмазов по сравнению с природными.

Известен способ изготовления детектора термолюминесцентного дозиметра химическим осаждения паров с образованием на подложке (металл или керамика) слоя алмаза с примесями бора-10 менее 1000 ppm, которые вводятся из паровой фазы с осаждением или ионной имплантацией.

(US5216249, G01T 3/08, опубликовано 01.06.1993)

Недостатком известного способа является то, что при больших концентрациях примеси бора время хранения информации о накопленной дозе ограничено из-за слабой p-типа проводимости материала.

Наиболее близким по технической сущности и достигаемому техническому результату является способ изготовления детектора термолюминесцентного дозиметра нейтронов и электронов, а также обнаружения радиоактивного излучения, включающий получение на подложке слоя кристаллического синтетического алмаза, содержащего примеси бора 0,1-10 ppm и азота менее 150 ppm, и предварительное облучение синтетического алмаза высокими дозами нейтронов или электронов. Последующее термостимулирование люминесценции детектора после облучения осуществляют при температурах до 200-500°С. Вследствие предварительного облучения синтетического алмаза высокими дозами нейтронов или электронов увеличивается концентрация центров люминесценции;

(US 5012108, G01T 1/11, опубликовано 30.04.1991)

Однако измеряемый диапазон доз по данному способу находится в пределах от 1 до 10 Гр. При этом примесь бора в составе синтетического алмаза используется для расширения диапазона линейной дозовой зависимости. Но время хранения в кристаллической структуре алмаза информации о накопленной дозе облучения невысока, а предварительная обработка алмаза высокими дозами нейтронов или электронов значительно усложняет способ, так как этот процесс достаточно сложен, небезопасен и трудно прогнозируем.

Задачей и техническим результатом изобретения является расширение диапазона регистрируемых чувствительным элементом термолюминесцентного детектора доз облучения, особенно в области доз, близких к природным фоновым излучениям, обеспечение простоты и безопасности подготовки детектора к работе - исключение предварительного облучения детектора, увеличение чувствительности и времени хранения кристаллической структурой алмаза информации о накопленной дозе облучения. Высокая чувствительность и увеличение времени хранения накопленной дозы облучения термолюминесцентного элемента дозиметра обеспечивается малой плотностью основных примесей алмаза - азота - не более 1 ppm, бора - менее 0,1 ppm.

Основными центрами люминесценции, используемым для термолюминесцентного детектора, являются собственные дефекты кристалла (напряжения, дислокации) присутствующие в синтетическом алмазном материале с плотность порядка 1010 см-2.

Технический результат достигается тем, что способ изготовления чувствительного элемента термолюминесцентного дозиметра включает изготовление кристаллического синтетического алмаза при высоких температурах и давлении, при этом полученный кристаллический синтетический алмаз дополнительно отжигают при температуре 1400-2000°C, давлении 4,5-7,0 ГПа и охлаждают до комнатной температуры, причем алмаз содержит примеси бора и азота в концентрации менее 0,1 ppm и не более 1 ppm соответственно.

Технический результат достигается также тем, что после дополнительного отжига синтетический алмаз подвергают термообработке повышением температуры до 470-530°C в течение 1,5-2,5 часов и плавно охлаждают до комнатной температуры.

Изобретение может быть проиллюстрировано следующим примером.

Кристаллический синтетический алмаз с концентрациями примесей бора менее 0,1 ppm (концентрация бора в процессе образования кристаллов мала) и азота не более 1 ppm (малая концентрация азота в процессе получения кристаллов обеспечивается добавлением геттеров азота, таких как нитриды Алюминия или Титана), получали известным способом при высоком давлении 50 ГПа и высокой температуре 1480°C в присутствии железа. После охлаждения полученный кристаллический синтетический алмаз дополнительно подвергали отжигу: выдерживали при температуре 1900°C и давлении 5,6 ГПа в течение нескольких десятков минут (10-30 мин), чтобы обеспечить повышенное число центров люминесценции (НЗ центров), и охлаждали до комнатной температуры. Затем этот алмаз подвергали термообработке повышением температуры до 500°C в течение 2 часов и плавно охлаждали до комнатной температуры. При термообработке происходит дополнительное высвобождение электронов и/или дырок, запасенных на ловушках в структуре синтетического алмаза. Низкие концентрации бора и азота обеспечивают увеличение времени хранения информации о накопленной дозе облучения в кристаллической структуре алмаза.

После этого снимали кривую термостимулированной люминесценции дозиметра, где в качестве чувствительного элемента детектора был использован кристаллический синтетический алмаз, полученный при указанных ранее высоких давлениях и температурах. Нагрев проводили до температуры 350°С. Для сравнения были использованы чувствительные элементы на основе кристаллических синтетических алмазов с повышенным содержанием бора и азота согласно известному техническому решению.

В таблице 1 приведена интенсивность люминесценции в относительных единицах в зависимости от дозы облучения образцов, изготовленных известным и предложенным способами.

Из представленных данных следует, что способ по изобретению обеспечивает расширение диапазона регистрируемых детектором доз облучения, особенно в области доз, близких к природным фоновым излучениям. У дозиметра с чувствительным элементом, полученным предложенным способом, не было обнаружено ослабление термолюминесцентного сигнала в течение 30 дней, что превосходит соответствующий показатель чувствительных элементов детектора, полученных известным способом.

Таблица 1
Доза, Гр Интенсивность люминесценции, отн. ед.
Синтетический кристаллический алмаз
Известный способ Способ по изобретению
0.001 0.005 1
0.01 0.1 10
0.1 1 100
1 10 800
5 40 4000

Способ изготовления чувствительного элемента термолюминесцентного дозиметра, включающий изготовление кристаллического синтетического алмаза при высокой температуре 1480°C и давлении 50 ГПа, отличающийся тем, что полученный кристаллический синтетический алмаз дополнительно отжигают при температуре 1400-2000°C и давлении 4,5-7,0 ГПа и охлаждают до комнатной температуры, после этого кристаллический синтетический алмаз подвергают термообработке повышением температуры до 470-530°C в течение 1,5-2,5 ч и плавно охлаждают до комнатной температуры, при этом алмаз содержит примеси бора и азота в концентрации менее 0,1 млн-1 и не более 1 млн-1 соответственно.



 

Похожие патенты:

Изобретение может быть использовано в дозиметрии слабого ионизирующего излучения, для контроля работы атомных энергетических установок, ускорителей заряженных частиц, рентгеновской аппаратуры.

Изобретение относится к области измерения ионизирующих излучений при текущем и аварийном индивидуальном дозиметрическом контроле. .

Изобретение относится к радиационной физике, является устройством для определения поглощенной дозы ионизирующего -излучения в термолюминесцентном детекторе и может быть использовано при персональной дозиметрии, при мониторинге радиационной обстановки в различных условиях.

Изобретение относится к радиационной физике, является способом оценки накопленной дозы ионизирующего -излучения с использованием твердотельных термолюминесцентных детекторов и может быть использовано при персональной дозиметрии при мониторинге радиационной обстановки в различных условиях.

Изобретение относится к медицине, стоматологии, онкологии и радиологии, и может быть использовано для улучшения качества стоматологической помощи пациентам со злокачественными новообразованиями области головы и шеи после проведения лучевой терапии.

Изобретение относится к получению рабочего вещества, которое может быть использовано для изготовления термолюминесцентного детектора ионизирующего излучения, использующегося в индивидуальной дозиметрии для определения поглощенных доз персонала; для определения поглощенных доз пациентов при проведении рентгеновской диагностики и терапии; при определении поглощенных доз в поле облучения высокодозовых технологических установок.

Изобретение относится к способам измерения дозы, накопленной в твердотельных термолюминесцентных детекторах ионизирующих излучений на основе кристаллов и нанокерамики оксида алюминия, и может быть использовано для повышения надежности, точности и достоверности метода, проводимых с его помощью измерений.

Изобретение относится к радиационной физике, а именно к устройствам для оценки накопленной дозы ионизирующего -излучения с использованием твердотельных термолюминесцентных детекторов, и может быть применено в индивидуальной и клинической дозиметрии, при мониторинге радиационной обстановки на ядерных реакторах, ускорителях, в лабораториях и на производствах с источниками заряженных частиц, при археологическом и геологическом датировании, в аварийной и ретроспективной дозиметрии.

Изобретение относится к радиационной физике, а именно к способам оценки накопленной дозы ионизирующего -излучения с использованием твердотельных термолюминесцентных детекторов, и может быть использовано в индивидуальной и клинической дозиметрии, при мониторинге радиационной обстановки на ядерных реакторах, ускорителях, в лабораториях и на производствах с источниками заряженных частиц, при археологическом и геологическом датировании, в аварийной и ретроспективной дозиметрии.

Изобретение относится к неразрушающим методам определения физико-технических характеристик материалов, подвергающихся в процессе работы воздействию ультразвуковых вибраций, сильных электрических полей, облучению различными видами электромагнитных излучений.

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия, содержащем мелкие и глубокие ловушки носителей заряда, включает подготовку детектора к измерению путем нагревания его до определенной температуры, облучение детектора измеряемым излучением и измерение дозиметрического термолюминесцентного сигнала в полосе свечения 240-280 нм при нагреве детектора до требуемой температуры, при этом подготовку детектора к измерению проводят после его облучения измеряемым излучением, а нагрев детектора для измерения дозиметрического термолюминесцентного сигнала осуществляют до температуры, находящейся в диапазоне 910-930 К. Технический результат - расширение диапазона регистрируемых доз. 2 н.п. ф-лы, 4 ил.

Изобретение относится к химической промышленности и дозиметрии излучений. Для получения прозрачного тканеэквивалентного детектора излучений на основе Li2B4O7 осуществляют следующие этапы: a) смешивают компоненты исходного реагента детектора, включающие деионизированную воду, борную кислоту H3BO3, примесь Mn и связующий материал двуокись кремния SiO2; b) повышают температуру смеси до 75-85°C, добавляют карбонат лития Li2CO3 и побочную примесь Be2+, которая не уменьшает прозрачность детектора в диапазоне длин волн 320-750 нм; c) осуществляют старение, сушку и предварительный обжиг полученного исходного реагента; d) измельчают, шлифуют и просеивают исходный реагент; e) формуют под давлением; f) спекают сформованные корпуса детектора. Полученный детектор имеет подавленный низкотемпературный максимум и прозрачен как для стимулирующего света, так и для выходной люминесценции. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной (более 2 Гр) дозиметрической информации термолюминесцентный детектор подвергают термообработке при температуре 900÷1000°C в течение 1-3 часов. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области дозиметрии ионизирующих излучений, а именно к области оптически стимулированной люминесцентной (ОСЛ) дозиметрии, связанной с разработкой и применением рабочих веществ для ОСЛ-детекторов, пригодных для регистрации рентгеновского, гамма- и электронного излучения, а также для регистрации тепловых нейтронов. Сущность изобретения заключается в том, что рабочее вещество ОСЛ-детектора для дозконтроля в смешанных полях ионизирующих излучений, включающее фторид натрия, хлорид или фторид меди, дополнительно содержит фторид лития 6LiF при следующем соотношении компонентов (мол.%): NaF 95,9-98,99 CuCl2/CuF2 0,01-0,1 6LiF 1-4 Технический результат - регистрация рентгеновского, гамма- и электронного излучения, а также регистрация тепловых нейтронов. 3 ил., 2 табл.

Изобретение относится к способу обработки рабочих веществ твердотельных детекторов ионизирующих излучений, основанных на явлениях термостимулированной люминесценции (ТЛ) и оптически стимулированной люминесценции (ОСЛ). Способ термолучевой обработки вещества твердотельного детектора ионизирующих излучений на основе оксида алюминия включает этапы, на которых осуществляют нагрев материала и облучение его в нагретом состоянии фотонным излучением мощностью 1-10 мВт в диапазоне длин волн 200-220 нм в течение заданного времени, при этом облучение материала в нагретом состоянии фотонным излучением с указанными параметрами проводят в два этапа, сначала при температуре 550-590°C в течение 1-3 минуты, после чего повторяют ее при температуре 370-400°C в течение 4-6 минут. Технический результат - повышение точности, надежности и достоверности регистрации дозиметрических измерений. 1 табл., 8 ил.
Наверх