Региональная информационная система связи



Региональная информационная система связи
Региональная информационная система связи
Региональная информационная система связи

 


Владельцы патента RU 2504903:

Закрытое акционерное общество "Комплексный технический сервис" (RU)

Изобретение относится к системам дуплексной радиосвязи и может быть использована для передачи сигналов управления и синхронизации с пункта контроля и управления большой группе территориально-распределенных объектов, а также для сбора информации с указанных объектов для централизованного управления технологическими процессами территориально-распределенных объектов (стационарных и подвижных). Техническим результатом является повышение избирательности, помехоустойчивости и надежности дуплексной радиосвязи между пунктом контроля и управления и каждым территориально-распределенным объектом путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Региональная информационная система связи содержит пункт контроля и управления и территориально-распределенные объекты, соединенные между собой дуплексной радиосвязью, в которых определенным образом соотносятся частоты гетеродинов, узкополосных фильтров и селекторов частоты. 1 з.п. ф-лы, 3 ил.

 

Предлагаемая система относится к дуплексной радиосвязи и может быть использована для передачи сигналов управления и сигнализации с пункта контроля и управления большой группе территориально-распределенных объектов, а также для сбора информации с указанных объектов для централизованного управления технологическими процессами территориально-распределенных объектов (стационарных и подвижных).

Известны информационные системы связи (авт. свид. СССР №№830.304, 930.254, 1.075.426, 1.233.105, 1.276.594, 1.522.417, 1.626.439, 1.665.531, 1.780.080; патенты РФ №№2.049.372, 2.094.853, 2.107.991, 2.113.012, 2.115.251, 2.122.239, 2.128.886, 2.172.524, 2.264.034; патент США №5.574.648;

патент Франции №2.438.877; патент ЕР №0.669.740 и другие).

Из известных систем наиболее близким является «Региональная информационная система связи» (патент РФ №2.264.034, Н04 В 7/00, 2004), которая и выбрана в качестве прототипа.

Указанная система обеспечивает дуплексную радиосвязь между пунктом контроля и управления и каждым территориально-распределенным объектом с использованием сложных сигналов с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн) и двух частот ω1 и ω2.

В состав известной системы входят супергетеродинные приемники, в которых одно и то же значение второй промежуточной частоты ωпр2 может быть получено в результате приема сигналов на следующих частотах:

ωпр21г1, ωпр2г22,

ωпр2г1з1, ωпр2з2г2.

Следовательно, если частоты настройки ω1 и ω2 являются основными каналами приема, то наряду с ними существуют и зеркальные каналы приема, частоты ωз1 и ωз2 которых расположены симметрично частот ωг1 и ωг2 гетеродинов (фиг.3). Преобразование по зеркальным каналам приема происходит с тем же коэффициентом преобразования Кпр, что и по основным каналам. Поэтому зеркальные каналы приема наиболее существенно влияют на избирательность и помехоустойчивость супергетеродинных приемников.

Кроме зеркальных, существуют и другие дополнительные (комбинационные и канал прямого прохождения) каналы приема.

В общем виде любой комбинационный канал приема имеет место при выполнении условия:

,

,

где ωki - частота i-го комбинационного канала;

m, n, i - целые положительные числа.

Наиболее вредными комбинационными каналами приема являются каналы, образующиеся при взаимодействии первой гармоники частоты сигнала с гармониками частот гетеродинов малого порядка (второй, третий), так как чувствительность приемников по этим каналам близка к чувствительности основных каналов.

Так четырем комбинационным каналам при m=1 и n=2 соответствуют частоты

ωk1=2ωг1пр2, ωk2=2ωг1пр2,

ωk3=2ωг2пр2, ωk4=2ωг2пр2,

Если частота ωп ложного сигнала (помехи) равна второй промежуточной частоте ωпр2ппр2); то образуется канал прямого прохождения, для которого элементы и блоки приемников являются простыми передаточными звеньями.

Наличие ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам, а также по каналам прямого прохождения, приводит к снижению избирательности, помехоустойчивости и надежности дуплексной радиосвязи между пунктом контроля и управления и каждым территориально-распределенным объектом.

Технической задачей изобретения является повышение избирательности, помехоустойчивости и надежности дуплексной радиосвязи между пунктом контроля и управления и каждым территориально-распределенным объектом путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам.

Поставленная задача решается тем, что региональная информационная система связи, содержащая радиостанции, установленные на пункте контроля и управления и каждом территориально-распределенном объекте, при этом каждая радиостанция выполнена в виде последовательно включенных источника аналоговых сообщений, амплитудного модулятора, второй вход которого соединен с выходом генератора несущей частоты, фазового манипулятора, второй вход которого соединен с выходом источника дискретных сообщений, первого смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, первого усилителя мощности, дуплексера, вход-выход которого связан с приемопередающей антенной, второго усилителя мощности, второго смесителя, второй вход которого соединен с выходом второго гетеродина, и усилителя второй промежуточной частоты, последовательно включенных амплитудного ограничителя, синхронного детектора и блока регистрации и анализа, последовательно подключенных к выходу амплитудного ограничителя перемножителя, второй вход которого соединен с выходом первого гетеродина, полосового фильтра и фазового детектора, второй вход которого соединен с выходом второго гетеродина, а выход подключен ко второму входу блока регистрации и анализа, отличается от ближайшего аналога тем, что каждая радиостанция снабжена двумя узкополосными фильтрами, фазоинвертором, сумматором, селектором частоты, амплитудным детектором, пороговым блоком и ключом, причем к выходу второго усилителя мощности последовательно подключены первый узкополосный фильтр, фазоинвертор, сумматор, второй вход которого соединен с выходом второго усилителя мощности, селектор частоты, второй вход которого соединен с выходом первого гетеродина, второй узкополосный фильтр, амплитудный детектор, пороговый блок и ключ, второй вход которого соединен с выходом усилителя второй промежуточной частоты, а выход подключен к входу амплитудного ограничителя и второму входу синхронного детектора.

Региональная информационная система связи содержит пункт контроля и управления и территориально-распределенные объекты, соединенные между собой дуплексной радиосвязью. Для этого на пункте контроля и управления и территориально-распределенных объектах установлены радиостанции, использующие сложные сигналы с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн) и две частоты ω1 и ω2.

Каждая радиостанция содержит последовательно включенные источник 1.1 (1.2) аналоговых сообщений, амплитудный модулятор 4.1 (4.2), второй вход которого соединен с генератором 3.1 (3.2) несущей частоты, фазовый манипулятор 5.1 (5.2), второй вход которого соединен с выходом источника 6.1 (6.1) дискретных сообщений, первый смеситель 9.1 (9.2), второй вход которого соединен с выходом первого гетеродина 8.1 (8.2), усилитель 10.1 (10.2) первой промежуточной частоты, первый усилитель 11.1 (11.2) мощности, дуплексер 12.1 (12.2), вход-выход которого связан с приемопередающей антенной 13.1 (13.2), второй усилитель 15.1 (15.2) мощности, второй смеситель 17.1 (17.2), второй вход которого соединен с выходом второго гетеродина 16.1 (16.2), и усилитель 18.1 (18.2) второй промежуточной частоты. К выходу второго усилителя 15.1 (15.2) мощности последовательно подключены первый узкополосный фильтр 25.1 (25.2), фазоинвертор 26.1 (26.2), сумматор 27.1 (27.2), второй вход которого соединен с выходом второго усилителя 15.1 (15.2) мощности, селектор 28.1 (28.2) частоты, второй вход которого соединен с выходом первого гетеродина 8.1 (8.2), второй узкополосный фильтр 29.1 (29.2), амплитудный детектор 30.1 (30.2), пороговый блок 31.1 (31.2), ключ 32.1 (32.2), второй вход которого соединен с выходом первого гетеродина 8.1 (8.2), амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), второй вход которого соединен с выходом ключа 32.1 (32.2), и блок 24.1 (24.2) регистрации и анализа. К выходу амплитудного ограничителя 19.1 (19.2) последовательно подключены перемножитель 21.1 (21.2), второй вход которого соединен с выходом первого гетеродина 8.1 (8.2), полосовой фильтр 22.1 (22.2) и фазовый детектор 23.1 (23.2), второй вход которого соединен с выходом второго гетеродина 16.1 (16.2), а выход подключен к второму выходу блока 24.1 (24.2) регистрации и анализа.

Генератор 3.1 (3.2) несущей частоты амплитудной модулятор 4.1 (4.2) и фазовый манипулятор 5.1 (5.2) образуют модулятор 2.1 (2.2) с двойным видом модуляции.

Первый гетеродин 8.1 (8.2), первый смеситель 9.1 (9.2), усилитель 10.1 (10.2) первой промежуточной частоты и первый усилитель 11.1 (11.2) мощности образуют передатчик 7.1 (7.2). Второй усилитель 15.1 (15.2), второй гетеродин 16.1 (16.2), второй смеситель 17.1 (17.2), усилитель 18.1 (18.2) второй промежуточной частоты, амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), перемножитель 21.1 (21.2), полосовой фильтр 22.1 (22.2), фазовый детектор 23.1 (23.2), первый узкополосный фильтр 25.1 (25.2), фазоинвертор 26.1 (26.2), сумматор 27.1 (27.2), селектор 28.1 (28.2) частоты, второй узкополосный фильтр 29.1 (29.2), амплитудный детектор 30.1 (30.2), пороговый блок 31.1 (31.2) и ключ 32.1 (32.2) образуют приемник 14.1 (14.2).

Частота настройки ωн3 первого узкополосного фильтра 25.1 (25.2) выбрана равной второй промежуточной частоте ωн3пр2.

Частота настройки ωн1 селектора 28.1 частоты и второго узкополосного фильтра 29.1 радиостанции, установленной на пункте контроля и управления, выбрана равной частоте ωг1 первого гетеродина 8.1 и частоте ω2 принимаемого сигнала ωн1г12, что соответствует явлению резонанса.

Частота настройки ωн2 селектора 28.2 частоты и второго узкополосного фильтра 29.2 радиостанции, установленной на каждом территориально-распределенном объекте, выбраны равной частоте ωг2 первого гетеродина и частоте ω1 принимаемого сигнала ωн2г21, что соответствует явлению резонанса.

Между пунктом контроля и управления и каждым территориально-распределенным объектом устанавливается дуплексная радиосвязь с использованием сложных сигналов с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн) на одной несущей частоте.

При этом на пункте контроля и управления эти сигналы излучаются на частоте

ω1пр1г2.

где ωпр1 - первая промежуточная частота;

ωг2 - частота гетеродина 16.1 (8.2),

а принимается на частоте

ω2пр3г1,

где ωпр1 - третья промежуточная частота;

ωг2 - частота гетеродина 8.1 (16.2).

На территориально-распределенном объекте, наоборот, сложные АМ-ФМн сигналы излучаются на частоте ω2, а принимаются на частоте ω1.

Частоты ωг1 и ωг2 гетеродинов 8.1 (16.2) и 16.1 (8.2) разнесены на значение второй промежуточной частоты (фиг.3)

ωг2г1=2ωпр2

Региональная информационная система связи работает следующим образом.

При передачи сообщений и команд с пункта контроля и управления включается генератор 3.1 несущей частоты, который формирует высокочастотное колебание

uc1(t)=υc1·cos(ωct+φc1), 0≤t≤Tc1

где υc1, ωс, φc1, Tc1 - амплитуда, несущая частота, начальная фаза и длительность высокочастотного колебания,

которое поступает на первый вход амплитудного модулятора 4.1, на второй вход которого с выхода источника 1.1 аналоговых сообщений подается модулирующая функция m1(t), содержащая аналоговую информацию. На выходе амплитудного модулятора 4.1 образуется амплитудно-модулированный (AM) сигнал

u1(t)=υc1[1+m1(t)]·cos(ωct+φc1), 0≤t≤Tc1,

который поступает на первый вход фазового манипулятора 5.1, на второй вход которого подается модулирующий код M1(t) с выхода источника 6.1 дискретных сообщений. На выходе фазового манипулятора 5.1 формируется сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн)

u2(t)=υc1[1+m1(t)]·cos(ωct+φk1(t)+φc1), 0≤t≤Tc1,

где φk1(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M1(t), причем φk1(t)=const при kτэ<t<(k+1)τэ и может измеряться скачком при, т.е на границах между элементарными посылками (k=0, 1, 2, …, N1-1);

τэ, N1 - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Tc1 (Tc1=N1·τэ),

который поступает на первый вход первого смесителя 9.1, на второй которого подается напряжение первого гетеродина 8.1.

uг1(t)=υг1·cos(ωг1t+φг1),

На выходе смесителя 9.1 образуются напряжения комбинационных частот. Усилителем 10.1 выделяется напряжение первой промежуточной (суммарной) частоты

uпр1(t)=υпр1[1+m1(t)]·cos[(ωпр1t+φk1(t)+φпр1] 0≤t≤Tc1

При υпр1=1/2υс1·υг1;

ωпр1сг11 - первая промежуточная (суммарная) частота;

φпр1c1г1.

Это напряжение после усиления в усилителе 11.1 мощности через дуплексер 12.1 поступает в приемопередающую антенну 13.1, излучается ею в эфир на частоте ω1 улавливается приемопередающей антенной 13.2 территориально-распределенного объекта, и через дуплексер 12.2 и усилитель 15.2 мощности подается на первый вход смесителя 17.2, на второй вход которого подается напряжение uг1(t) гетеродина 16.2. На выходе смесителя 17.2 образуются напряжения комбинационных частот. Усилителем 18.2 выделяется напряжение второй промежуточной (разностной) частоты

uпр2(t)=υпр2[1+m1(t)]·cos[ωпр2t+φk1(t)+φпр2], 0≤t≤Tc1

при υпр2=1/2υпр1·υг1;

ωпp2пр1г1 - вторая промежуточная (разностная) частота;

φпp2пр1г1.

Одновременно напряжение uпр1(t) с выхода усилителя 15.2 мощности через сумматор 27.2, у которого работает только одно плечо, поступает на первый вход селектора 28.2 частоты, на второй вход которого подается напряжение гетеродина 8.2.

uг2(t)=υг2·cos(ωг2t+φг2),

В качестве селектора 28.2 частоты может использоваться колебательная система, частота настройки ωн2 которой выбирается равной частоте ωг2 гетеродина 8.2 (ωн2г2). При поступлении на первый вход селектора 28.2 частоты напряжения uпр1(t) в колебательной системе (контуре) возникает явление резонанса.

Выходное напряжение селектора 28.2 частоты выделяется узкополосным фильтром 29.2, детектируется амплитудным детектором 30.2 (υ) и поступает на вход порогового блока 31.2, где сравнивается с пороговым напряжением υпор.

При резонансе выходное напряжение селектора 28.2 частоты достигает максимального значения, напряжение υmax амплитудного детектора 30.2 превышает пороговый уровень υпор в пороговом блоке 31.2 (υmaxпор). И только при превышении порогового уровня υпор в пороговом блоке 31.2 формируется постоянное напряжение, которое поступает на управляющий вход ключа 32.2 и открывает его. В исходном состоянии ключ 32.2 всегда закрыт. При этом напряжение uпр2(t) с выхода усилителя 18.2 второй промежуточной частоты через открытый ключ 32.2 поступает на вход амплитудного ограничителя 19.2 и на первый (информационный) вход синхронного детектора 20.2. На выходе амплитудного ограничителя 19.2 образуется напряжение

u3(t)=υ0·cos[ωпр2t+φk1(t)+φпр2], 0≤t≤Тс1

где υ0 - порог ограничения,

которое используется в качестве опорного напряжения и подается на второй (опорный) вход синхронного детектора 20.2. На выходе последнего образуется низкочастотное напряжение

uн1(t)=υн1[1+m1(t)], 0≤t≤Tc1,

где υн1=1/2υпр2·υ0,

пропорциональное модулирующей функции m1(t).

Это напряжение поступает на первый вход исполнительного блока 24.2. Напряжение u3(t) с выхода амплитудного ограничителя 19.2 одновременно поступает на первый вход перемножителя 21.2, на второй вход которого подается напряжение гетеродина 8.2

uг2(t)=υг2·cos(ωг2t+φг2),

На выходе перемножителя 21.2 образуется напряжение

u4(t)=υ4·cos[ωг1t+φk1(t)+φг1], 0≤t≤Tc1

где υ4=1/2υ0·υг2,

которое представляет собой ФМн-сигнал на частоте ωг2 гетеродина 16.2. Это напряжение выделяется полосовым фильтром 22.2 и поступает на первый (информационный) вход фазового детектора 23.2, на второй (опорный) вход которого подается напряжение uг1(t) гетеродина 16.2. На выходе фазового детектора 23.2 образуется низкочастотное напряжение

uн2(t)=υн2·cosφk1(t), 0≤t≤Tc1,

где uн2=1/2υ4·υг1,

пропорциональное модулирующему коду M1(t). Это напряжение поступает на второй вход исполнительного блока 24.2.

При передачи сообщений с территориально-распределенного объекта с помощью генератора 3.2 несущей частоты формируется высокочастотное колебание

uc2(t)=υc2·cos(ωct+φc2), 0≤t≤Tc2,

которое поступает на первый вход амплитудного модулятора 4.2, на второй вход которого с выхода источника 1.2 аналоговых сообщений подается модулирующая функция m2(t), содержащая аналоговую информацию. На выходе амплитудного модулятора 4.2 образуется сигнал с амплитудной модуляцией (AM)

u5(t)=υc2[1+m2(t)]·cos[ωct+φc2], 0≤t≤Tc2,

который поступает на первый вход фазового манипулятора 5.2, на второй вход которого подается модулирующий код M2(t) с выхода источника 6.2 дискретных сообщений. На выходе фазового манипулятора 5.2 формируется сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн)

u6(t)=υc2[1+m2(t)]·cos[(ωct+φk2(t)+φc2], 0≤t≤Tc2,

который поступает на первый вход смесителя 9.2, на второй вход которого подается напряжение первого гетеродина 8.2

uг2(t)=υг2·cos(ωг2t+φг2),

На выходе смесителя 9.2 образуется напряжение комбинационных частот. Усилителем 10.2 выделяется напряжение третьей промежуточной частоты

u7(t)=υ7[1+m2(t)]·cos[ωпр3t-φk2(t)+φпр3], 0≤t≤Tс2,

где υ7=1/2υс2·υг2;

ωпр3г2c2 - третья промежуточная (разностная) частота;

φпр3г2с2.

Это напряжение после усиления в усилителе 11.2 мощности через дуплексер 12.2 поступает в приемопередающую антенну 13.2, излучается ею в эфир на частоте ω2, улавливается приемопередающей антенной 13.1 пункта контроля и управления и через дуплексер 12.1 и усилитель 15.1 мощности поступает на первый вход смесителя 17.1, на второй вход которого подается напряжение uг2(t) гетеродина 16.1. На выходе смесителя 17.1 образуются напряжения комбинационных частот. Усилителем 18.1 выделяется напряжение второй промежуточной частоты

uпр3(t)=υпр3[1+m2(t)]·cos[ωпр2t-φk2(t)+φпр2], 0≤1≤Тс2,

где υпр3=1/2υ7г2;

ωпр2г22 - вторая промежуточная (разностная) частота;

φпр2г2пр3.

Одновременно напряжение u7(t) с выхода усилителя 15.1 мощности через сумматор 27.1, у которого работает только одно плечо, поступает на первый вход селектора 28.1 частоты, на второй вход которого подается напряжение гетеродина 8.1

uг1(t)=υг2·cos(ωг1t+φг1).

В качестве селектора 28.1 частоты может использоваться колебательная система, частота настройки ωн, которой выбирается равной частоте ωн гетеродина 8.1 (ωнг1). Выходное напряжение селектора 28.1 частоты выделяется узкополосным фильтром 29.1, детектируется амплитудным детектором 30.1 (υ) и поступает на вход порогового блока 31.1, где сравнивается с пороговым напряжением υпор.

При резонансе, который наступает при ω2г1, выходное напряжение селектора 28.1 частоты достигает максимального значения, напряжение амплитудного детектора 30.1 υmax превышает пороговый уровень υпор в пороговом блоке 31.1 (υmaxпор). И только при превышении порогового уровня υпор (это случается только при наступлении явления резонанса) в пороговом блоке 31.1 формируется постоянное напряжение, которое поступает на управляющий вход ключа 32.1 и открывает его. В исходном состоянии ключ 32.1 всегда закрыт. При этом напряжение uпр3(t) с выхода усилителя 18.1 второй промежуточной частоты через открытый ключ 32.1 поступает на вход амплитудного ограничителя 19.1 и на первый (информационный) вход синхронного детектора 20.1. На выходе амплитудного ограничителя 19.1 образуется напряжение

u8(t)=υ0·cos[ωпр2t+φk2(t)+φпр2], 0≤t≤Tc2

которое используется в качестве, опорного напряжения и подается на второй (опорный) вход синхронного детектора 20.1. На выходе синхронного детектора 20.1 образуется низкочастотное напряжение

uн3(t)=υн3·[1+m2(t)], 0≤t≤Tc2,

где υн2=1/2υ4·υг1,

пропорциональное модулирующей функции m1(t). Это напряжение поступает на первый вход блока 24.1 регистрации и анализа.

Напряжение u8(t) с выхода амплитудного ограничителя 19.1 одновременно поступает на первый вход перемножителя 21.1, на второй вход которого подается напряжение Uг1(t) гетеродина 8.1. На выходе перемножителя 21.1 образуется напряжение

u9(t)=υ9·cos[ωг2t+φk2(t)+φг2], 0≤t≤Tc2,

где υ9=1/2υ0·υг1,

которое представляет собой ФМн-сигнал на частоте ωг2 гетеродина 16.1. Это напряжение выделяется полосовым фильтром 22.1 и поступает на первый (информационный) вход фазового детектора 23.1, на второй (опорный) вход которого подается напряжение uг2(t) гетеродина 16.1. На выходе фазового детектора 23.1 образуется низкочастотное напряжение

uнч(t)=υнч·cosφk2(t), 0≤t≤Tc2,

где υнч=1/2υ9·υг2,

пропорциональное модулирующему коду M1(t). Это напряжение поступает на второй вход 24.1 регистрации и анализа.

Описанная выше работа приемников 14.1 (14.2) соответствует случаю приема полезных ФМн-сигналов по основным каналам на частотах ω1 и ω2 (фиг.3).

Если ложный сигнал (помеха) принимается по первому зеркальному каналу на частотах ωз1

uз1(t)=υз1·cos[ωз1t+φз1], 0≤t≤Тз1,

то с выхода усилителя 15.2 мощности через сумматор 27.2, у которого работает только одно плечо, он поступает на первый вход селектора 28.2 частоты, частота настройки ωн2 которого выбирается равной частоте ωг2 гетеродина 8.2 (ωн2г2). Частоты ωг2 и ωз1 разнесены на удвоенное значение второй промежуточной частоты ωг2з1=2ωпр2. Поэтому в селекторе 28.2 частоты явление резонанса не наступает, выходное напряжение d амплитудного детектора 30.2 не превышает порогового уровня в пороговом блоке 31.2 (υ<υпор). Ключ 32.2 не открывается и ложный сигнал (помеха), принимаемый по первому зеркальному каналу на частоте ωз1, подавляется. Для этого используется резонансные свойства селектора 28.2 частоты, выполненного в виде колебательного контура с частотой настройки ωн2г2.

Если ложный сигнал (помеха) принимается по второму зеркальному каналу на частоте ωз2

uз2(t)=υз2·cos[ωз2t+φз2], 0≤t≤Tз1,

то с выхода усилителя 15.1 мощности через сумматор 27.1, у которого работает только одно плечо, он поступает на первый вход селектора 28.1 частоты, частота настройки ωн1 которого выбирается равной частоте ωг1 гетеродина 8.1 (ωн1г1). Частоты ωг1 и ωз2 разнесены на удвоенное значение второй промежуточной частоты ωз2г1=2ωпр2.

Поэтому в селекторе 28.1 частоты явления резонанса не наступает, выходное напряжение υ амплитудного детектора 30.1 не превышает порогового уровня υпор в пороговом блоке 31.1 (υ<υпор). Ключ 32.1 не открывается и ложный сигнал (помеха), принимаемый по второму зеркальному каналу на частоте ωз2, подавляется. Для этого используются резонансные свойства селектора 28.1 частоты, выполненного в виде колебательного контура с частотой настройки ωз1г1.

По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые по другим дополнительным (первому ωк1, второму ωк2, третьему ωк3, четвертому ωк4 комбинационным) каналам.

Если ложный сигнал (помеха) принимается по каналам прямого прохождения на частоте ωппр2

uп(t)=υп·cos[ωпt+φп], 0≤t≤Tп,

то с выхода усилителя 15.1 (15.2) мощности он поступает на первый вход сумматора 27.1 (27.2) и на вход узкополосного фильтра 25.1 (25.2), частота настройки ωн3 которого выбирается равной второй промежуточной частоте (ωн3пр2). Указанный ложный сигнал (помеха) выделяется узкополосным фильтром 25.1 (25.2) и подается на вход фазоинвертора 26.1 (26.2), на выходе которого образуется напряжение

uп1(t)=-υп·cos[ωпt+φп], 0≤t≤Tп.

Это напряжение поступает на второй вход сумматора 27.1 (27.2).

Напряжение uп(t) и uп1(t), поступающие на два входа сумматора 27.1 (27.2), на его выходе компенсируются.

Следовательно, ложный сигнал (помеха) uп(t), принимаемый по каналу прямого прохождения на частоте ωппр2, подавляется с помощью фильтра-пробки, состоящий из узкополосного фильтра 25.1 (25.2), фазоинвертора 26.1 (26.2), сумматора 27.1 (27.2) и реализующим фазокомпенсационный метод.

Таким образом, предлагаемое устройство по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение избирательности, помехоустойчивости и надежности дуплексной радиосвязи между пунктом контроля и управления и каждым территориально-распределенным объектом. Это достигается путем подавления ложных сигналов (помех), принимаемых по первому ωз1 и второму ωз2 зеркальным каналам, по первому ωк1, второму ωк2, третьему ωк3, четвертому ωк4 комбинационным каналам и по каналу прямого прохождения на частоте ωппр2.

Причем для подавления ложных сигналов (помех), принимаемых по зеркальным и комбинированным каналам, используются селекторы частоты, выполненные в виде колебательных контуров и реализующие явление резонанса.

Следует отметить, что явление резонанса является основополагающим принципом работы многих систем и устройств радиоэлектроники.

Для подавления ложных сигналов (помех), принимаемых по каналу прямого прохождения, используется фильтр-пробка, реализующий фазокомпенсационный метод.

1. Региональная информационная система связи, содержащая радиостанции, установленные на пункте контроля и управления и каждом территориально-распределенном объекте, при этом каждая радиостанция выполнена в виде последовательно включенных источника аналоговых сообщений, амплитудного модулятора, второй вход которого соединен с выходом генератора несущей частоты, фазового манипулятора, второй вход которого соединен с выходом источника дискретных сообщений, первого смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, первого усилителя мощности, дуплексера, вход-выход которого связан с приемопередающей антенной, второго усилителя мощности, второго смесителя, второй вход которого соединен с выходом второго гетеродина, и усилителя второй промежуточной частоты, последовательно включенных амплитудного ограничителя, синхронного детектора и блока регистрации и анализа, последовательно подключенных к выходу амплитудного ограничителя перемножителя, второй вход которого соединен с выходом первого гетеродина, полосового фильтра и фазового детектора, второй вход которого соединен с выходом второго гетеродина, а выход подключен ко второму входу блока регистрации и анализа, отличающаяся тем, что каждая радиостанция снабжена двумя узкополосными фильтрами, фазоинвертором, сумматором, селектором частоты, амплитудным детектором, пороговым блоком и ключом, причем к выходу второго усилителя мощности последовательно подключены первый узкополосный фильтр, фазоинвертор, сумматор, второй вход которого соединен с выходом второго усилителя мощности, селектор частоты, второй вход которого соединен с выходом первого гетеродина, второй узкополосный фильтр, амплитудный детектор, пороговый блок и ключ, второй вход которого соединен с выходом усилителя второй промежуточной частоты, а выход подключен к входу амплитудного ограничителя и второму входу синхронного детектора, частота настройки ωн3 первого узкополосного фильтра выбрана равной второй промежуточной частоте ωпр2ωн3пр2, частота настройки ωн1 селектора частоты и второго узкополосного фильтра радиостанции, установленной на пункте контроля и управления, выбрана равной частоте ωг1 первого гетеродина и частоте ω2 принимаемого сигнала ωн1г12, что соответствует явлению резонанса.

2. Региональная информационная система связи по п.1, отличающаяся тем, что частота настройки ωн2 селектора частоты и второго узкополосного фильтра радиостанции, установленной на каждом территориально-распределенном объекте, выбрана равной частоте ωг2 первого гетеродина и частоте ω1 принимаемого сигнала ωн2г21, что соответствует явлению резонанса.



 

Похожие патенты:

Изобретение относится к технике связи и может быть использовано при управлении скоростью передачи по восходящей линии связи в системе мобильной связи. Способ измерения мощности Расширенного выделенного физического канала данных для мобильной станции заключается в том, что на базовой станции радиосвязи измеряют мощность приема выделенного физического канала управления, передаваемого с мобильной станции, выделяют размер передаваемого блока данных для пользовательских данных восходящей линии связи из Расширенного выделенного физического канала управления, передаваемого с мобильной станции, получают, основываясь на информации идентификации, полученной от контроллера радиосети, отношение мощности передачи Расширенного выделенного физического канала данных к Выделенному физическому каналу управления, которое соответствует извлеченному размеру передаваемого блока данных, на основании таблицы соответствия, в которой сопоставлены размер передаваемого блока данных и отношение мощности передачи Расширенного выделенного физического канала данных к выделенному физическому каналу управления, и вычисляют мощность приема Расширенного выделенного физического канала данных на основании измеренной мощности приема выделенного физического канала управления и полученного отношения мощности передачи.

Изобретение относится к системам беспроводной связи, использующим множество несущих для передачи данных, и предназначено для улучшения качества обслуживания для конечных пользователей.

Изобретение относится к области радиосвязи с помощью ионосферных радиотрасс. Техническим результатом является создание каналов KB- и УКВ-радиосвязи в обход зоны сильного поглощения радиосигнала.

Изобретение относится к радиотехнике и может быть применено в системах радиосвязи с повышенными требованиями к разведзащищенности и защите от преднамеренных помех.

Изобретение относится к технике связи и может использоваться преимущественно для определения пространственных координат стационарного или подвижного принимающего радиосигналы (р/с) радиотехнического объекта (РО), в том числе, в аэронавигации.

Изобретение относится к информационно-коммуникационным системам и может быть использовано для обеспечения радиосвязью должностных лиц межрегионального звена управления МЧС России, привязки по проводным линиям связи к стационарной сети связи МЧС России и телефонной сети связи общего пользования, а также проводной связи с элементами узла связи и пунктами управления оперативной группы, спасательного центра при развертывании пункта на местности.

Изобретение относится к средствам получения и распространения спутниковых изображений земной поверхности. .

Изобретение относится к системе мобильной связи и предназначено для эффективного пополнения сотовой сетевой модели. .

Изобретение относится к области связи, в частности к радиотехническим беспроводным коммуникационным системам. .

Изобретение относится к передаче данных и более конкретно адаптивной к скорости передачи передающей схемы для системы связи с большим количеством входов и выходов (БКВВ, MIMO), и обеспечивает передачу переменного количества потоков символов данных, разнесение передачи для каждого потока символов данных и позволяет полностью использовать суммарную мощность передачи системы и полную мощность каждой антенны.

Изобретение относится к радиосвязи и может быть использовано при испытаниях систем радиосвязи. Технический результат изобретения заключается в расширении функциональных возможностей за счет ввода сертифицированных приемных и передающих трактов, приема на них и передачи с них радиосигнала в ходе испытаний. Способ радиосвязи основан на включении N сертифицированных приемных и передающих трактов, введении сертифицированной системы ионосферного зондирования для краткосрочного и долгосрочного прогноза прохождения радиоволн и контроля состояния выбранной радиотрассы, введении сертифицированного автоматизированного измерительного комплекса. С его помощью измеряют параметры и характеристики испытуемых объектов, вводят автоматизированную систему обработки и хранения результатов испытаний, обрабатывают параметры и характеристики испытуемых объектов и сравнивают с информацией предыдущих испытаний. 2 н.п. ф-лы, 1 ил.

Изобретение относится к технике связи. Технический результат состоит в повышении эффективности передачи ВЧ сигнала в режиме Simulcast во время переходного периода с аналогового на цифровое вещание. Для этого предлагается модернизировать способ модуляции излучаемого в эфир одним передатчиком ВЧ сигнала при одновременном излучении передатчиком сигнала аналогового вещания AM и цифрового радиовещания DRM (режим Simulcast), при котором аналоговая часть излучаемого сигнала является амплитудно-модулированным сигналом с одной или двумя боковыми полосами. Аналоговую часть сигнала AM необходимо подвергать динамической обработке (ДOAM) посредством изменения уровня несущей в такт с огибающей модулирующего сигнала, при этом обработке подвергают как уровень несущей, так и уровни боковых или боковой. 8 ил.
Изобретение относится к способу радиосвязи с многостанционным доступом. Технический результат состоит в повышении степени защиты передаваемой информации. Для этого оптимизируют длительности кадра так, чтобы исключить коллизии при одновременной работе передающих средств подвижных объектов, используют частотное и временное распределения каналов радиосвязи, изменяемых каждый кадр, дополнительно шифрируют данные, а на приемной стороне дешифрируют.

Изобретение относится к области радиосвязи и может быть использовано при построении дуплексных систем зоновой радиосвязи, в том числе средневолновых и коротковолновых. Технический результат состоит в обеспечении условий электромагнитной совместимости приемной и передающей аппаратуры базовой станции. Для этого способ основан на периодическом переключении с приема на передачу, причем на передаче от вызывающей абонентской радиостанции на базовую станцию вызывного сигнала посылают синхропосылку, номер вызываемого абонента и собственный номер отправителя, при передаче от базовой станции осуществляют синхронизацию циклов прием/передача вызываемой абонентской радиостанции и ретранслятора базовой станции, в случае успешного вхождения в связь каждая из абонентских радиостанций производит поочередную передачу на базовую станцию и прием от базовой станции информационных кадров, при завершении обмена установленная связь разрывается и абонентские радиостанции переходят в режим дежурного приема. 2 ил.

Изобретение относится к системе беспроводной связи, такой как глобальная система мобильной связи, использующая множество несущих, и позволяет, по меньшей мере, двум модулям с множеством несущих совместно реализовывать их обработку. Изобретение раскрывает, в частности, способ обработки несущих, который включает в себя получение управляющей информации каждого модуля с множеством несущих, ассоциированной с несущими; согласно полученной управляющей информации, определение несущей, используемой посредством каждого модуля с множеством несущих; и выполнение обработки посредством каждого модуля с множеством несущих согласно определенной несущей. А также устройство связи, которое включает в себя блок обработки, сконфигурированный, чтобы получать управляющую информацию каждого модуля с множеством несущих, ассоциированную с несущими, и согласно полученной управляющей информации, определять несущую, используемую посредством каждого модуля с множеством несущих; и блок уведомления, сконфигурированный, чтобы инструктировать каждому модулю с множеством несущих выполнять обработку согласно определенной несущей. 2 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к методикам выполнения регулирования мощности и передачи обслуживания. Технический результат состоит в уменьшении помех и достижении хорошей эффективности для всех терминалов. Для этого в одном аспекте регулирование мощности (PC) поддерживают в нескольких PC-режимах, таких как PC-режим "вверх-вниз" и PC-режим на основе стирания. Для использования может быть выбран один PC-режим. Служебные сигналы могут отправляться для указания выбранного PC-режима. Если выбран PC-режим "вверх-вниз", то базовая станция оценивает качество принимаемого сигнала для терминала и отправляет PC-команды, чтобы инструктировать терминалу отрегулировать свою мощность передачи. Если выбран PC-режим на основе стирания, то базовая станция отправляет индикаторы стирания, которые указывают, являются ли кодовые слова, принимаемые от терминала, стертыми или нестертыми. Для обоих PC-режимов терминал регулирует свою мощность передачи на основе обратной связи регулирования мощности (к примеру, PC-команд и/или индикаторов стирания), чтобы достичь целевого уровня эффективности (к примеру, целевой частоты стирания для кодовых слов). Индикаторы стирания также могут быть использованы для передачи обслуживания. 4 н. и 5 з.п. ф-лы, 11 ил.

Изобретение относится к области телекоммуникационных технологий, а более конкретно к конструкциям сканирующих высокочастотных антенн. Технический результат - расширение функциональных возможностей за счет обеспечения полного кругового сканирования. Для этого цилиндрическая сканирующая антенна бокового излучения содержит: цилиндрический волновод, образованный двумя (верхним и нижним) параллельными металлическими дисками; диэлектрический цилиндр, являющийся заполнением цилиндрического волновода и выполненный с возможностью функционирования как в качестве согласующего трансформатора между цилиндрическим волноводом и свободным пространством, так и в качестве диаграммообразующего элемента; прямоугольную решетку излучателей, ориентированных нормально плоскости самой решетки, помещенную осесимметрично в цилиндрический волновод, причем плоскость решетки расположена параллельно основанию цилиндрического волновода; два металлических цилиндра, расположенные соответственно над верхним и под нижним дисками и выполненные с возможностью функционирования в качестве вспомогательных цилиндрических излучателей, корректирующих диаграммы направленности в угломестной плоскости. 6 з.п.ф-лы, 10 ил.

Настоящее изобретение относится к области радиосвязи. Технический результат изобретения заключается в повышении маневренности при обмене информацией за счет введения каналов передачи данных, увеличении пропускной способности радиостанции. В радиостанцию дополнительно введен преобразователь каналов передачи данных, преобразователь каналов приема данных, преобразователь информации каналов передачи данных, при этом преобразователь каналов передачи данных содержит шесть канальных формирователей пакетов передачи данных. Преобразователь информации каналов передачи данных содержит шесть канальных формирователей информации каналов передачи данных. Использование устройства позволит обеспечить работу радиостанции в дуплексном режиме на одной частоте на одну антенну десятью телефонными каналами, и возможностью перевода шести каналов начиная с пятого по десятый каналы для работы в режиме передачи данных со скоростями в каждом канале: 100, 300, 500 и 1200 Бод для работы с оконечным оборудованием данных и со скоростью 1200 Бод для работы с ПЭВМ. 11 з.п. ф-лы, 15 ил.

Изобретение относится к технике космической связи и может быть использовано в наземных станциях, работающих с высокоэллиптическими и геостационарными космическими аппаратами для приема информации гелиогеофизического назначения, сформированной бортовым радиотехническим комплексом геостационарного или высокоэллиптического искусственного спутника Земли, для дальнейшей нормализации передачи выделенной достоверной информации различным организациям. Техническим результатом заявленного изобретения является повышение скорости приема данных, повышение достоверности принимаемого потока информации и повышение точности синхронизации системного времени. Автономный пункт приема гелиогеофизической информации содержит полосовой фильтр, малошумящий усилитель, имитатор бортового источника сигнала, первый и второй аналого-цифровые приемники, первый и второй вычислительные системные блоки, систему наведения и автосопровождения, переключатель консоли, коммутатор-маршрутизатор, рабочее место оператора, состоящее из принтера и консоли оператора в составе монитора, клавиатуры, манипулятора «мышь», первый и второй источники бесперебойного питания, первый и второй источники вторичного источника питания, антенный пост, делитель мощности. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технике связи и может быть использовано в системах с множеством несущих. Технический результат - обеспечение гибкой настройки на любую требуемую часть полосы пропускания передачи и уменьшение содержания служебных данных. Устройство передачи содержит средство формирования кадра, при этом каждый кадр содержит, по меньшей мере, два шаблона сигнализации в направлении частоты и один или больше шаблонов данных, следующих за, по меньшей мере, двумя шаблонами сигнализации в направлении времени, при этом каждый шаблон данных сопровождается дополнительным шаблоном данных в направлении времени, все шаблоны данных, следующие в направлении времени, имеют одинаковую частотную структуру, а каждый из, по меньшей мере, двух шаблонов сигнализации и один или больше шаблонов данных содержат множество несущих частот, выполненное с возможностью размещать первые данные сигнализации в каждом из упомянутых, по меньшей мере, двух шаблонов сигнализации в кадре и выполненное с возможностью размещать данные в упомянутых одном или больше шаблонах данных в кадре таким образом, что данные упомянутых одного или больше шаблонов данных размещают в кадрах данных, при этом каждый кадр данных содержит вторые данные сигнализации и данные содержания, средство преобразования, преобразующее упомянутые, по меньшей мере, два шаблона сигнализации и упомянутые один или больше шаблоны данных из области частоты в область времени для генерирования сигнала передачи в области времени. 6 н. и 9 з.п. ф-лы, 23 ил., 1 табл.
Наверх