Способ получения силикофосфатного протонпроводящего материала, преимущественно для мембран топливных элементов (варианты)



Способ получения силикофосфатного протонпроводящего материала, преимущественно для мембран топливных элементов (варианты)
Способ получения силикофосфатного протонпроводящего материала, преимущественно для мембран топливных элементов (варианты)
Способ получения силикофосфатного протонпроводящего материала, преимущественно для мембран топливных элементов (варианты)

 


Владельцы патента RU 2505481:

Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова РАН (ИХС РАН) (RU)

Настоящее изобретение относится к способу получения силикофосфатного протонпроводящего материала и может быть использовано для изготовления мембран топливных элементов. Силикофосфатный протонпроводящий материал получен золь-гель методом. Исходные вещества для осуществления способа: тетраэтоксисилан, этанол, ортофосфорная кислота, серная кислота, четвертичная соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, вода. Разработаны 3 варианта способа получения. Целевой материал получают в виде пленки различной толщины. Техническим результатом является обеспечение возможности получения силикофосфатного протонпроводящего материала в виде прочной пленки с минимальной толщиной 100-200 мкм, а также сохранение высокой протонной проводимости материала в широком температурном диапазоне. 3 н. и 6 з.п. ф-лы, 9 пр., 2 табл.

 

Изобретения относятся к способам получения силикофосфатного протонпроводящего материала и могут быть использованы, преимущественно, для изготовления мембран топливного элемента (ТЭ). Заявляемые варианты способа предназначены для получения мембран, способных обеспечить работу топливного элемента в широком диапазоне температур, включая область отрицательных температур, и нормального давления.

Протонпроводящая полимерная мембрана является электрическим изолятором, она работает как среда, перемещающая протоны от катода к аноду, и отделяет газообразное или жидкое топливо от окисляющего газа.

Соответственно, протонпроводящая мембрана должна иметь высокие прочностные характеристики, для работы в широком диапазоне температур от - 5 до 120°С и электрохимическую стабильность. К тому же необходимо, чтобы мембрану можно было изготовить в виде тонкого листа, чтобы улучшить механические свойства и снизить сопротивление. Более того, мембрана не должна сильно расширяться при пропитке жидкостью.

Из уровня техники известны способы получения материалов для ТЭ с твердым полимерным электролитом, отлитым в виде пленки - мембраны, полученным методом сополимеризации тетрафторэтилена с функциональным перфторированным сомономером. Известные ионообменные мембраны (ИОМ), обеспечивают наиболее благоприятный водный обмен вплоть до температуры 100°С, при сохранении высокой химической и физико-химической стабильности, а также низкого электросопротивления. Известны перфторированные сульфокатионитовые мембраны с указанным комплексом свойств [Патенты США: US 5281680, US 5919583, US 3962153, US 5766787, E.I. Du Pont de Nemours and Company, Wilmington, Del., 1997]. В России создан аналог такого типа мембран в ОАО «Пластполимер» [Патент РФ №2267498, 10.01.2006, C08F 214/26].

Проводимость такого материала в значительной степени определяется количеством адсорбированной воды, т.е. зависит от влажности окружающей среды, и имеет удовлетворительные значения лишь при относительной влажности, близкой к 95%.

Данная мембрана работает в узком интервале температур, для максимальной активизации работы электродов 60-90°С, и имеет высокую себестоимость.

Известен способ получения силикофосфатного протонпроводящего материала, основанный на золь-гель методе, исходя из гидролизованного тетраэтоксисилана с добавками борной кислоты и алкоксида алюминия, с последующей термообработкой полученного геля и прессованием порошка высушенного ксерогеля [Matsuda A., Yoshitaka N., Tadanaga К., Minami Т., Tatsumisago M. Proton conductivity at medium temperature range and chemical durability of phosphorsilicate gels added with a third component // Solid State lonics. 2003. V.162-163. P.253-259].

Недостатками данного способа являются:

1. Полученный силикофосфатный протонпроводящий материал не технологичен и может быть обработан только методом прессования с получением мембраны миллиметровой толщины. Таким образом, мембрана получается хрупкой, что снижает эксплутационные характеристики ТЭ.

2. Высокая протонная проводимость протонпроводящих мембран из данных материалов (~10-4-10-2 См/см) обеспечивается только для 130°С при высокой относительной влажности ~60%.

В процессе проведенных информационных исследований не выявлены другие способы получения подобного нанокомпозиционного протонпроводящего материала, в котором одновременно используются силикофосфатный неорганический нанокомпозит и органическая полимерная матрица с целью создания протонпроводящей мембраны для ТЭ.

Известен способ получения силикофосфатного протонпроводящего материала, включающий смешение тетраэтоксисилана, ортофосфорной кислоты, этанола, четвертичной соли аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, гелирование смеси, термообработку и измельчение полученного ксерогеля. см. Цветкова И.Н. «Золь-гель синтез и исследование физико-химических свойств фосфорсиликатных, боросиликатных и фосфатных материалов», автореферат дисс. На соиск. уч. ст. канд. хим. наук, Санкт-Петербург, 2009). Известный способ позволяет получить материал с высокой протонной проводимостью в интервале температур от о до 120°С.

Данный способ выбран в качестве прототипа.

Недостатки прототипа заключаются в следующем:

1. Полученные материалы имеют высокую протонную проводимость, порядка 10-3-10-2 См/см, которая, однако, нестабильна во всем температурном диапазоне от 0 до 120°С.

2. Использование водного раствора аммиака в качестве катализатора вызывает кристаллизацию, которая резко снижает протонную проводимость, а также еще более снижает механическую прочность мембраны.

3. Использование соляной кислоты в качестве катализатора способствует загрязнению (отравлению) платинового катализатора под влиянием ионов хлора и снижает срок службы электрода ТЭ.

Задачей настоящих изобретений является создание новых способов получения силикофосфатного протонпроводящего нанокомпозитного материала, преимущественно обеспечивающего эксплуатацию мембран ТЭ в температурном диапазоне от минус 5°С до 120°С.

Технический результат, определяющий решение поставленной задачи, заключается в повышении механической прочности силикофосфатного протонпроводящего материала, величины которых достаточны для получения силикофосфатного протонпроводящего материала в виде гибкой пленки, при сохранении высокой протонной проводимости (10-3-10-1) См/см материала в широком температурном диапазоне от минус 5°С до 120°С.

Для достижения указанного технического результата предлагается группа изобретений, объединенных единым изобретательским замыслом, в виде трех вариантов способа получения силикофосфатного протонпроводящего материала, преимущественно для мембран топливных элементов.

В первом независимом варианте заявленное изобретение характеризуется следующей совокупностью существенных признаков.

Способ получения силикофосфатного протонпроводящего материала путем смешения исходных компонентов, включающих тетраэтоксисилан (Si(OEt)4), этанол (С2Н5ОН), полиионен, донор протонов в виде ортофосфорной кислоты, гелирования полученной смеси, термообработки полученного геля и его измельчения, характеризуется тем, что на стадии смешения исходных компонентов полиионен вводят в виде предварительно приготовленного водно-спиртового раствора, в качестве донора протонов используют смесь ортофосфорной и серной кислот, в качестве полиионена используют четвертичную соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, затем полученный после термообработки измельченный ксерогель вводят в раствор глицерина в поливиниловом спирте, а полученную органо-неорганическую смесь отливают на поверхность и выдерживают на воздухе до полимеризации.

Кроме того, первый независимый вариант заявленного изобретения характеризуется рядом факультативных признаков, а именно:

- исходные компоненты смешивают в следующем количестве (в молях):

тетраэтоксисилана Si(OEt)4) 1
ортофосфорная кислота H3PO4 0,12-2,2
этанол C2H5OH 2-4
серная кислота H2SO4 0,1-0,5
четвертичная соль аммония с азотсодержащими
гетероциклами с одним или двумя атомами азота 5×10-4-8×10-4
вода Н2О 2-21

- органо-неорганическую смесь выдерживают на воздухе до образования силикофосфатной протонпроводящей пленки толщиной 300-400 мкм.

В данном варианте качестве полиионена используют четвертичную соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, затем полученный после термообработки измельченный ксерогель вводят в раствор глицерина в поливиниловом спирте, что увеличивает однородность золя и, как следствие, однородность структуры мембраны, стабилизируя значения протонной проводимости. Использование в качестве донора протонов смеси ортофосфорной и серной кислот позволило отказаться от использования в качестве катализатора водного раствора или соляной HCl, или плавиковой кислоты HF, или аммиака NH3OH. Использование предложенной смеси кислот не приводит к отравлению платинового катализатора электрода ТЭ, обеспечивая тем самым стабильность его свойств во всем температурном диапазоне, включая зону отрицательных температур (от минус 5°C до 120°С). При этом смесь ортофосфорной и серной кислот выполняет функции катализатора, а также позволяет повысить уровень протонной проводимости без проведения дополнительной операции ультразвуковой обработки золя. Использование в качестве полиионенов четвертичной соли аммония с азотсодержащими гетероциклами обеспечивает температурную стабильность в интервале от минус 5°С до 120°С. При этом четвертичная соль аммония с азотсодержащими гетероциклами может быть использована с одним или двумя атомами азота, каждая из которых позволяет получить одинаковый технический результат. Использование полимерной матрицы в виде смеси поливинилового спирта с глицерином, позволяет получить протонпроводящий материал в виде пленки, например методом литья, что обеспечивает улучшение механической прочности полученного материала и придает гибкость полученной пленке. По первому варианту заявленного способа может быть получена силикофосфатная протонпроводящая пленка, толщина которой составляет 300-400 мкм.

Во втором независимом варианте заявленное изобретение характеризуется следующей совокупностью существенных признаков.

Способ получения силикофосфатного протонпроводящего материала путем смешения исходных компонентов, включающих тетраэтоксисилан (Si(OEt)4), этанол (C2H5OH), полиионен, донор протонов в виде ортофосфорной кислоты, характеризуется тем, что на стадии смешения исходных компонентов полиионен вводят в виде предварительно приготовленного водно-спиртового раствора, в качестве донора протонов используют смесь ортофосфорной и серной кислот, в качестве полиионена используют четвертичную соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, полученный золь вводят в раствор глицерина в поливиниловом спирте, а полученную органо-неорганическую смесь отливают на поверхность и выдерживают на воздухе до полимеризации.

Кроме того, второй независимый вариант заявленного изобретения характеризуется рядом факультативных признаков, а именно:

- исходные компоненты смешивают в следующем количестве (в молях):

тетраэтоксисилана Si(OEt)4) 1
ортофосфорная кислота H3PO4 0,12-2,2
этанол С2Н5ОН 2-4
серная кислота H2SO4 0,1-0,5
четвертичная соль аммония с азотсодержащими
гетероциклами с одним или двумя атомами азота 5×10-4-8×10-4
вода Н2О 2-21

органо-неорганическую смесь выдерживают на воздухе до образования силикофосфатной протонпроводящей пленки толщиной 100-200 мкм.

В отличие от прототипа на стадии смешения исходных компонентов полиионен вводят в виде предварительно приготовленного водно-спиртового раствора, что увеличивает однородность золя и, как следствие, однородность структуры мембраны, стабилизируя значения протонной проводимости. Использование в качестве донора протонов смеси ортофосфорной и серной кислот позволило отказаться от использования в качестве катализатора водного раствора или соляной HCl, или плавиковой кислоты HF, или аммиака NH3OH. Использование предложенной смеси кислот не приводит к отравлению платинового катализатора электрода, обеспечивая тем самым стабильность его свойств во всем температурном диапазоне, включая зону отрицательных температур (от минус 5°С до 120°С). При этом смесь ортофосфорной и серной кислот выполняет функции катализатора. Использование полимерной матрицы, в качестве которой может быть выбрана смесь поливинилового спирта с глицерином, позволяет получить протонпроводящий материал в виде пленки, например методом литья, что обеспечивает улучшение механической прочности полученного материала и придает гибкость полученной пленке. По второму варианту заявленного способа может быть получена силикофосфатная протонпроводящая пленка, толщина которой составляет 100-200 мкм.

В третьем независимом варианте заявленное изобретение характеризуется следующей совокупностью существенных признаков.

Способ получения силикофосфатного протонпроводящего материала путем смешения исходных компонентов, включающих тетраэтоксисилан (Si(OEt)4), этанол (C2H5OH), полиионен, донор протонов в виде ортофосфорной кислоты, гелирования полученной смеси, полученный гель подвергают термообработке и измельчают, характеризуется тем, что на стадии смешения исходных компонентов полиионен вводят в виде предварительно приготовленного водно-спиртового раствора, в качестве донора протонов используют смесь ортофосфорной и серной кислот, в качестве полиионена используют четвертичную соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, полученный после термообработки и измельченный ксерогель формуют методом прессования, образуя силикофосфатный протонпроводящий материал в виде пленки.

Кроме того, третий независимый вариант заявленного изобретения характеризуется рядом факультативных признаков, а именно;

- исходные компоненты смешивают в следующем количестве (в молях):

тетраэтоксисилана Si(OEt)4) 1
ортофосфорная кислота H3PO4 0,12-2,2
этанол C2H5OH 2-4
серная кислота H2SO4 0,1-0,5
четвертичная соль аммония с азотсодержащими
гетероциклами с одним или двумя атомами азота 5×10-4-8×10-4
вода Н2О 2-21

- измельченный ксерогель до размера частиц 0,02-0,1 мм формуют методом прессования при давлении 5000 кг/см2, образуя силикофосфатную протонпроводящую пленку, толщина которой составляет 0,2-0,4 мм.

В отличие от прототипа на стадии смешения исходных компонентов полиионен вводят в виде предварительно приготовленного водно-спиртового раствора, что увеличивает однородность золя и, как следствие, однородность структуры мембраны, стабилизируя значения протонной проводимости. Использование в качестве донора протонов смеси ортофосфорной и серной кислот позволило отказаться от использования в качестве катализатора водного раствора или соляной HCl, или плавиковой кислоты HF, или аммиака NH3OH. Использование предложенной смеси кислот не приводит к отравлению платинового катализатора электрода, обеспечивая тем самым стабильность его свойств во всем температурном диапазоне, включая зону отрицательных температур (от минус 5°С до 120°С). Кроме того, смесь ортофосфорной и серной кислот выполняет функции катализатора. Введение донора протонов в виде смеси ортофосфорной и серной кислот позволяет повысить уровень протонной проводимости без проведения дополнительной операции ультразвуковой обработки золя. Возможно осуществить формование измельченного и приготовленного в виде порошка ксерогеля, без использования органических пластификаторов. При этом достигается высокий уровень протонной проводимости материала, наряду с обеспечением высокой механической прочности, что позволяет получить материала виде тонкой пленки.

По третьему варианту заявленного способа может быть получена силикофосфатная протонпроводящая пленка, толщина которой составляет 0,2-0,4 мм. Полученный материал обладает улучшенной механической прочностью.

Таким образом, три независимых варианта заявленного способа характеризуются наличием следующих существенных признаков, направленных на достижение указанного технического результата.

1. Растворение полиионена в водно-спиртовом растворе, что увеличивает однородность золя и, как следствие, однородность структуры мембраны, стабилизируя значения протонной проводимости. Использование в качестве полиионена четвертичной соли аммония с азотсодержащими гетероциклами с одним или двумя атомами азота,

2. Замена кислотных и щелочных катализаторов процесса гелеобразования в виде водного раствора или соляной HCl, или плавиковой кислоты HF, или аммиака NH3OH на введение дополнительного количества ортофосфорной кислоты вместе с серной кислотой, что не приводит к отравлению платинового катализатора электрода, обеспечивая стабильность его свойств во всем температурном диапазоне.

3. Введение дополнительного донора протонов в виде смеси ортофосфорной и серной кислот, что позволяет повысить уровень протонной проводимости без проведения дополнительной операции - используемой в ближайшем аналоге ультразвуковой обработки золя.

4. Использование в качестве полиионенов только гетероциклических азотсодержащих соединений, обеспечивающих температурную стабильность в интервале от минус 5°C до 120°С.

5. Для улучшения механической прочности протонпроводящего материала его:

- отливают в виде пленки (по 1 и 2 вариантам), что обеспечивается введением полимерной матрицы в виде раствора поливинилового спирта в глицерине;

- прессуют в виде пленки (по 3 варианту) без использования полимерной матрицы. 6. Для улучшения механической прочности силикофосфатного материала без использования органических пластификаторов возможно формирование материала путем измельчения порошка до размера частиц 0,02-0,1 мм, после чего при комнатной температуре и давлении 5000 кг/см2 происходит прессование пленки толщиной 0,2 мм. Таким образом, достигается высокий уровень протонной проводимости материала, наряду с обеспечением высокой механической прочности, позволяя получать тонкую пленку (по 3 варианту).

7. Таким образом, совокупность перечисленных существенных признаков во всех трех вариантах способа необходима и достаточна для достижения указанного выше технического результата. Каждый из трех вариантов позволяет получить силикофосфатный протонпроводящий материал, выделенный в виде механически прочной и гибкой тонкой пленки, использовать ее, как матрицу ТЭ, обеспечить стабильную протонную проводимость в широком диапазоне температур, включая зону отрицательных температур (от минус 5°С до 120°С). Данные технические свойства полученного материала позволяют увеличить срок службы мембраны ТЭ.

Примеры реализация способа по первому варианту:

Пример 1. Заявляемый состав №1 может быть получен следующим способом. Полиионен растворяют в смеси воды и спирта, после чего добавляют ТЭОС и смесь ортофосфорной и серной кислот. Состав компонентов в реакционной композиции золя отвечает соотношению следующим мольным соотношениям (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль C2H5OH; 1 моль H3PO4; 0,1 моль H2SO4; 7 моль Н2О; 5·10-4 моль ПИ-2 (ПИ-2 - алкилароматическая олигомерная соль четвертичного аммония с двумя атомами аммония в гетероцикле, молекулярная масса 3500).

Все компоненты перемешивают и полученная смесь остается для созревания геля. Полученный гель подвергается термообработке в вакууме в течение 5 часов при 80°C. Высушенный ксерогель измельчают и вносят в растворенный в глицерине поливиниловый спирт (в соотношении указанном в таблице 2), тщательно перемешивается и полученная масса отливается на фторопластовую поверхность. Отлитую пленку выдерживают 1 сутки на воздухе до полной полимеризации, а затем высушивают при температуре 50°С в течение 4 часов. Полученный силикофосфатный материал представляет собой непрозрачную полимерную пленку. Показатели протонной проводимости и механической прочности полученного материала приведены в таблицах 1 и 2.

Пример 2. Заявляемый состав №2 может быть получен аналогичным способом указанном в примере 1, но с иным количественным соотношением компонентов (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль С2Н5ОН; 1 моль H3PO4; 0,35 моль H2SO4; 7 моль Н2О; 5·10-4 моль ПИ-2. Показатели протонной проводимости и механической прочности полученного материала приведены в таблицах 1 и 2.

Пример 3. Заявляемый состав №3 может быть получен аналогичным способом указанном в примере 1, но с количественным соотношением компонентов (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль С2Н5ОН; 1 моль H3PO4; 0,2 моль H2SO4; 7 моль Н2О; 5·10-4 моль ПИ-2. Показатели протонной проводимости и механической прочности полученного материала приведены в таблицах 1 и 2.

Примеры реализация способа по второму варианту:

Пример 4. Заявляемый состав №4 (таблица 1) может быть получен следующим образом. Полиионен растворяют в смеси воды и спирта, после чего добавляют ТЭОС и смесь ортофосфорной и серной кислот. Состав компонентов в реакционной композиции золя отвечает соотношению следующим мольным соотношениям (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль C2H5OH; 0,5 моль H3PO4; 0,1 моль H2SO4; 7 моль H2O; 5·10-4 моль ПИ-1 (ПИ-1 - олигомерная соль четвертичного аммония с одним атомом азота в гетероцикле, молекулярная масса 3000-7000).

Все компоненты перемешивают и вводят в растворенный в глицерине поливиниловый спирт (в соотношении, указанном в таблице 2). Смесь тщательно перемешивают и полученный золь отливают на фторопластовую поверхность. Отлитую пленку выдерживают 1 сутки на воздухе до полной полимеризации, а затем высушивают при температуре 50°C в течение 4 часов. Полученный силикофосфатный материал представляет собой прозрачную полимерную пленку - протонпроводящий материал. Показатели протонной проводимости и механической прочности полученного материала приведены в таблицах 1 и 2.

Пример 5. Заявляемый состав №5 может быть получен аналогичным способом, указанным в примере 4, но с другим количественным составом компонентов (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль С2Н5ОН; 0,5 моль H3PO4; 0,35 моль H3SO4; 7 моль H2O; 5·10-4 моль ПИ-1. Показатели протонной проводимости и механической прочности полученного материала приведены в таблицах 1 и 2.

Пример 6. Заявляемый состав №6 может быть получен указанным в примере 4 способом, но с другим количественным составом компонентов (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль С2Н5ОН; 0,5 моль H3PO4; 0,2 моль H2SO4; 7 моль Н2О; 5·10-4 моль ПИ-1. Показатели протонной проводимости и механической прочности полученного материала приведены в таблицах 1 и 2.

Примеры реализация способа по третьему варианту:

Пример 7. Заявляемый состав №7 может быть получен следующим способом. Полиионен растворяют в смеси воды и спирта, после чего добавляют ТЭОС и смесь ортофосфорной и серной кислот. Состав компонентов в реакционной композиции золя отвечает соотношению следующим мольным соотношениям (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль C2H5OH; 1,5 H3PO4; 0,4 моль H2SO4; 7 моль Н2О; 5·10-4 моль ПИ-2. Все компоненты перемешивают и полученная смесь остается для созревания геля. Полученный гель подвергает термообработке в вакууме в течение 5 часов при 80°C. Высушенный ксерогель измельчают до размера частиц 0,02-0,1 мм, затем методом прессования при давлении 5000 кг/см2, формуют силикофосфатную протонпроводящую пленку, толщина которой составляет 0,2-0,4 мм. Полученный силикофосфатный материал представляет собой непрозрачный плотный протонпроводящий материал. Показатели протонной проводимости и механической прочности полученного материала приведены в таблицах 1 и 2.

Пример 8. Заявляемый состав №8 может быть получен быть получен аналогичным способом указанном в примере 7, но с другим количественным соотношением компонентов (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль С2Н5ОН; 1,5 H3PO4; 0,5 моль H2SO4; 7 моль Н2О; 5·10-4 моль ПИ-2. Показатели протонной проводимости и механической прочности полученного материала приведены в таблицах 1 и 2.

Пример 9. Заявляемый состав №9 может быть получен аналогичным способом указанном в примере 8, но с другим количественным соотношением компонентов (состав указан в таблице 1): 1 моль Si(OEt)4; 4 моль C2H5OH; 1,5 H3PO4; 0,2 моль H2SO4; 7 моль H2O; 5·10-4 моль ПИ-2.

Таблица 2
Наименование способа получения Основные компоненты для получения силикофосфатного протонпроводящего материала (преимущественно для мембраны) Механическая прочность*, в баллах
Золь 1 г Ксерогель 2 г ПВС г Глицерин г
Отливка пленки согласно предлагаемому способу №1 (вар.1) №1 0,5 0,5 5
№2 (вар.1) №2 1,5 1 4
№3 (вар.1) №3 9 0,5 4
№4 (вар.2) №4 0,5 0,5 5
№5 (вар.2) №5 1,5 1,2 5
№6 (вар.2) №6 2 0,8 5
Прессование пленки №7 (вар.3) №7 - - 4
№8 (вар.3) №8 - - 4
№9 (вар.3) №9 - - 4
Прессование таблетки, согласно ближайшему аналогу + - - 1
* - Механическая прочность оценивалась в баллах ранговым методом по пятибалльной шкале: разрушается на воздухе в течение 2 недель - 1 балл; разрушается на воздухе в течение 6 месяцев - 2 балла; не разрушается на воздухе - 3 балла; не разрушается на воздухе, но ломается при сжатии - 4 балла; не разрушается на воздухе, гибкая, прочная, прозрачная - 5 баллов.

Рассмотренные три варианта синтеза позволяют получить материалы, в основу которых положен золь-гель процесс, являющийся широко используемым в нанотехнологии.

1. Способ получения силикофосфатного протонпроводящего материала путем смешения исходных компонентов, включающих тетраэтоксисилан (Si(OEt)4), этанол (С2Н5ОН), полиионен, донор протонов в виде ортофосфорной кислоты, гелирования полученной смеси, термообработки полученного геля и его измельчения, отличающийся тем, что на стадии смешения исходных компонентов полиионен вводят в виде предварительно приготовленного водно-спиртового раствора, в качестве донора протонов используют смесь ортофосфорной и серной кислот, в качестве полиионена используют четвертичную соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, затем полученный после термообработки измельченный ксерогель вводят в раствор глицерина в поливиниловом спирте, а полученную органо-неорганическую смесь отливают на поверхность и выдерживают на воздухе до полимеризации.

2. Способ по п.1, отличающийся тем, что исходные компоненты смешивают в следующем количестве (в молях):

тетраэтоксисилан (Si(OEt)4) 1
ортофосфорная кислота Н3РO4 0,12-2,2
этанол С2H5ОН 2-4
серная кислота H2SO4 0,1-0,5
четвертичная соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота 5·10-4-8·10-4
вода Н2О 2-21

3. Способ по п.1, отличающийся тем, что органо-неорганическую смесь выдерживают на воздухе до образования силикофосфатной протонпроводящей пленки толщиной 300-400 мкм.

4. Способ получения силикофосфатного протонпроводящего материала путем смешения исходных компонентов, включающих тетраэтоксисилан (Si(OEt)4), этанол (C2H5OH), полиионен, донор протонов в виде ортофосфорной кислоты, отличающийся тем, что на стадии смешения исходных компонентов полиионен вводят в виде предварительно приготовленного водно-спиртового раствора, в качестве донора протонов используют смесь ортофосфорной и серной кислот, в качестве полиионена используют четвертичную соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, полученный золь вводят в раствор глицерина в поливиниловом спирте, а полученную органо-неорганическую смесь отливают на поверхность и выдерживают на воздухе до полимеризации.

5. Способ по п.7, отличающийся тем, что исходные компоненты смешивают в следующем количестве (в молях):

тетраэтоксисилан (Si(OEt)4) 1
ортофосфорная кислота Н3РO4 0,12-2,2
этанол С2Н5ОН 2-4
серная кислота H2SO4 0,1-0,5
четвертичная соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота 5·10-4-8·10-4
вода Н2О 2-21

6. Способ по п.4, отличающийся тем, что органо-неорганическую смесь выдерживают на воздухе до образования силикофосфатной протонпроводящей пленки толщиной 100-200 мкм.

7. Способ получения силикофосфатного протонпроводящего материала путем смешения исходных компонентов, включающих тетраэтоксисилан (Si(OEt)4), этанол (C2H5OH), полиионен, донор протонов в виде ортофосфорной кислоты, гелирования полученной смеси, полученный гель подвергают термообработке и измельчают, отличающийся тем, что на стадии смешения исходных компонентов полиионен вводят в виде предварительно приготовленного водно-спиртового раствора, в качестве донора протонов используют смесь ортофосфорной и серной кислот, в качестве полиионена используют четвертичную соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, полученный после термообработки и измельченный ксерогель формуют методом прессования, образуя силикофосфатный протонпроводящий материал в виде пленки.

8. Способ по п.7, отличающийся тем, что исходные компоненты смешивают в следующем количестве (в молях):

тетраэтоксисилан (Si(OEt)4) 1
ортофосфорная кислота Н3РО4 0,12-2,2
этанол C2H5OH 2-4
серная кислота Н2SO4 0,1 -0,5
четвертичная соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота 5·10-4-8·10-4
вода Н2О 2-21

9. Способ по п.7, отличающийся тем, что измельченный ксерогель до размера частиц 0,02-0,1 мм формуют методом прессования при давлении 5000 кг/см2, образуя силикофосфатную протонпроводящую пленку, толщина которой составляет 0,2-0,4 мм.



 

Похожие патенты:

Изобретение относится к мембранной технике и технологии, в частности к способам получения композитных материалов на основе катионообменных мембран с полианилином, и может быть использовано в электродиализных аппаратах для процессов концентрирования солевых растворов и разделения многокомпонентных смесей.
Изобретение относится к области электрохимии, в частности к разделу прямого преобразования химической энергии в электрическую, и может быть использовано в производстве сепараторов для топливных элементов со щелочным электролитом (ТЭЩЭ).
Изобретение относится к технологии получения протонпроводящих полимерных мембран и может быть использовано в водородной энергетике и при производстве твердополимерных топливных элементов.

Изобретение относится к производству бумаги и картона. .

Изобретение относится к области химии силикатных материалов. .
Изобретение относится к области химии. .

Изобретение относится к силикатам на основе щелочноземельного металла, меди и (в случае необходимости) титана, синим или фиолетовым пигментам на основе этих силикатов, способу их получения.

Изобретение относится к способу получения метасиликатов металлов, применяемых в оптическом стекловарении. .

Изобретение относится к химической технологии и неорганической химии силикатов. .

Изобретение относится к способам получения силикатов металлов, в частности силиката свинца, широко применяемого в стекловарении, а также в качестве связующего в керамике и одного из компонентов в отвердителях для смол и т.д.

Изобретение относится к способам получения галлосиликатов с атомным отношением Si/a 20, применяемых в качестве катализаторов и адсорбентов. .

Изобретение относится к области синтеза неорганических соединений. .

Изобретение относится к способам получения синтетической хризоколлы, являющийся продуктом окисления медных руд, и может быть использована для извлечения меди. .
Изобретение может быть использовано для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в осветительных системах и оптических дисплеях. Сложный силикат редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии используют в качестве люминофора красного свечения. Предложенный люминофор обладает высокой интенсивностью красного свечения, при этом интенсивность оранжевого свечения к красному составляет 14-16%, т.е. уменьшена по сравнению с известными люминофорами. 3 пр.
Изобретение относится к кремнезёмсодержащим материалам. Предложен состав, содержащий вещество, имеющее эмпирическую формулу (SiO2)х(ОН)yMzOa, где М представляет собой катион металла или металлоида. 0,01-100% удельной площади поверхности вещества покрыто органосиланом. Молярное отношение у/х составляет от 0,01 до 0,5, молярное отношение x/z составляет от 0,1 до 300, а молярное отношение a/z зависит от свойства содержащегося в веществе оксида металла. Полученный продукт эффективен в качестве наполнителя, носителя катализатора или адсорбента. 3 н. и 7 з.п. ф-лы, 3 пр.
Изобретение может быть использовано при получении сорбентов для очистки воды от токсичных неорганических веществ. Исходный каркасный титаносиликат Na3(Na,H)Ti2O2[Si2O6]2·2H2O обрабатывают 0,01-0,4 М раствором соляной кислоты в течение 0,5-2 часов с получением кристаллического слоистого титаносиликата Ti2(OH)2[Si4O10(OH)2](H2O)2. Затем титаносиликат подвергают модифицированию путем обработки 0,001-0,01 М раствором нитрата серебра или хлорида цезия в течение не более 24 часов при рН 6-12 и перемешивании. Выделяют титаносиликатную твердую фазу центрифугированием, промывают деионизированной водой при Т:Ж=1:(3-5) и сушат при температуре 70-100°С. Получают кристаллический каркасный титаносиликат (Mem,Н4-m)Ti2O2[Si2O6]2·nH2O, где Me - серебро или цезий, m=0,1-1,0, n=0,5-1,8. Изобретение позволяет получить интеркалированные каркасные титаносиликаты цезия и серебра с высокой регенерируемостью и сорбционной емкостью по иоду 13,84 и 14,1 мг/г, что соответствует степени извлечения 48,4 и 49,3%. 3 з.п. ф-лы, 5 пр.
Изобретение относится к материалам для сорбции. Предложен содержащий кремнезем сорбционный состав, имеющий формулу:(SiO2)x(OH)yMzSa, где М представляет собой катион металла или металлоида, S представляет собой серосодержащее соединение, выбранное из, по меньшей мере, одного из следующих соединений: сульфиды и полисульфиды, где 0,01-100% удельной площади поверхности покрыто функционализированным органосиланом. Молярное отношение у/х составляет от 0,01 до 0,5, молярное отношение х/z составляет от 3 до 300, а молярное отношение a/z составляет от 1 до 5. Полученный продукт имеет высокие показатели удельной поверхности и объёма пор. 3 н. и 6 з.п. ф-лы, 4 пр.
Наверх