Способ получения микрошариков из иттрий-алюмосиликатного стекла для радиотерапии

Настоящее изобретение относится к области медицины, в частности к способу получения микрошариков с модифицированной поверхностью из иттрий-алюмосиликатного стекла для радиотерапии. Техническим результатом изобретения является получение микрошариков для радиотерапии, поверхностный слой которых содержит менее 0,01% оксида иттрия для оптимизации диффузии атомов иттрия в организм человека. Способ получения микрошариков из иттрий-алюмосиликатного стекла для радиотерапии включает варку стекла из реактивов Y2O3, Al(ОН)3 и SiO2 при температуре 1600-1650°С и выработку стекла прокаткой расплава через охлаждаемые металлические валки из жаропрочной стали. Полученные микрошарики затем модифицируют травлением в соляной кислоте HCl при рН 1-3 и температуре 10-79°С. 2 табл., 2 пр.

 

Настоящее изобретение относится к области медицины, в частности, к способу получения микрошариков из иттрий-алюмосиликатного стекла для радиотерапии.

В связи с возможностью использования стекла как средства транспортировки радиации к внутренним органам человека значительный интерес проявляется к стеклам в системе Y2O3-Al2O3-SiO2 (YAS) и микрошарикам на их основе [1-3].

Перед введением в организм человека микрошарики подвергаются облучению в ядерном реакторе тепловыми нейтронами. В результате облучения в YAS стекле образуется короткоживущий изотоп 90Y с периодом полураспада 64,1 часа, достаточным для осуществления доставки препарата в клинику и проведения лечения. Изотоп 90Y обладает удобными с точки зрения терапевтического применения ядерно-физическими характеристиками: энергия β-излучения 2,28 МэВ, максимальный пробег в мягких тканях 12 мм, со средней длиной проникновения излучения 2,8 мм [3-5]. Размеры микросфер варьируются от 20 до 40 мкм. После введения в печеночную артерию, микрошарики внедряются в сосудистую сеть опухоли и не попадают в венозную систему, так как конечная артериола меньше 10 мкм. Микрошарики, в конечном итоге, остаются в микрососудистой системе печени и опухоли до полного распада радиоизотопа [6].

Использование микрошариков в лучевой терапии требует применения материалов с высокой химической стойкостью, для того чтобы не допустить выщелачивания радиоактивного изотопа и радиоактивного поражения здоровых тканей организма [7, 8].

В ряде экспериментальных исследований была проанализирована химическая стойкость микрошариков различных составов, среди которых иттрий-алюмосиликатные, фосфатные стекла, а также керамические системы на основе иттрия к растворению своей структуры в различных химических средах (горячей воде, растворах солей) [9-13].

Совсем недавно, с точки зрения оптимизации свойств стеклянных микрошариков для внутренней лучевой терапии, в некоторых работах были рассмотрены композитные микрошарики со структурой ядро-оболочка. Эта стратегия направлена на локализацию радиоизотопа в микрошарике, с помощью контролируемой ионной имплантации активных ионов, например P+ ионы [11, 14].

Аналог заявляемого способа получения микрошариков из иттрий-алюмосиликатного стекла для радиотерапии представлен в патенте [15]. В работе [9] изучено выщелачивание иттрия из иттриевых-алюмосиликатных микрошариков в дистиллированной воде и солевом растворе, и показано, что содержание иттрия в растворе является минимальным, но не нулевым (0.02-0.13% от общего содержания иттрия в микрошариках). Недостатком микрошариков [15] является то, что они не полностью изолируют иттрий от тканей органов человека. Оптимальными микрошариками для внутренней локальной радиотерапии являются микрошарики, которые вообще не испускают ионов иттрия, что является принципиально необходимым условием для проведения успешного лечения.

Наиболее близким к данному изобретению является способ получения микрошариков из иттрий-алюмосиликатного стекла для радиотерапии с диаметром от 5 до 100 мкм, содержанием Y2O3 от 17 до 22 при следующих соотношениях компонентов: Y2O3 17-22, Al2O3 19-25, SiO2 53-64 [16], суть которого сводится к следующему. Для получения стекол в качестве реактивов использовали оксиды иттрия и кремния, а также Al(ОН)3 квалификации о.с.ч. Варку стекол производили при температуре 1600-1650°С в электрической печи в платиновом тигле. Выработка осуществлялась прокаткой расплава через вращающиеся навстречу друг к другу металлические валки. Помол полученных пластинок стекла (чипов) производился в шаровой мельнице. После классификации на ситовом анализаторе, полученный стеклопорошок фракции 20-35 мкм был использован для получения микрошариков по стандартной процедуре путем оплавления в потоке плазмы на электродуговом плазматроне мощностью 25 кВт. Недостатком данного способа получения микрошариков является наличие оксида иттрия на поверхности микрошариков, что приводит к попаданию иттрия в организм человека [15].

Задача изобретения - получение микрошариков для радиотерапии, поверхностный слой которых содержит менее 0,01% оксида иттрия, для минимизации диффузии атомов иттрия в организм человека.

Поставленная задача достигается способом получения микрошариков, включающим варку стекла из реактивов Y2O3, Al(ОН)3 и SiO2, при температуре 1600-1650°С в электрической печи в тигле из дисперсно-упрочненной платины и выработку стекла, которую осуществляют прокаткой расплава через охлаждаемые проточной водой металлические валки из жаропрочной стали, вращающиеся навстречу друг к другу с угловой скоростью 1200-1500 об./мин. В качестве помольного оборудования использовали лабораторный дисковый истиратель «ЛДИ - 65К» с корундовыми дисками, а для классификации стеклопорошка использовали ситовой анализатор Retsch AS 200 с функцией мокрого рассева. Полученные порошки дисперсностью в различных диапазонах (15-35, 20-32, 20-50 мкм и др.) были использованы для получения микрошариков путем оплавления стеклопорошка в потоке плазмы на электродуговом плазматроне мощностью 25 кВт. Классифицированные микрошарики подвергались травлению в соляной кислоте HCl (рН=1-3) при температуре 10°C - 79°C для создания обедненного по иттрию поверхностного слоя.

Пример 1. В качестве сырьевых материалов использовали реактивы Y2O3, аморфный SiO2 и Al(ОН)3 категории о.с.ч. и составляли шихту в расчете на получение стекла состава 20Y2O3-20Al2O3-60SiO2. Компоненты шихты взвешивали на весах с точностью не хуже ±0,001 г. Предварительно подготовленные компоненты шихты смешивались в течение двух часов в контейнере из кварцевого стекла марки КВ-1. Варку стекла проводили в тигле объемом из дисперсионно-упрочненной платины марки ДУПС-СМ при температуре 1650°С в электрической печи. Выработка стекла осуществлялась прокаткой расплава через водоохлаждаемые металлические валки из жаропрочной стали, вращающиеся навстречу друг к другу с угловой скоростью 1500 об./мин. Помол полученных пластинок стекла (чипов) производился в шаровой мельнице в течение 40 мин. После классификации на ситовом анализаторе Retsch AS 200 с функцией мокрого рассева полученный стеклопорошок фракции 20-35 мкм был использован для получения микрошариков по стандартной процедуре путем оплавления в потоке плазмы на электродуговом плазматроне мощностью 25 кВт. Классифицированные микрошарики обрабатывались в соляной кислоте HCl (рН=1) при температуре 37°С, для создания обедненного по иттрию поверхностного слоя. Результаты травления микрошариков показали, что поверхностный слой содержит 0,0015% оксида иттрия от общего содержания его в микрошарике. Примеры сведены в таблицу 1.

Таблица 1
рН 1 Поверхностный слой содержит 0,0032% оксида иттрия от общего содержания его в микрошарике
t=10°C
рН 2 Поверхностный слой содержит 0,0021% оксида иттрия от общего содержания его в микрошарике
t=39°C
рН 3 Поверхностный слой содержит 0,0049% оксида иттрия от общего содержания его в микрошарике
t=79°C

Пример 2. Для определения химической устойчивости модифицированных травлением микрошариков во внутренних жидкостях тела, проводили их выщелачивание в 1% растворе NaCl при температуре 37°С (таблица 2).

Таблица 2
Продолжительность выщелачивания в 1% растворе NaCl при температуре 37°С, (дни) 1 2 5 7 14
Содержание иттрия в растворе в % в микрошариках с модифицированной поверхность 0 0 0 0 0

Стеклянные микрошарики с модифицированной поверхностью (обедненный поверхностный слой по иттрию) не выделяют в процессе травления в щелочной среде ионов Y3+ даже при толщине обедненного слоя менее 1 мкм.

Способ получения микрошариков из иттрий-алюмосиликатного стекла для лучевой внутритканевой терапии, включающий варку стекла из реактивов Y2О3, Аl(ОН)3 и SiO2 при температуре 1600-1650°С и выработку стекла с содержанием компонентов, мол.%: Y2O3 - 17-22, Аl2О3 - 19-25, SiO2 - 53-64 прокаткой расплава через охлаждаемые проточной водой металлические валки из жаропрочной стали, отличающийся тем, что полученные микрошарики модифицируют травлением в соляной кислоте НСl при рН 1-3 и температуре 10-79°С.



 

Похожие патенты:
Изобретение относится к медицинской технике и может быть использовано для получения микросфер для радиотерапии. .

Бисер // 2472721

Изобретение относится к промышленности строительных материалов, в частности к производству теплоизоляционных засыпок и заполнителей для бетонов, теплых штукатурок, керамики и др.

Изобретение относится к промышленности строительных материалов, в частности к производству теплоизоляционных засыпок и заполнителей для бетонов, теплых штукатурок, керамики и др.

Изобретение относится к машиностроению и может быть использовано в автомобильном транспорте. .
Изобретение относится к стеклянным сферам, используемым в качестве проппантов для расклинивания нефтяных и газовых скважин. .

Изобретение относится к применению полимерного материала, а именно к применению полимерного материала в виде частиц в качестве носителя для активного агента. .

Изобретение относится к области производства неорганических мелкодисперсных наполнителей, а именно стеклянных микрошариков, которые могут быть использованы в химической, судостроительной, авиационной и других отраслях промышленности, а также в строительной индустрии.
Изобретение относится к нефтегазодобывающей промышленности, а именно к производству проппантов, используемых в качестве расклинивающих агентов при добыче нефти и газа методом гидравлического разрыва пласта.
Изобретение относится к области подготовки шихты для получения композиционных материалов. Технический результат изобретения заключается в повышении прочности отформованных стержней из сырьевой смеси и светоотражающей способности композиционных микрошариков. Шихта для получения композиционных микрошариков содержит следующие компоненты, мас.%: стеклопорошок - 25; порошок алюминия - 25; жидкое стекло - 20; воду - 30. Предварительно готовят 40% водный раствор жидкого стекла. Смешивают стеклопорошок с порошком алюминия в соотношении 1:1 и порциями подают в раствор жидкого стекла. 2 н.п. ф-лы, 4 табл., 1 пр.

Изобретение относится к химической промышленности и может быть использовано при изготовлении стеклянных шариков как цельных, так и пустотелых, для фильтров различного назначения, светоотражающих устройств, для поверхностной обработки металлов и т.д. Техническим результатом изобретения является изготовление шариков, взаимодействующих с магнитным полем. В керосин вводят наночастицы карбонильного железа, в качестве которого используют магнетит размером от 5,0 до 10,0 нанометров, покрытые олеиновой кислотой. Затем через форсунку керосин с наночастицами карбонильного железа распыляется каплями 20-30 мкм в камеру со спиральным вращающимся магнитным полем. В ту же камеру первичной газовоздушной смесью подается стеклопорошок, после чего поток первичной газовоздушной смеси поступает в огневой поток, где керосин испаряется, а наночастицы карбонильного железа внедряются в жидкое стекло, из которого формируются микрошарики и микросферы. 2 ил.

Изобретение относится к химической промышленности и может быть использовано при изготовлении стеклянных шариков как цельных, так и пустотелых, например, для фильтров различного назначения, светоотражающих устройств. Технической задачей изобретения является повышение производительности и безопасности процесса производства. В керосин вводят наночастицы карбонильного железа, в качестве которого используют магнетит, размером 5,0-10,0 нанометров, покрытого поверхностно-активным веществом, в качестве которого используют олеиновую кислоту. Затем через форсунку керосин с наночастицами карбонильного железа распыляется каплями 20-30 мкм в камеру с трехфазной электрообмоткой, создающей спиральное вращающееся магнитное поле. В ту же камеру сжатым воздухом подается стеклопорошок, который захватывается вращающимися в магнитном поле каплями керосина. После этого он поступает в первую зону малой интенсивности микроволновой печи, где наночастицы карбонильного железа разогреваются до 700-800°C, в результате чего керосин разлагается, а наночастицы карбонильного железа оседают на поверхности частиц стеклопорошка. При дальнейшем продвижении частиц стеклопорошка с наночастицами карбонильного железа температура наночастиц повышается до 1300-1350°C. Стекло плавится и под действием молекулярных сил перемещается по всему объему и образует микрошарики, которые затем охлаждаются, наночастицы карбонильного железа восстанавливаются и притягиваются к полюсам постоянного электромагнита. 1 ил.

Изобретение относится к композиционным материалам. Способ получения стеклометаллических микрошариков включает помол стекла и рассев его на ситах с получением гранул заданного зернового состава, плазменное распыление стеклометаллического материала с улавливанием стеклометаллических микрошариков. Гранулы стекла заданного зернового состава покрывают связующим из жидкого стекла и порошком металла при соотношении гранулы стекла : порошок металла : жидкое стекло, равном 10:1:1, с получением стеклометаллического материала. Плазменное распыление стеклометаллического материала ведут при скорости его подачи по объему в плазменную горелку 0,5 см3/с и мощности плазмотрона 6 кВт. Обеспечивается ускорение технологического процесса получения микрошариков, а также возможность регулирования их зернового состава. 3 табл., 1 пр.

Изобретение относится к полым керамическим микросферам. Технический результат изобретения заключается в получении микросфер с заданными значениями внешнего диаметра, объемной плотности и толщины оболочки. Согласно изобретению из исходного порошка с пористостью P=1-ρ0/ρист, где ρ0 - объемная плотность частиц исходного микропорошка, ρист - истинная (теоретическая) плотность материала микропорошка, выделяют фракцию со средним эффективным диаметром частиц D0, рассчитанным согласно математической зависимости: , где D1 - расчетный диаметр получаемых полых керамических микросфер, ρ1 - расчетная объемная плотность получаемых полых керамических микросфер. Проводят плавление в потоке низкотемпературной плазмы, после чего из полученных полых керамических микросфер выделяют фракцию со средним расчетным диаметром D1, плотность которой равна расчетной величине ρ1. 7 ил.

Изобретение относится к области получения стержней для изготовления композиционных стеклометаллических микрошариков, которые могут быть использованы в дорожном строительстве в качестве светоотражающих элементов дорожной разметки. Техническим результатом изобретения является повышение качества стержней, снижение трудоемкости изготовления, возможность использования двух и более металлов. В способе для изготовления стержней, предназначенных для получения микрошариков, используют стеклянные трубочки диаметром 2-4 мм, один конец которых запаивают парафином, заполняют смесью стеклопорошка и порошков как минимум двух металлов. Затем запаивают второй конец и обрабатывают плазменным факелом при температуре 7000-9000 К. 2 табл., 3 пр.

Изобретение относится к технологии получения кремнеземных микрошариков высокого качества для использования в различных отраслях, связанных с применением мелкодисперсных наполнителей. Техническим результатом изобретения является получение микрошариков высокой степени чистоты. Для получения микрошариков используют высокочистое исходное сырье, полученное из кварца Кыштымского ГОК, при дополнительном очищении материала в плазме, при высокой мощности плазмотрона (от 100 кВт), с возможностью повторной сфероидизации. Одновременно получают побочный продукт в виде аэросила SiO2, защищающего микрошарики от загрязнения продуктами стенок камеры. Первый вариант способа включает индукционную плазменную обработку исходного сырья, которое допируют отбеливающими агентами, например натриевым жидким стеклом. После плазменной обработки и охлаждения осуществляют сбор всех продуктов на выходе плазмотрона и сортируют по виду и фракциям. Второй вариант способа включает использование в качестве шихты аэросила, полученного в индукционном плазмотроне при обработке высокочистого кварцевого сырья, в которую добавляют корунд, шихту обрабатывают в индукционном плазмотроне, а на выходе получают микрошарики, имеющие вид наноплетеных клубочков. 6 н. и 5 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к промышленности строительных материалов, а именно к производству полых стеклянных микросфер (ПСМ) с аморфной структурой, которые могут использоваться в качестве различных наполнителей. Способ изготовления полых стеклянных микросфер включает измельчение исходных компонентов шихты из стекольных отходов, кварцполевошпатного песка и порообразователя, сушку, грануляцию высушенного порошка, варку стекла из полученных гранул, грануляцию расплава стекла в воду, его помол и последующую термообработку стеклопорошка. Измельчение производят путем последовательного сухого и мокрого помола исходных компонентов шихты до фракции менее 5 мкм, причем на стадии мокрого помола в шихту дополнительно вводят колеманит при следующем соотношении компонентов, мас.%: кварцполевошпатный песок 57-75, стекольные отходы 1-19, порообразователь 1-4, колеманит 5-20. Техническим результатом изобретения является получение упрочненных стеклянных микросфер со средней плотностью менее 0,3 г/см3. 3 пр., 1 табл.

Изобретение относится к полым микросферам. Технический результат изобретения заключается в повышении прочности и снижении плотности микросфер. Полые микросферы имеют плотность менее 1,25 г/см3, прочность свыше 20 МПа при сокращении объема на 20%. Способ изготовления полых микросфер включает обеспечение состава исходного сырья, включающего частицы вторичного стекла, формирование водной дисперсии частиц вторичного стекла и как минимум оксида бора или борной кислоты, сушку распылением водной дисперсии для формирования сферических стеклянных агломератов с последующим нагревом агломератов для формирования полых микросфер. 2 н. и 5 з.п. ф-лы, 1 ил., 11 табл., 18 пр.

Изобретение относится к стеклянным микрошарикам, которые могут быть использованы при разметке поверхности дорог и при изготовлении свето-возвращающих устройств. Технический результат предложенного решения - повышение коэффициента световозвращения. Стеклянный микрошарик изготовлен из прозрачного стекла. Поверхность микрошарика аппретирована составом, включающим оптический отбеливатель и промотор адгезии. 4 з.п. ф-лы, 1 ил.
Наверх