Способ поиска залежей углеводородов в породах фундамента


 


Владельцы патента RU 2507547:

Сахипов Дамир Мидхатович (RU)

Изобретение относится к способам поиска залежей нефти и газа и может быть использовано для обнаружения углеводородного сырья в породах фундамента. Сущность: в антиклинальные поднятия (купола) известных залежей углеводородов бурят новые скважины, вскрывающие нижележащие породы фундамента, или углубляют существующие скважины. Фиксируют глубины (участки) наибольшего поглощения бурового раствора и вызывают приток. По результатам гидродинамических и физико-химических исследований определяют продуктивность, гидродинамические свойства исследуемых участков (пластов) и содержащихся в них углеводородов. Технический результат: уменьшение объемов бурения, установление новых перспективных на углеводородное сырье участков. 1 з.п. ф-лы.

 

Изобретение относится к способам поиска залежей нефти и газа и может быть использовано для обнаружения углеводородного сырья в породах фундамента уже под известными (открытыми) залежами нефти и газа.

Известен способ обнаружения нефтегазосодержащих толщ путем выполнения комплексных геофизических исследований (гравиметрической и аэромагнитометрической съемки) с выделением контура аномальных зон, который отождествляют с контуром залежи полезного ископаемого (патент РФ 2050015, G01V 11/0).

Недостатком способа является его трудоемкость и невозможность прогнозирования и поиска месторождений углеводородного сырья в породах фундамента.

Наиболее близким является способ поиска залежей углеводородов для обнаружения углеводородного сырья в породах фундаментов тафрогенных структур нефтегазоносных регионов (патент РФ 2194293, G01V 11/00). В способе поиска залежей в качестве перспективных районов выбирают нефтегазоносные районы с фундаментом, представляющем собой тафрогенную структуру. Производят измерение магнитных и гравитационных полей. Выявляют наличие кислых экструзивных куполов в породах фундамента по совпадению отрицательных аномалий магнитного и гравитационного полей. Выбирают места заложения проверочных скважин в центральной зоне экструзивных куполов.

Недостатком способа является наличие трудоемких измерений и необходимость бурения проверочных скважин.

Задачей изобретения является сокращение затрат путем уменьшения объема бурения и установление новых перспективных на углеводородное сырье участков (пластов) фундамента в антиклинальных поднятиях под существующими месторождениями (залежами) углеводородов.

Поставленная задача (способ) реализуется следующим образом. В антиклинальные поднятия известных залежей углеводородов бурятся новые, либо углубляются существующие скважины, вскрывающие нижележащие породы фундамента. В результате бурения фиксируются глубины (участки) наибольшего поглощения бурового раствора. После бурения скважины обсаживаются обсадной колонной. Последовательно снизу вверх перфорируются глубины (участки) с наибольшим поглощением бурового раствора и вызывается приток. По результатам гидродинамических и физико-химических исследований определяется продуктивность, гидродинамические свойства исследуемых участков (пластов) и содержащихся в них углеводородов.

В процессе поиска известных решений не обнаружено выше предложенного способа поиска углеводородов в породах фундамента. Это позволяет сделать вывод о соответствии заявленного способа как изобретение.

Для доказательства соответствия заявленного как изобретение приводим конкретные примеры осуществления способа. Открытие в 1988 году в породах фундамента месторождения «Белый Тигр» под известными с 1975 года залежами нефти в антиклинальных поднятиях над фундаментом.

Использование разработанного способа позволит с наименьшими затратами увеличивать запасы углеводородов уже под открытыми месторождениями (залежами) нефти и газа.

Предложенный способ может быть использован для поиска новых залежей углеводородов уже под известными (открытыми) залежами нефти и газа.

1. Способ поиска залежей углеводородов в породах фундамента, отличающийся тем, что в антиклинальные поднятия (купола) известных залежей углеводородов бурятся новые либо углубляются существующие скважины, вскрывающие нижележащие породы фундамента, фиксируются глубины (участки) наибольшего поглощения бурового раствора и вызывается приток, по результатам гидродинамических и физико-химических исследований определяется продуктивность, гидродинамические свойства исследуемых участков (пластов) и содержащихся в них углеводородов.

2. Способ по п.1, отличающийся тем, что после бурения спускается обсадная колонна и последовательно снизу вверх перфорируются глубины (участки) с наибольшим поглощением бурового раствора и вызывается приток.



 

Похожие патенты:

Изобретение относится к способам комплексного определения металлогенической специализации базит-гипербазитовых расслоенных массивов архейских кристаллических щитов и может быть использовано для раздельного прогноза и поиска промышленных объектов платинометалльного и медно-никелевого горнорудного сырья.

Использование: изобретение относится к области сейсмологии и предназначено при изучении прогноза землетрясений. Сущность: исследования проводятся на территории измерительного полигона, например городской агломерации или важного хозяйственного объекта, определяют M - магнитуду и t - время землетрясения известными мониторинговыми наблюдениями с аппаратурой, размещаемой в пределах территории измерительного полигона.

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6 корреляторы, первый 3.1 и второй 3.2 преобразователи аналог-код, первый 3.3 и второй 3.4 ключи, формирователь 3.6 модулирующего кода, задающий генератор 3.6, фазовый манипулятор 3.7, усилитель 3.8 мощности, передающую антенну 3.0, перемножители 5.1 и 6.1, фильтры 5.2 и 6.2 нижних частот, экстремальные регуляторы 5.3 и 6.3, регулируемые линии задержки 5.4 и 6.4.

Изобретение относится к области глубинного структурного картирования поднятий, перспективных на нефть и газ. Сущность: проводят сейсмические измерения МОГТ на площади, перспективной в нефтегазоносном отношении.

Изобретение относится к нефтяной геологии и может быть использовано при поиске углеводородных залежей. Сущность: посредством многоразовых сорберов-сборщиков, расположенных в почвенных отверстиях глубиной порядка 0,5 м, осуществляют сорбцию углеводородных газов.

Изобретение относится к области сейсмологии и может быть использовано для краткосрочного прогнозирования землетрясений. Сущность: посредством группы фотометров, разнесенных в пространстве, измеряют оптическую плотность атмосферы.

Изобретение относится к области изучения геофизических свойств морского дна. Сущность: устройство содержит опускаемый на дно контейнер (1) с исследовательской аппаратурой, снабженный средствами гидроакустической связи (2), радиосвязи (3) и навигации.

Изобретение относится к области тектонофизики и может быть использовано при проведении прогнозных и поисковых работ на коренные источники алмазов. .

Изобретение относится к области геофизики и может быть использовано для прогнозирования землетрясений. .

Изобретение относится к методам поисков и разведки месторождений алмазов и может быть использовано при проведении поиска площадей алмазоносных туффизитов. .

Изобретение относится к области геофизики и может быть использовано для прогнозирования места и тренда (увеличения или уменьшения) сейсмической опасности. Сущность: осуществляют мониторинг ситуации, по крайней мере, в одной зоне ожидаемого сейсмического события, принадлежащей исследуемому сейсмоактивному региону. Формируют в сейсмоактивном регионе наблюдательную сеть из «n» пунктов, разнесенных друг от друга. Одновременно и непрерывно измеряют контролируемый параметр, характеризующий процессы в Земной коре, во всех пунктах наблюдательной сети. Определяют область с повышенной сейсмической активностью по результатам сравнения измеренного контролируемого параметра с пороговым значением, определяемым на основе статистического анализа значений контролируемого параметра для предыдущих сейсмических событий в сейсмоактивном регионе. При этом измерение контролируемого параметра на всех «n» пунктах наблюдательной сети осуществляют с постоянным и одинаковым для всех станций шагом дискретизации по времени Δt и регистрируют его в виде электрического сигнала. Формируют для исследуемого сейсмоактивного региона регулярную сеть, причем каждому из узлов сети принадлежит прилегающая к нему зона исследуемого сейсмоактивного региона. Выбирают временное окно, осуществляют обработку электрических сигналов, полученных от указанных «n» пунктов. На основе указанных сигналов вычисляют одновременно во всех пунктах измерения для каждого узла регулярной сетки в указанном временном окне медианы нормализованной энтропии шума по некоторому числу изменений контролируемого параметра. На основе полученных результатов строят матрицу значений медиан нормализованной энтропии, соответствующих указанному текущему временному окну. Визуализируют данную матрицу как карту, при этом область с повышенной сейсмической активностью определяют как совокупность зон, прилегающих к узлам регулярной сети, для которых нормализованная энтропия превышает пороговое значение. Технический результат: повышение точности предсказания зоны предстоящего землетрясения, возможность оценки тренда увеличения или уменьшения сейсмической опасности. 1 з.п. ф-лы, 2 ил.

Изобретение относится к способам количественной оценки природных процессов и может быть использовано для определения массового расхода водяного пара на вулканах. Сущность: на видимом участке парового шлейфа вулкана измеряют его поперечное сечение, скорость потока и температуру. В окружающем воздухе измеряют влажность, температуру и атмосферное давление. По измеренным величинам рассчитывают недосыщенность воздуха при температуре парового шлейфа. Используя значения недосыщенности воздуха, рассчитывают массовый расход водяного пара. Технический результат: снижение трудозатрат при определении массового расхода водяного пара на вулканах.

Изобретение относится к области поисков месторождений углеводородов. Сущность: бурят серию шурфов до глубины 1-3 м. Отбирают пробы газовой среды барботированием через минерализованную воду и анализируют углеводородные газы. Кроме того, анализируют газовоздушную смесь внутри шурфов на наличие гелия, радона, водорода, азота, диоксида углерода и кислорода. Область с наиболее благоприятными содержаниями гелия, радона, азота, диоксида углерода, кислорода и углеводородных газов относят к месторождению нефти и газа. Технический результат: реализация поисков углеводородов. 1 ил.

Изобретение относится к исследованию скважин и может быть использовано для непрерывного контроля параметров в скважине. Техническим результатом является упрощение конструкции системы наблюдения за параметрами в скважине. Предложена система наблюдения в скважине, включающая датчики, в частности, давления и температуры, кабель, соединяющий скважинную систему наблюдения и устье скважины. При этом устье скважины содержит электрический вывод устья, имеющий телеметрическую систему сбора данных и источник питания для скважинной системы наблюдения. Кроме того, электрический вывод устья содержит командный модуль для скважинной системы наблюдения и модуль хранения данных с микропроцессором. 4 н. и 20 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам для зондирования гидросферы. Заявлен термозонд для измерения вертикального распределения температуры воды, состоящий из корпуса, представляющего собой жесткую конструкцию, снабженного стабилизатором и размещенного в кассете, снабженной механизмом расчленения с корпусом термозонда. Внутри корпуса термозонда размещены два первичных преобразователя температуры, два измерительных генератора, линии связи, два фильтра, два преобразователя частота - напряжение и регистратор, а также датчик глубины, датчик электропроводности и измеритель течения. Корпус в нижней части снабжен якорь-грузом с гидроакустическим размыкателем и приемопередающей антенной гидроакустического канала связи. В верхней части корпуса термозонда размещена антенна радиопередатчика спутникового радиоканала связи, который размещен внутри корпуса термозонда. Технический результат - расширение функциональных возможностей устройства. 2 ил.

Изобретение относится к области геологии и может быть использовано для выявления и оценки динамического влияния активного разлома земной коры. Сущность: отбирают пробы воздуха из почвенного слоя в выбранных точках исследуемой территории. Анализируют отобранные пробы, определяя объемную активность радона. По уровню среднего арифметического значения объемной активности радона оконтуривают приразломную аномалию. Рассчитывают пространственные и количественные соотношения аномалии радона с полем приразломной трещиноватости. Затем производят оценку показателя радоновой активности разлома, а также оценку ширины зоны динамического влияния разлома на участке исследования. Технический результат: повышение достоверности определения зон активных разрывных деформаций земной коры. 1 ил.
Изобретение относится к области сейсмологии и может быть использовано для предсказания возможности возникновения землетрясений в пределах коллизионных зон континентов. Сущность: на основе многолетнего мониторинга определяют среднегодовые содержания в приземной атмосфере следующих поллютантов: пыль, оксиды углерода, азота и серы. В случае увеличения в приземной атмосфере годового суммарного содержания указанных поллютантов более чем на 20% по сравнению со среднегодовым значением, полученным за период проведенного мониторинга, делают вывод о возможности возникновения землетрясения. Технический результат: предсказание возможности возникновения землетрясений в пределах коллизионных зон континентов. 1 з.п.ф-лы.

Изобретение относится к области нефтегазовой геологии и может быть использовано для прогноза и поисков месторождений углеводородов в ловушках антиклинального типа. Сущность: на основе структурных карт и сейсмогеологических профилей по ранее выполненным сейсморазведочным исследованиям в пределах ранее изученных участков исследуемой нефтегазоносной провинции (НГП) определяют стратиграфический интервал вниз по геологическому разрезу, до которого четко наблюдается удовлетворительное пространственное соответствие морфологии дневной поверхности с морфологией палеорельефов литостратиграфических (сейсмостратиграфических) горизонтов. Сканируют топографические карты всех масштабов от 1:25000 до 1:1000000 и в этих же масштабах схему ранее выявленных месторождений (если они есть) по всей территории намеченных работ. Разбраковывают по топографическим картам территорию исследования на участки по степени относительной расчлененности рельефа, которая выражается шириной водораздельных пространств, которые определяют в основном морфоскульптуру дневной поверхности. При этом ширина водораздельных пространств, измеряемая многими десятками километров и даже более ста километров, указывает на перспективность участка на поиски гигантских и крупных месторождений углеводородов. Участки, в пределах которых ширина водораздельных пространств характеризуется значениями до первых десятков километров, перспективны на выявление преимущественно мелких и средних месторождений углеводородов. Разбраковывают территорию исследования на участки по относительной высоте рельефа. При этом участки с относительно большей высотой рельефа указывают на относительно большую амплитуду рельефа поверхностей по нижезалегающим литостратиграфическим комплексам, что предполагает вероятность открытия более высокоамплитудных месторождений углеводородов. По результатам разбраковок территории по указанным параметрам выделяют участки, перспективные на открытие гигантских, крупных, средних и мелких месторождений углеводородов. По результатам выполненного анализа выбирают участок, соответствующий решаемым задачам, в пределах которого будут выполняться прогноз и последующие поиски соответствующих месторождений углеводородов по топографическим картам масштаба 1:25000. Измеряют значения длинной и короткой осей выявленных ранее месторождений углеводородов и значения их сумм для каждого месторождения. Сопоставляют схемы в масштабе 1:25000 всех ранее выявленных месторождений углеводородов в пределах изучаемой нефтегазоносной провинции, области или района с топографической картой аналогичного масштаба с целью выяснения степени соответствия в плане контуров выявленных месторождений с контурами локальных положительных форм современного рельефа. По результатам этого сопоставления проводят разбраковку ранее выявленных месторождений углеводородов на три группы: на месторождения, плановое положение контура которых практически точно совпадает с контуром соответствующих им локальных положительных форм рельефа; на месторождения, плановое положение которых смещено на расстояние, не превышающее половины величины соответствующего линейного размера локальной положительной формы дневной поверхности; и на месторождения, плановое положение которых смещено на расстояние, превышающее величину соответствующего линейного размера локальной положительной формы дневной поверхности. Находят для каждого месторождения последней группы значения суммы их линейных размеров, при этом максимальное значение суммы линейных размеров месторождения определяют как «критическое». Делают вывод о том, что для месторождений, у которых значение суммы их линейных размеров соответствует или меньше критического значения, достоверность прогноза по данному способу в пределах данной территории не достаточна. Выявляют по топографической карте локальные положительные формы дневной поверхности, значение суммы линейных размеров которых превышает критическое значение. Делают вывод о том, что этим локальным положительным формам дневной поверхности в плане по регионально продуктивным отложениям соответствуют примерно такие же по линейным размерам, ориентировке и конфигурации месторождения углеводородов. Замеряют площадь спрогнозированных месторождений и определяют величины прогнозных ресурсов углеводородов в них по устанавливаемой для каждой НГП эмпирической зависимости между площадью месторождений и их запасами. Исходя из размеров, конфигурации и ориентировки короткой и длинной осей выявленных положительных форм современного рельефа, проектируют все параметры сети поисковых сейсмопрофилей. При этом для гигантских и крупных антиклинальных ловушек размер сейсмопрофилей, параллельных длинной оси ловушки, должен составлять удвоенный размер длинной оси положительной формы рельефа, а размер сейсмопрофилей, параллельных короткой оси ловушки, должен составлять трехкратный размер короткой оси положительной формы рельефа. Для средних и мелких ловушек размер сейсмопрофилей, параллельных длинной оси ловушки, должен составлять утроенный размер длинной оси положительной формы рельефа, а размер сейсмопрофилей, параллельных короткой оси ловушки, должен составлять пятикратный размер короткой оси положительной формы рельефа. При этом одну часть сейсмопрофилей проектируют перпендикулярно короткой оси спрогнозированного месторождения, а другую - перпендикулярно длиной его оси. По спроектированной сети сейсмопрофилей выполняют сейсморазведочные наблюдения по каждому из спрогнозированных месторождений углеводородов. Строят по целевым отражающим горизонтам структурные карты, на основе которых рекомендуют и закладывают поисковые скважины. Технический результат: повышение достоверности прогнозирования, уменьшение объемов поисковых работ. 8 ил.

Изобретение относится к области маркшейдерско-геодезического мониторинга и может быть использовано для обеспечения безопасности разработки месторождений нефти и газа. Согласно заявленному решению на исследуемой территории проводят геодезические измерения и определяют смещения Ngeod геодезических реперов на север U i n , восток U i e и по вертикали U i v (i=1, 2,…, Ngeod). За тот же интервал времени определяют смещения Nsat устойчиво отражающих площадок в направлении на спутник U j L O S (j=1, 2,…, Nsat) с помощью радарной спутниковой интерферометрии. После чего осуществляют разбивку разрабатываемого месторождения на K элементарных объемов. Рассчитывают смещения в точке j-й устойчиво отражающей площадки в направлении на спутник V j , k L O S , которые возникают в результате увеличения давления на единицу в k-м элементарном объеме, и смещения в точке i-го геодезического репера соответственно на север, восток и по вертикали V i , k n , V i , k e и V i , k v , которые возникают в результате увеличения давления на единицу в k-м элементарном объеме. Определяют в каждом объеме изменения давления ΔPk. После чего определяют три компоненты вектора смещений земной поверхности. Технический результат - повышение точности определения смещений земной поверхности. 4 ил.

Изобретение относится к области разведочной геологии и может быть использовано для определения различных свойств углеводородных пластовых флюидов. В заявленном изобретении раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во флюидах. Раскрытая, являющая примером установка включает в себя скважинный узел и наземный узел. Скважинный узел 300 включает в себя датчик 305, 325 для измерения колебательного сигнала, представляющего перемещение струны, вибрирующей во флюиде, на внутрискважинном месте в стволе скважины, устройство 332 моделирования колебательного сигнала для вычисления модельного параметра на основании измеряемого колебательного сигнала и первый телеметрический модуль 340 для передачи вычисляемого модельного параметра к месту на земной поверхности. Наземный узел включает в себя второй телеметрический модуль для приема вычисляемого модельного параметра от скважинного узла и анализатор вязкости для оценивания вязкости флюида на основании вычисляемого модельного параметра. Способ обработки измерений струн, вибрирующих во флюиде, включает операцию измерения колебательного сигнала и вычисление модельного параметра вибрации струны на основании измеряемого колебательного сигнала. Данный модельный параметр используется для определения вязкости пластового флюида. Технический результат - повышение точности определения свойств пластовых флюидов. 5 н. и 27 з.п. ф-лы, 7 ил.
Наверх