Способ динамической оценки сейсмической опасности



Способ динамической оценки сейсмической опасности
Способ динамической оценки сейсмической опасности

 


Владельцы патента RU 2510053:

Федеральное государственное бюджетное учреждение науки Институт физики Земли им. О.Ю. Шмидта Российской академии наук (ИФЗ РАН) (RU)

Изобретение относится к области геофизики и может быть использовано для прогнозирования места и тренда (увеличения или уменьшения) сейсмической опасности. Сущность: осуществляют мониторинг ситуации, по крайней мере, в одной зоне ожидаемого сейсмического события, принадлежащей исследуемому сейсмоактивному региону. Формируют в сейсмоактивном регионе наблюдательную сеть из «n» пунктов, разнесенных друг от друга. Одновременно и непрерывно измеряют контролируемый параметр, характеризующий процессы в Земной коре, во всех пунктах наблюдательной сети. Определяют область с повышенной сейсмической активностью по результатам сравнения измеренного контролируемого параметра с пороговым значением, определяемым на основе статистического анализа значений контролируемого параметра для предыдущих сейсмических событий в сейсмоактивном регионе. При этом измерение контролируемого параметра на всех «n» пунктах наблюдательной сети осуществляют с постоянным и одинаковым для всех станций шагом дискретизации по времени Δt и регистрируют его в виде электрического сигнала. Формируют для исследуемого сейсмоактивного региона регулярную сеть, причем каждому из узлов сети принадлежит прилегающая к нему зона исследуемого сейсмоактивного региона. Выбирают временное окно, осуществляют обработку электрических сигналов, полученных от указанных «n» пунктов. На основе указанных сигналов вычисляют одновременно во всех пунктах измерения для каждого узла регулярной сетки в указанном временном окне медианы нормализованной энтропии шума по некоторому числу изменений контролируемого параметра. На основе полученных результатов строят матрицу значений медиан нормализованной энтропии, соответствующих указанному текущему временному окну. Визуализируют данную матрицу как карту, при этом область с повышенной сейсмической активностью определяют как совокупность зон, прилегающих к узлам регулярной сети, для которых нормализованная энтропия превышает пороговое значение. Технический результат: повышение точности предсказания зоны предстоящего землетрясения, возможность оценки тренда увеличения или уменьшения сейсмической опасности. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к геофизике и может быть использовано для прогнозирования места и тренда (увеличения или уменьшения) сейсмической опасности.

Известен способ прогнозирования землетрясений, основанный на совместной оценке геофизических, сейсмологических и гидрологических данных (см. F.A.McKeown, S.F.Diehl. Evidence of Contemporary and Ancient Excess Fluid Pressure in the New Madrid Seismic Zone of the Reelfoot Rift, Central United States. U.S.Geological Survey Professional Paper 1538-N, Washington, 1994), согласно которому о наличии сейсмически активных зон судят по результатам регистрации избыточного давления флюидов, которое должно превышать гидростатическое давление в горных породах, причем условием однозначной оценки наличия сейсмически активной зоны является характер структурных разрушений горных пород в районе, где зарегистрировано избыточное давление флюидов.

Недостаток данного способа заключается в том, что он выделяет сейсмоактивную область по ретроспективным данным и не обеспечивает возможности достоверного прогноза и локализации очаговой области ввиду того, что не осуществляется непрерывное измерение флюидной динамики и не обеспечивается достоверность получаемых оценок.

Наиболее близким аналогом является способ оперативного прогноза землетрясений, включающий проведение синхронных измерений интенсивности естественных импульсных электромагнитных полей Земли (ЕИЭМПЗ) в нескольких пунктах контролируемого региона, при этом измерения в каждой точке ведут не менее чем в двух различных направлениях приема сигналов, а чувствительность регистрирующих станций выбирают в соответствии с местными геофизическими условиями таким образом, чтобы регистрируемая станциями интенсивность ЕИЭМПЗ была близка по своим значениям к интенсивности типичного суточного хода ЕИЭМПЗ, выделяют аномальную территорию по наличию скачкообразного изменения интенсивности (Патент RU 2238575 С2, МПК8 G01V 9/00, опубл. 20.10.2004).

Недостатком данного способа является низкая точность прогнозирования предстоящих землетрясений в сейсмоактивных зона.

Задачей настоящего изобретения является разработка способа динамического прогнозирования сейсмического события, например землетрясения или извержения вулкана, который даст возможность на основе измерений процессов, происходящих в земной коре в сейсмоопасной зоне, определить область, в которой может произойти землетрясение, определить тренд (уменьшение или увеличение) сейсмической опасности.

Техническим результатом является повышение точности предсказания зоны предстоящего землетрясения и возможность оценки тренд увеличения или уменьшения сейсмической опасности.

Указанный технический результат обеспечивается тем, что в способе динамической оценки сейсмической опасности, в котором осуществляют мониторинг ситуации, по крайней мере, в одной зоне ожидаемого сейсмического события, принадлежащей исследуемому сейсмоактивному региону, формируют в сейсмоактивном регионе наблюдательную сеть из «n» пунктов, разнесенных друг от друга, одновременно и непрерывно измеряют, по крайней мере, один контролируемый параметр во всех пунктах наблюдательной сети, характеризующий процессы в земной коре, определяют область с повышенной сейсмической активностью по результатам сравнения, по крайне мере, одного измеренного контролируемого параметра, характеризующего процессы в Земной коре, с пороговым значением, определяемым на основе статистического анализа значений контролируемого параметра для предыдущих сейсмических событий в сейсмоактивном регионе, измерение, по крайней мере, одного контролируемого параметра, характеризующего процессы в земной коре, на всех «n» пунктах наблюдательной сети осуществляют с постоянным и одинаковым для всех станций шагом дискретизации по времени At и регистрируют их в виде электрического сигнала, формируют для исследуемого сейсмоактивного региона регулярную сеть из N×M узлов, где N - количество узлов в направлении изменения долготы и М - количество узлов в направлении изменения широты, покрывающей исследуемый сейсмоактивный регион, причем каждому из этих узлов принадлежит прилегающая к нему зона исследуемого сейсмоактивного региона, выбирают временное окно, состоящее из заданного числа L, где L≥64, последовательных временных отсчетов с шагом дискретизации At, осуществляют обработку электрических сигналов, полученных от указанных «n» пунктов, на основе которых вычисляют одновременно во всех пунктах измерения для каждого узла (i,j), где ≤i≤N, ≤j≤М, регулярной сетки в указанном временном окне медианы нормализованной энтропии E ¯ n ( i , j ) шума по некоторому числу v, где v≥3 изменений контролируемого, по крайней мере, одного параметра, характеризующего процессы в земной коре, после удаления тренда полиномом заданного порядка, одинакового для всех пунктов измерения, по формуле

E n = k = 1 N p k log ( p k ) / log ( N ) , 0≤En≥1,

где p k = c k 2 / j = 1 N c j 2 cj - вейвлет-коэффициенты ортогонального вейвлета из некоторого набора (словаря) базисов, найденного из условия минимума величины En, на основе которых строят матрицу значений медиан нормализованной энтропии, соответствующих указанному текущему временному окну, визуализируют ее как карту, при этом область с повышенной сейсмической активностью определяют как совокупность зон, прилегающих к узлам (i,j) регулярной сети, для которых нормализованная энтропия E ¯ n ( i , j ) превышает пороговое значение En, при этом оценивают силу будущего землетрясения по размеру области с повышенной нормализованной энтропией.

Кроме того, в способе динамической оценки сейсмической опасности в качестве контролируемого параметра используют параметр из списка: микросейсмические колебания, изменение напряженности магнитного поля Земли, изменение напряженности электромагнитного поля Земли, колебания уровня подземных вод, колебания давления подземных вод, концентрацию одного или нескольких растворенных в подземных водах газов, например углекислого газа, метана, водорода, радона.

На фиг.1 представлены карты распределения значений нормализованной энтропии для двух промежутков времени, указанных в подрисуночной подписи.

На фиг.2 - усредненные карты распределения нормализованной энтропии волновых форм сейсмического шума на Японских островах для 4-х временных фрагментов примерно одинаковой длины после японского мегаземлетрясения 11 марта 2011 года.

Способ динамической оценки сейсмической опасности осуществляется следующим образом.

Выбирают, по меньшей мере, один контролируемый параметр, из числа параметров, характеризующих процессы в земной коре, для мониторинга ситуации, по меньшей мере, в одной зоне ожидаемого сейсмического события, принадлежащей исследуемому сейсмоактивному региону. Формируют в исследуемом сейсмоактивном регионе наблюдательную сеть из «n» пунктов измерения, по меньшей мере, этого одного контролируемого параметра, при этом в исследуемом сейсмоактивном регионе пункты измерения контролируемого параметра разнесены относительно друг друга, Измерения контролируемого параметра выполняются непрерывно и одновременно на всех «n» пунктах измерения наблюдательной сети с постоянным и одинаковым для всех станций шагом дискретизации по времени Δt и регистрируют их в виде электрического сигнала. Формируют для исследуемого сейсмоактивного региона регулярную сеть из N×M узлов, где N - количество узлов в направлении изменения долготы и М - количество узлов в направлении изменения широты, покрывающей исследуемый сейсмоактивный регион, причем каждому из этих узлов соответствует прилегающая к нему одна зона исследуемого сейсмоопасного региона. Осуществляют обработку данных, полученных от указанных «n» пунктов измерения, для определения риска появления предстоящего сейсмического события, его местоположения, времени и силы, включающую выбор временного окна, состоящего из заданного числа L последовательных временных отсчетов с шагом дискретизации Δt, причем L≥64 и определение для каждого узла (i,j), 1≤i≤N, 1≤j≤М, регулярной сетки из N×М узлов медианы нормализованной энтропии E ¯ n ( i , j ) шума изменений контролируемых параметров по некоторому числу v (v≥3) ближайших к узлу (i,j) пунктов измерения среди общего числа n пунктов измерения, покрывающих исследуемый сейсмоактивный регион.

Нормализованную энтропию шума En в каждом пункте измерения вычисляют по формуле:

E n = k = 1 N p k log ( p k ) / log ( N ) , 0≤En≥1,

и где p k = c k 2 / j = 1 N c j 2 , cj - вейвлет-коэффициенты ортогонального вейвлета из некоторого набора (словаря) базисов, найденного из условия минимума величины En; набор ортогональных вейвлетов (словарь базисов) состоит из 17 вейвлетов Добеши: 10 обычных вейвлетов с числом обнуляемых моментов от 1 до 10 и 7 так называемых симлетов Добеши с числом обнуляемых моментов от 4 до 10.

Величины нормализованной энтропии En вычисляют одновременно во всех пунктах измерения в одном и том же временном окне длиной L отсчетов после удаления тренда полиномом заданного порядка, одного и того же для всех пунктов измерения, что обеспечивает выделение шума сигналов, получаемых от сети геофизического мониторинга.

Таким образом, после вычисления медианы величин En от v ближайших к каждому узлу (i,j) станций получается матрица E ¯ n ( i , j ) значений медиан нормализованных энтропии, соответствующих текущему временному окну длиной L отсчетов, которую визуализируют как карту.

Совокупность зон, прилегающих к узлам (i,j) регулярной сети, для которых нормализованная энтропия En превышает пороговое значение En* En(i,j)≥En*, определяет подобласть исследуемого региона, оцениваемую как область с повышенной сейсмоопасностью в пределах текущего скользящего временного окна, причем пороговое значение определяют на основе статистического анализа значения En для предыдущих сейсмических событий в этом сейсмоактивном регионе, при этом силу будущего землетрясения оценивают по размеру области с повышенной нормализованной энтропии.

Предпочтительно в качестве контролируемых параметров используют, по крайней мере, один или несколько из следующих параметров: микросейсмические колебания, изменение напряженности магнитного поля Земли, изменение напряженности электромагнитного поля Земли, колебания уровня подземных вод, колебания давления подземных вод, концентрацию одного или нескольких растворенных в подземных водах газов, например углекислого газа, метана, водорода, радона, при этом при обработке данных, полученных от указанных пунктов измерения, используют измерения одного из указанных контрольных параметров, либо при обработке данных, полученных от указанных n пунктов измерения, используют измерения разных указанных контрольных параметров.

В качестве примера реализации изобретения рассмотрим выполненный автором мониторинг ситуации в сейсмоопасном регионе - японских островах в регионе от 30° до 46° с.ш. и от 128° до 146° в.д. В данном регионе имеется развитая сеть пунктов измерения контрольных параметров, характеризующих процессы в земной коре. В качестве контрольного параметра использовали микросейсмические колебания, но можно использовать и иные параметры: изменение напряженности магнитного поля Земли, изменение напряженности электромагнитного поля Земли, колебания уровня подземных вод, колебания давления подземных вод, концентрацию одного или нескольких растворенных в подземных водах газов, например углекислого газа, метана, водорода, радона. Применительно к исследуемому сейсмоопасному региону сформировали регулярную сеть, состоящую из 30×30 узлов, каждому из которых соответствует прилегающая к нему зона сейсмоопасного региона, имеющая те же размеры.

Для мониторинга состояния среды в районе Японии использовались низкочастотные микросейсмические колебания, содержащие информацию о процессах в земной коре. Фактически земная кора является средой распространения колебаний при воздействии на нее атмосферных и океанических процессов. Поскольку передаточные свойства коры зависят от ее состояния, можно ожидать, что статистические свойства микросейсмических колебаний отражают изменения свойств литосферы.

Данные широкополосной сейсмической сети F-net свободно доступны в Интернете по адресу http://www.fnet.bosai.go.ip/top.php?LANG=en. Общее число станций равно 83. Наблюдения ведутся с 1997 года по настоящее время. Анализируемые данные - вертикальные компоненты с шагом по времени 1 сек, которые преобразовывались к шагу по времени 1 минута путем вычисления средних значений в последовательных временных фрагментах длиной 60 значений. Далее рассматривались лишь станции, расположенные выше 30° с.ш., что исключает из анализа данные 6 уединенных станций, расположенных на удаленных небольших островах.

Карты строились путем усреднения ежесуточных карт внутри указанных промежутков времени. Каждая суточная карта нормализованной энтропии вычислялась как матрица медианных значений E ¯ n ( i , j ) для каждого узла (i,j), 1≤i≤N, 1≤j≤M, регулярной сетки из N×M узлов, N=30, M=30. Медианы брались по 5 станциям (v=5), ближайшим к каждому узлу (i,j).

Нормализованные энтропии шума вычислялись в последовательных окнах длиной 1 сутки (1440 минут, то есть L=1440) после удаления в каждом окне тренда полиномом 8-го порядка.

При этом силу будущего землетрясения оценивают по размеру области с повышенной нормализованной энтропии.

На фиг. 1 видно, что область подготовки Великого Японского землетрясения 11 марта 2011 года до события 25 сентября 2003 года представляла собой единую область повышенных значений нормализованной энтропии шума. Однако после 25 сентября 2003 года эта область распалась на 2 части, причем Северная часть реализовалась как область мегаземлетрясения.

Из фиг.2 видно, что область мегаземлетрясения 11 марта 2011 года после события стала характеризоваться относительно низкими значениями нормализованной энтропии шума, тогда как южная область (желоб Нанкай) по-прежнему характеризуется как область высоких значений энтропии шума, причем сами значения нормализованной энтропии там прогрессивно увеличиваются. Это говорит в пользу гипотезы, что в этой области готовится повторное мегаземлетрясение, которое может представлять большую опасность для мегаполиса Токио.

1. Способ динамической оценки сейсмической опасности, заключающийся в том, что осуществляют мониторинг ситуации, по крайней мере, в одной зоне ожидаемого сейсмического события, принадлежащей исследуемому сейсмоактивному региону, формируют в сейсмоактивном регионе наблюдательную сеть из «n» пунктов, разнесенных друг от друга, одновременно и непрерывно измеряют, по крайней мере, один контролируемый параметр во всех пунктах наблюдательной сети, характеризующий процессы в Земной коре, определяют область с повышенной сейсмической активностью по результатам сравнения, по крайне мере, одного измеренного контролируемого параметра, характеризующего процессы в Земной коре, с пороговым значением, определяемым на основе статистического анализа значений контролируемого параметра для предыдущих сейсмических событий в сейсмоактивном регионе, отличающийся тем, что измерение, по крайней мере, одного контролируемого параметра, характеризующего процессы в земной коре, на всех «n» пунктах наблюдательной сети осуществляют с постоянным и одинаковым для всех станций шагом дискретизации по времени Δt и регистрируют его в виде электрического сигнала, формируют для исследуемого сейсмоактивного региона регулярную сеть из N×M узлов, где N - количество узлов в направлении изменения долготы и М - количество узлов в направлении изменения широты, покрывающей исследуемый сейсмоактивный регион, причем каждому из этих узлов принадлежит прилегающая к нему зона исследуемого сейсмоактивного региона, выбирают временное окно, состоящее из заданного числа L, где L≥64, последовательных временных отсчетов с шагом дискретизации Δt, осуществляют обработку электрических сигналов, полученных от указанных «n» пунктов, на основе которых вычисляют одновременно во всех пунктах измерения для каждого узла (i, j), где 1≤i≤N, 1≤j≤М, регулярной сетки в указанном временном окне медианы нормализованной энтропии E ¯ n ( i , j ) шума по некоторому числу v, где v≥3 изменений контролируемого, по крайней мере, одного параметра, характеризующего процессы в Земной коре, после удаления тренда полиномом заданного порядка, одинакового для всех пунктов измерения, по формуле
где p k = c k 2 / j = 1 N c j 2 , cj - вейвлет-коэффициенты ортогонального вейвлета из некоторого набора (словаря) базисов, найденного из условия минимума величины En, на основе которых строят матрицу значений медиан нормализованной энтропии, соответствующих указанному текущему временному окну, визуализируют ее как карту, при этом область с повышенной сейсмической активностью определяют как совокупность зон, прилегающих к узлам (i, j) регулярной сети, для которых нормализованная энтропия E ¯ n ( i , j ) превышает пороговое значение Еn*.

2. Способ динамической оценки сейсмической опасности по п.1, отличающийся тем, что в качестве контролируемого параметра используют параметры из списка: микросейсмические колебания, изменение напряженности магнитного поля Земли, изменение напряженности электромагнитного поля Земли, колебания уровня подземных вод, колебания давления подземных вод, концентрацию одного или нескольких растворенных в подземных водах газов, например углекислого газа, метана, водорода, радона.



 

Похожие патенты:
Изобретение относится к способам поиска залежей нефти и газа и может быть использовано для обнаружения углеводородного сырья в породах фундамента. Сущность: в антиклинальные поднятия (купола) известных залежей углеводородов бурят новые скважины, вскрывающие нижележащие породы фундамента, или углубляют существующие скважины.

Изобретение относится к способам комплексного определения металлогенической специализации базит-гипербазитовых расслоенных массивов архейских кристаллических щитов и может быть использовано для раздельного прогноза и поиска промышленных объектов платинометалльного и медно-никелевого горнорудного сырья.

Использование: изобретение относится к области сейсмологии и предназначено при изучении прогноза землетрясений. Сущность: исследования проводятся на территории измерительного полигона, например городской агломерации или важного хозяйственного объекта, определяют M - магнитуду и t - время землетрясения известными мониторинговыми наблюдениями с аппаратурой, размещаемой в пределах территории измерительного полигона.

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6 корреляторы, первый 3.1 и второй 3.2 преобразователи аналог-код, первый 3.3 и второй 3.4 ключи, формирователь 3.6 модулирующего кода, задающий генератор 3.6, фазовый манипулятор 3.7, усилитель 3.8 мощности, передающую антенну 3.0, перемножители 5.1 и 6.1, фильтры 5.2 и 6.2 нижних частот, экстремальные регуляторы 5.3 и 6.3, регулируемые линии задержки 5.4 и 6.4.

Изобретение относится к области глубинного структурного картирования поднятий, перспективных на нефть и газ. Сущность: проводят сейсмические измерения МОГТ на площади, перспективной в нефтегазоносном отношении.

Изобретение относится к нефтяной геологии и может быть использовано при поиске углеводородных залежей. Сущность: посредством многоразовых сорберов-сборщиков, расположенных в почвенных отверстиях глубиной порядка 0,5 м, осуществляют сорбцию углеводородных газов.

Изобретение относится к области сейсмологии и может быть использовано для краткосрочного прогнозирования землетрясений. Сущность: посредством группы фотометров, разнесенных в пространстве, измеряют оптическую плотность атмосферы.

Изобретение относится к области изучения геофизических свойств морского дна. Сущность: устройство содержит опускаемый на дно контейнер (1) с исследовательской аппаратурой, снабженный средствами гидроакустической связи (2), радиосвязи (3) и навигации.

Изобретение относится к области тектонофизики и может быть использовано при проведении прогнозных и поисковых работ на коренные источники алмазов. .

Изобретение относится к области геофизики и может быть использовано для прогнозирования землетрясений. .

Изобретение относится к способам количественной оценки природных процессов и может быть использовано для определения массового расхода водяного пара на вулканах. Сущность: на видимом участке парового шлейфа вулкана измеряют его поперечное сечение, скорость потока и температуру. В окружающем воздухе измеряют влажность, температуру и атмосферное давление. По измеренным величинам рассчитывают недосыщенность воздуха при температуре парового шлейфа. Используя значения недосыщенности воздуха, рассчитывают массовый расход водяного пара. Технический результат: снижение трудозатрат при определении массового расхода водяного пара на вулканах.

Изобретение относится к области поисков месторождений углеводородов. Сущность: бурят серию шурфов до глубины 1-3 м. Отбирают пробы газовой среды барботированием через минерализованную воду и анализируют углеводородные газы. Кроме того, анализируют газовоздушную смесь внутри шурфов на наличие гелия, радона, водорода, азота, диоксида углерода и кислорода. Область с наиболее благоприятными содержаниями гелия, радона, азота, диоксида углерода, кислорода и углеводородных газов относят к месторождению нефти и газа. Технический результат: реализация поисков углеводородов. 1 ил.

Изобретение относится к исследованию скважин и может быть использовано для непрерывного контроля параметров в скважине. Техническим результатом является упрощение конструкции системы наблюдения за параметрами в скважине. Предложена система наблюдения в скважине, включающая датчики, в частности, давления и температуры, кабель, соединяющий скважинную систему наблюдения и устье скважины. При этом устье скважины содержит электрический вывод устья, имеющий телеметрическую систему сбора данных и источник питания для скважинной системы наблюдения. Кроме того, электрический вывод устья содержит командный модуль для скважинной системы наблюдения и модуль хранения данных с микропроцессором. 4 н. и 20 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам для зондирования гидросферы. Заявлен термозонд для измерения вертикального распределения температуры воды, состоящий из корпуса, представляющего собой жесткую конструкцию, снабженного стабилизатором и размещенного в кассете, снабженной механизмом расчленения с корпусом термозонда. Внутри корпуса термозонда размещены два первичных преобразователя температуры, два измерительных генератора, линии связи, два фильтра, два преобразователя частота - напряжение и регистратор, а также датчик глубины, датчик электропроводности и измеритель течения. Корпус в нижней части снабжен якорь-грузом с гидроакустическим размыкателем и приемопередающей антенной гидроакустического канала связи. В верхней части корпуса термозонда размещена антенна радиопередатчика спутникового радиоканала связи, который размещен внутри корпуса термозонда. Технический результат - расширение функциональных возможностей устройства. 2 ил.

Изобретение относится к области геологии и может быть использовано для выявления и оценки динамического влияния активного разлома земной коры. Сущность: отбирают пробы воздуха из почвенного слоя в выбранных точках исследуемой территории. Анализируют отобранные пробы, определяя объемную активность радона. По уровню среднего арифметического значения объемной активности радона оконтуривают приразломную аномалию. Рассчитывают пространственные и количественные соотношения аномалии радона с полем приразломной трещиноватости. Затем производят оценку показателя радоновой активности разлома, а также оценку ширины зоны динамического влияния разлома на участке исследования. Технический результат: повышение достоверности определения зон активных разрывных деформаций земной коры. 1 ил.
Изобретение относится к области сейсмологии и может быть использовано для предсказания возможности возникновения землетрясений в пределах коллизионных зон континентов. Сущность: на основе многолетнего мониторинга определяют среднегодовые содержания в приземной атмосфере следующих поллютантов: пыль, оксиды углерода, азота и серы. В случае увеличения в приземной атмосфере годового суммарного содержания указанных поллютантов более чем на 20% по сравнению со среднегодовым значением, полученным за период проведенного мониторинга, делают вывод о возможности возникновения землетрясения. Технический результат: предсказание возможности возникновения землетрясений в пределах коллизионных зон континентов. 1 з.п.ф-лы.

Изобретение относится к области нефтегазовой геологии и может быть использовано для прогноза и поисков месторождений углеводородов в ловушках антиклинального типа. Сущность: на основе структурных карт и сейсмогеологических профилей по ранее выполненным сейсморазведочным исследованиям в пределах ранее изученных участков исследуемой нефтегазоносной провинции (НГП) определяют стратиграфический интервал вниз по геологическому разрезу, до которого четко наблюдается удовлетворительное пространственное соответствие морфологии дневной поверхности с морфологией палеорельефов литостратиграфических (сейсмостратиграфических) горизонтов. Сканируют топографические карты всех масштабов от 1:25000 до 1:1000000 и в этих же масштабах схему ранее выявленных месторождений (если они есть) по всей территории намеченных работ. Разбраковывают по топографическим картам территорию исследования на участки по степени относительной расчлененности рельефа, которая выражается шириной водораздельных пространств, которые определяют в основном морфоскульптуру дневной поверхности. При этом ширина водораздельных пространств, измеряемая многими десятками километров и даже более ста километров, указывает на перспективность участка на поиски гигантских и крупных месторождений углеводородов. Участки, в пределах которых ширина водораздельных пространств характеризуется значениями до первых десятков километров, перспективны на выявление преимущественно мелких и средних месторождений углеводородов. Разбраковывают территорию исследования на участки по относительной высоте рельефа. При этом участки с относительно большей высотой рельефа указывают на относительно большую амплитуду рельефа поверхностей по нижезалегающим литостратиграфическим комплексам, что предполагает вероятность открытия более высокоамплитудных месторождений углеводородов. По результатам разбраковок территории по указанным параметрам выделяют участки, перспективные на открытие гигантских, крупных, средних и мелких месторождений углеводородов. По результатам выполненного анализа выбирают участок, соответствующий решаемым задачам, в пределах которого будут выполняться прогноз и последующие поиски соответствующих месторождений углеводородов по топографическим картам масштаба 1:25000. Измеряют значения длинной и короткой осей выявленных ранее месторождений углеводородов и значения их сумм для каждого месторождения. Сопоставляют схемы в масштабе 1:25000 всех ранее выявленных месторождений углеводородов в пределах изучаемой нефтегазоносной провинции, области или района с топографической картой аналогичного масштаба с целью выяснения степени соответствия в плане контуров выявленных месторождений с контурами локальных положительных форм современного рельефа. По результатам этого сопоставления проводят разбраковку ранее выявленных месторождений углеводородов на три группы: на месторождения, плановое положение контура которых практически точно совпадает с контуром соответствующих им локальных положительных форм рельефа; на месторождения, плановое положение которых смещено на расстояние, не превышающее половины величины соответствующего линейного размера локальной положительной формы дневной поверхности; и на месторождения, плановое положение которых смещено на расстояние, превышающее величину соответствующего линейного размера локальной положительной формы дневной поверхности. Находят для каждого месторождения последней группы значения суммы их линейных размеров, при этом максимальное значение суммы линейных размеров месторождения определяют как «критическое». Делают вывод о том, что для месторождений, у которых значение суммы их линейных размеров соответствует или меньше критического значения, достоверность прогноза по данному способу в пределах данной территории не достаточна. Выявляют по топографической карте локальные положительные формы дневной поверхности, значение суммы линейных размеров которых превышает критическое значение. Делают вывод о том, что этим локальным положительным формам дневной поверхности в плане по регионально продуктивным отложениям соответствуют примерно такие же по линейным размерам, ориентировке и конфигурации месторождения углеводородов. Замеряют площадь спрогнозированных месторождений и определяют величины прогнозных ресурсов углеводородов в них по устанавливаемой для каждой НГП эмпирической зависимости между площадью месторождений и их запасами. Исходя из размеров, конфигурации и ориентировки короткой и длинной осей выявленных положительных форм современного рельефа, проектируют все параметры сети поисковых сейсмопрофилей. При этом для гигантских и крупных антиклинальных ловушек размер сейсмопрофилей, параллельных длинной оси ловушки, должен составлять удвоенный размер длинной оси положительной формы рельефа, а размер сейсмопрофилей, параллельных короткой оси ловушки, должен составлять трехкратный размер короткой оси положительной формы рельефа. Для средних и мелких ловушек размер сейсмопрофилей, параллельных длинной оси ловушки, должен составлять утроенный размер длинной оси положительной формы рельефа, а размер сейсмопрофилей, параллельных короткой оси ловушки, должен составлять пятикратный размер короткой оси положительной формы рельефа. При этом одну часть сейсмопрофилей проектируют перпендикулярно короткой оси спрогнозированного месторождения, а другую - перпендикулярно длиной его оси. По спроектированной сети сейсмопрофилей выполняют сейсморазведочные наблюдения по каждому из спрогнозированных месторождений углеводородов. Строят по целевым отражающим горизонтам структурные карты, на основе которых рекомендуют и закладывают поисковые скважины. Технический результат: повышение достоверности прогнозирования, уменьшение объемов поисковых работ. 8 ил.

Изобретение относится к области маркшейдерско-геодезического мониторинга и может быть использовано для обеспечения безопасности разработки месторождений нефти и газа. Согласно заявленному решению на исследуемой территории проводят геодезические измерения и определяют смещения Ngeod геодезических реперов на север U i n , восток U i e и по вертикали U i v (i=1, 2,…, Ngeod). За тот же интервал времени определяют смещения Nsat устойчиво отражающих площадок в направлении на спутник U j L O S (j=1, 2,…, Nsat) с помощью радарной спутниковой интерферометрии. После чего осуществляют разбивку разрабатываемого месторождения на K элементарных объемов. Рассчитывают смещения в точке j-й устойчиво отражающей площадки в направлении на спутник V j , k L O S , которые возникают в результате увеличения давления на единицу в k-м элементарном объеме, и смещения в точке i-го геодезического репера соответственно на север, восток и по вертикали V i , k n , V i , k e и V i , k v , которые возникают в результате увеличения давления на единицу в k-м элементарном объеме. Определяют в каждом объеме изменения давления ΔPk. После чего определяют три компоненты вектора смещений земной поверхности. Технический результат - повышение точности определения смещений земной поверхности. 4 ил.

Изобретение относится к области разведочной геологии и может быть использовано для определения различных свойств углеводородных пластовых флюидов. В заявленном изобретении раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во флюидах. Раскрытая, являющая примером установка включает в себя скважинный узел и наземный узел. Скважинный узел 300 включает в себя датчик 305, 325 для измерения колебательного сигнала, представляющего перемещение струны, вибрирующей во флюиде, на внутрискважинном месте в стволе скважины, устройство 332 моделирования колебательного сигнала для вычисления модельного параметра на основании измеряемого колебательного сигнала и первый телеметрический модуль 340 для передачи вычисляемого модельного параметра к месту на земной поверхности. Наземный узел включает в себя второй телеметрический модуль для приема вычисляемого модельного параметра от скважинного узла и анализатор вязкости для оценивания вязкости флюида на основании вычисляемого модельного параметра. Способ обработки измерений струн, вибрирующих во флюиде, включает операцию измерения колебательного сигнала и вычисление модельного параметра вибрации струны на основании измеряемого колебательного сигнала. Данный модельный параметр используется для определения вязкости пластового флюида. Технический результат - повышение точности определения свойств пластовых флюидов. 5 н. и 27 з.п. ф-лы, 7 ил.

Изобретение относится к способам обнаружения предвестников землетрясений и может быть использовано для выявления возможности наступления землетрясений в районе озере Байкал. Сущность: из зоны пересечения глубинных разломов на территории озера Байкал, где неоднократно происходили землетрясения различной силы, отбирают пробы воды. Отбор проб осуществляют посредством водозабора, включающего в себя глубинный водоприемник (8), электронасос (9), расположенный в водозаборной станции на берегу Байкала, фильтры для грубой (10) и тонкой (11) очистки воды. Исследуют концентрации растворенного в глубинной воде гелия. По графикам изменения концентраций гелия делают вывод о возможном землетрясении. Технический результат: выявление возможности наступления землетрясения. 1 з.п.ф-лы, 4 ил.
Наверх