Способ прогнозирования землетрясений в пределах коллизионных зон континентов

Изобретение относится к области сейсмологии и может быть использовано для предсказания возможности возникновения землетрясений в пределах коллизионных зон континентов. Сущность: на основе многолетнего мониторинга определяют среднегодовые содержания в приземной атмосфере следующих поллютантов: пыль, оксиды углерода, азота и серы. В случае увеличения в приземной атмосфере годового суммарного содержания указанных поллютантов более чем на 20% по сравнению со среднегодовым значением, полученным за период проведенного мониторинга, делают вывод о возможности возникновения землетрясения. Технический результат: предсказание возможности возникновения землетрясений в пределах коллизионных зон континентов. 1 з.п.ф-лы.

 

Изобретение относится к области сейсмологии на стыке с геоэкологией, а более конкретно - к способам предсказания вероятности возникновения землетрясений в пределах геоактивных коллизионных зон континентов по изменению атмогеохимических параметров.

Известны многочисленные способы предсказания и регистрации землетрясений. В целом, известные способы регистрации землетрясений можно объединить в следующие группы (http://nospe.ucoz.ru/index/0-225).

Первая группа способов основана на выявлении высокочувствительными приборами изменений электромагнитного поля твердой оболочки Земли, предшествующих землетрясениям, и является одним из вариантов предсказания землетрясений.

Известны способы прогнозирования по геофизическим параметрам, защищенные патентами на изобретения. Согласно способу прогнозирования параметров землетрясения по патенту на изобретение RU 2255356 измеряют характеристики магнитного и электрического полей околоземного космического пространства раздельными датчиками, установленными на космическом аппарате, на восходящем и нисходящем витках. Формируют синтезированную матрицу результатов, вычисляют дисперсию результирующего вектора и его фрактальную размерность. По изменению фрактальной размерности прогнозируют параметры землетрясений. По способу прогноза землетрясений по RU 2238575 осуществляют синхронные измерения интенсивности естественных импульсных электромагнитных полей Земли (ЕИЭМПЗ) в нескольких пунктах контролируемого региона. Выделяют аномальную территорию по наличию скачкообразного изменения интенсивности ЕИЭМПЗ по сравнению с суточными вариациями в те же календарные дни в сейсмически спокойные периоды. Прогнозируют начало землетрясения через 10-15 суток после начала регистрации скачкообразного изменения интенсивности ЕИЭМПЗ.

Вторая группа способов ориентирована на улавливание звуковых волн, проходящих в твердых горных породах земной коры. Впервые этот способ был применен в Италии вблизи известного вулкана Везувия. Звукоулавливающий аппарат погружался в Землю на некоторую глубину. В Калифорнии такой звукоприемный аппарат был установлен на глубине 110 м в колодце, заполненном водой. В отдельных случаях эти аппараты фиксировали усиление подземных шумов перед землетрясением. Но в большинстве случаев они не предсказывали землетрясений, что, по-видимому, было связано с несовершенством аппаратуры. Способ определения времени предстоящего землетрясения по заявке на изобретение RU 2004105334, МПК G01V 9/00 тоже основан на измерении акустических параметров (амплитуды форшоков, частоты и амплитуды акустических волн во всем диапазоне частот их появления, скорости импульсов акустических волн в поверхностном и глубинном слоях Земли и в атмосфере, времени между зарегистрированными импульсами) при возникновении сейсмических колебаний почвы. Сейсмодатчики согласно указанному способу устанавливают на скальных породах, окружающих контролируемый регион. Методы первых двух групп пока технически очень трудно осуществимы и не обладают нужной точностью предсказания района землетрясения.

Третья группа способов связана с изучением наклонов земной поверхности особыми высокочувствительными приборами - наклономерами. Эти методы нашли широкое применение в Японии. Они основаны на предположении, что перед землетрясением и в процессе этого катастрофического явления в зоне субдукции земной коры происходит некоторый, вполне фиксируемый, изгиб земной поверхности, вслед за которым совершается разрыв пластов на глубине, вызывающий землетрясение. Применяемые приборы - кварцевые деффиографы и водяные уровни - достаточно чувствительны для выявления таких наклонов. Приборы устанавливаются на глубине нескольких десятков метров и могут фиксировать изменение наклона поверхности до долей секунды. В ряде случаев действительно за 5 - 10 дней до землетрясения прибор фиксировал так называемую бурю наклонов, то есть более резкое, чем обычно, изменение наклона поверхности в различных направлениях. Но все эти изменения настолько малы, что трудно установить окончательно источники и факторы, которыми они генерируются. Эти способы не дают возможности предсказать с нужной точностью район землетрясения.

Четвертая группа включает способы изучения упругих свойств вещества внутри Земли в связи с увеличением сил сжатия перед землетрясением. Эти методы пока технически очень трудно осуществимы и широкого распространения еще не получили.

Новое открытие в природных явлениях - нагрев атмосферы перед сильным землетрясением в Японии было зафиксировано 18 мая 2011 года. По этому поводу исследователями из НАСА были опубликованы снимки из космоса тех районов Японии, где в начале марта 2011 года произошло сильное землетрясение. На снимках зафиксирован сильный нагрев атмосферы в дни, непосредственно предшествующие крупному землетрясению. Согласно комментариям представителей НАСА, в районе землетрясения в начале марта 2011 года в Японии в нижней атмосфере наблюдались аномальные аэрозольные поля, в результате чего происходил нагрев атмосферы и резкое изменение ее параметров. Эти данные пока проходят изучение и анализ (http://www.hainanwel/com/ forum/viewtopic.php?p=2143).

Известны также способы прогноза землетрясений по геохимическим параметрам. Способ (авт. св. СССР №507844) включает периодическое измерение в местах разрыва сплошности горных пород концентраций радиогенных газов (гелия и аргона). Одновременно с этим измеряют величину теплового потока. О времени возникновения землетрясения судят по резкому изменению хода периодичности определяемых величин.

Наиболее близким к заявляемому способу, принятым за прототип, является способ прогнозирования землетрясений по патенту на изобретение RU 2145098, МПК G01V 1/00; G01V 9/00. Согласно этому способу в сейсмически активных районах осуществляют пространственно-временную регистрацию геохимического предвестника землетрясений - потока ртути в восходящем из земной коры почвенном газе. Величину потока ртути регистрируют на глубине 1 метра. Измерения проводят атомно-флуоресцентными фотометрами после предварительного накопления ртути на биспиральном золотом коллекторе. По результатам проведенного мониторинга выявляют вариации поступления в атмосферу паров ртути и по аномальному изменению регистрируемой во времени величины паров ртути прогнозируют возможность возникновения землетрясений.

Задача изобретения - поиск нового способа прогнозирования землетрясений в пределах коллизионных зон континентов на основе мониторинга пространственно-временной изменчивости содержания атмогеохимических предвестников землетрясений, отличающегося повышением точности.

Задача решается следующим образом.

Заявляемый в качестве изобретения способ прогнозирования землетрясений в пределах коллизионных зон континентов, как и прототип, включает периодическую пространственно-временную регистрацию геохимического предвестника землетрясений, выявление по результатам проведенного мониторинга вариаций поступления в атмосферу геохимического предвестника и выдачу прогноза о возможности возникновения землетрясения по аномальному изменению регистрируемой во времени величины геохимического предвестника.

В отличие от прототипа в качестве геохимического предвестника землетрясения в процессе атмогеохимического мониторинга регистрируют содержание в приземной атмосфере поллютантов, на основе многолетней статистики определяют их среднегодовое суммарное содержание в приземной атмосфере, а прогноз о возможности возникновения землетрясения выдают при увеличении годового содержания поллютантов в приземной атмосфере более чем на 20% по сравнению со среднегодовым значением, полученным за период проведенного мониторинга. Средне- и короткосрочный прогноз землетрясений осуществляют по суммарному значению таких поллютантов, как пыль, оксиды углерода, серы и азота, содержащихся в приземной атмосфере в качестве основных токсикантов. Прогноз землетрясений осуществляют по результатам регионального и локального атмогеохимического мониторинга на территории сейсмоактивных коллизионных зон континентов за период не менее 10 лет.

В уровне техники не обнаружены способы прогноза и регистрации землетрясений по суммарному значению основных поллютантов. Это подтверждает новизну и изобретательский уровень предложенного способа.

Как видно, способ основан на использовании результатов исследования динамики атмогеохимических показателей, включающих пространственно-временные особенности поведения основных поллютантов в приземной атмосфере конкретных коллизионных зон континентов.

Известные сведения о резком подъеме температуры, одновременных колебаниях упругих свойств жестких горных пород и физико-химических параметров верхних оболочек Земли, в первую очередь, подъем температуры приземной атмосферы над эпицентром землетрясений в коллизионных зонах, позволили авторам данной заявки на основе системных исследований межгеосферных взаимодействий сделать вывод о возможном воздействии этих природных процессов на атмогеохимические свойства воздушной атмосферы.

В пределах коллизионных поясов континентов сильные землетрясения являются результатом тектонических процессов по границам соприкасающихся литосферных плит вдоль долгоживущих геологических разломов. Как, например, в центральной Азии Сибирская литосферная плита подвергается воздействию «въезжающей» в нее Индийской плиты.

Землетрясение здесь и в подобных коллизионных поясах обусловлено, во-первых, быстрым (в геологическом времени) переходом потенциальной энергии, накопленной в упругодеформированных породах на глубине порядка 10 км (глубже залегают вполне пластичные массивы существенно гранитоидных разновозрастных коллизионных комплексов), в освобожденную сейсмическую энергию и, во-вторых, под воздействием высоких температур и давления изменением структуры пород. Под действием этих же природных катастрофических факторов происходит диспергация горных пород до уровня субмикрозернистых и наноразмерных взвешенных частиц, а также электризация и возникновение поллютантов с преобладанием электретов разных генетических классов: термоэлектретов, электроэлектретов, фотоэлектретов (при подземной грозе), радиационных электретов, трибоэлектретов и механоэлектретов (за счет трения пород), хемоэлектретов (при полимеризации и химической сшивке молекул диэлектриков). Поскольку основные поллютанты в воздушной атмосфере, по сути, являются электретами, то резкий скачок их концентраций предполагает возможность возникновения сильного землетрясения.

Были получены конкретные количественные параметры и обработаны статистические материалы регионального и локального экогеохимического мониторинга атмосферного воздуха за 14 лет, включая два крупных землетрясения - 1991 и 1995 гг. (аналогичных землетрясению 27 декабря 2011 г.) в коллизионной зоне, расположенной на территории Тувинской Республики РФ. Мониторинг проводился по основным поллютантам приземной атмосферы: пыль, оксиды серы, азота и углерода.

В теоретической геоэкологии важная роль придается процессам трансформации геологической среды и их последствиям, в частности геолого-тектоническим и геоморфологическим особенностям территории, в значительной мере формирующим основные природные факторы, ответственные за состояние атмосферного воздуха. Территория Республики Тыва (РТ) расположена в центре азиатского материка, является колоссально расчлененной горной страной с межгорными депрессиями сложного геологического строения. В целом колебания высот охватывают интервал от 250 до 4000 м. Горные хребты и нагорья четко расчленяются широтными и северо-западными долгоживущими глубинными разломами, которые местами хорошо декорируются депрессиями и долинами рек. Именно на пересечении разломов возникают напряжения горных массивов и центры землетрясений. Серии афтершоковых процессов составляют сотни более слабых сейсмических толчков, ощущаемых на огромной территории Сибири в течение нескольких месяцев.

По данным мониторинга и сейсмического районирования Геофизической службы РАН восточная часть Тувы, практически рядом с Кызылом, является наиболее сейсмоопасным районом: 9-балльная зона по сотрясаемости (видимый уровень разрушений) и магнитудой выше семи. Такие землетрясения повторяются в этом районе с периодичностью раз в десятки лет. За последние 20 лет на территории РТ зафиксировано 218 сейсмических событий. Из них два - в 1991 и в 1995 годах - были максимальной мощности, достигая 9 баллов.

Осуществление способа показано на конкретном примере.

В сейсмически активном коллизионном районе - территории Республики Тыва осуществляли пространственно-временную регистрацию геохимических предвестников землетрясений - базовых (или основных, постоянных) поллютантов (диоксида серы, оксида и диоксида углерода, диоксида азота, пыли) в приземной атмосфере на высоте 1,5-3,5 м от поверхности Земли в течение 14 лет. Продолжительность мониторинга определялась с учетом периодичности сильных землетрясений в данном регионе (как указывалось выше - 10 лет). Опробование проводилось на основных видах постов (стационарных, опорных, базовых и региональных фоновых станциях, а также маршрутных постах). Количественные измерения ингредиентов в пробах воздуха проводились с помощью хроматографических методов. Установка для аналитического газохроматографического разделения состоит из блока распределительных колонок, источника газа-носителя и устройства для фиксирования разделенных ингредиентов -блока детектора. Положение пиков на откалиброванной хроматограмме соответствует конкретному компоненту, а величина пика - его количеству. Обработка аналитических данных, полученных при многолетнем геомониторинге, предполагала расчет среднегодовых экогеохимических показателей: суммарного содержания пыли, оксидов серы, азота и углерода, а также суммарных годовых показателей загрязнения - Zc. По результатам проведенного геомониторинга выявлены вариации поступления основных ингредиентов в приземную атмосферу, а по аномальным значениям Zc - возможность прогнозирования серьезных землетрясений.

По результатам анализа изученных атмогеохимических данных за многие годы нами установлена корреляционная связь двух землетрясений с качеством атмосферы. Суммарные количества основных загрязнителей (пыль, оксиды углерода, серы и азота) на территории РТ в эти годы (1991 и 1995) резко возрастали до аномально высоких значений. Их содержание превышало порог - 20% от среднегодового значения, полученного в процессе геомониторинга.

Динамика загрязнения приземной атмосферы территории Республики Тыва, тыс. т/год отражена в таблице.

Таблица
№п/п Год Республика Тыва
Годовые значения Zc, (тыс.т/год) основных поллютантов (пыли, оксидов углерода, азота и серы) Доля в % к среднегодовому за 14 лет значению основных поллютантов
1 1988 100,81 91,7
2 1989 105,39 95,8
3 1990 146,39 133,2
4 1991 150,16 136,6
5 1992 130,11 118,4
6 1993 115,00 104,6
7 1994 105,20 95,7
8 1995 133,51 121,5
9 1996 113,31 103,1
10 1997 89,48 81,4
11 1998 87,69 79,8
12 1999 87,92 80,0
13 2000 87,20 79,3
14 2001 87,10 79,2

Как видно из таблицы, в годы сильных землетрясений (1991,1995) возрастание поллютантов - классических диэлектриков - скачкообразно превышает 20%. Высокие значения Zc в 1990 г. свидетельствуют о возможном начале подготовительных геодинамических процессов в коллизионном поясе РТ, которые сопровождаются формированием поллютантов - гетероэлектретов. Последние представлены термоэлектретами, электроэлектретами, образующимися при электризации в результате процессов поляризации при относительно слабых внешних полях, а также хемоэлектретами - продуктами реакций полимеризации в сложных породообразующих алюмосиликатных минералах.

Таким образом, полученные результаты однозначно подтверждают возможность использования данного способа как одного из наиболее достоверных для предсказания сильных землетрясений в континентальных коллизионных поясах.

1. Способ прогнозирования землетрясений в пределах коллизионных зон континентов, согласно которому осуществляют периодическую пространственно-временную регистрацию геохимического предвестника землетрясений, по результатам проведенного мониторинга выявляют вариации поступления в атмосферу геохимического предвестника и по аномальному изменению регистрируемой во времени величины геохимического предвестника выдают прогноз о возможности возникновения землетрясения, отличающийся тем, что в качестве геохимического предвестника землетрясения регистрируют в приземной атмосфере содержание пыли, оксидов углерода, азота и серы, на основе многолетнего мониторинга определяют их среднегодовое суммарное содержание в приземной атмосфере, а прогноз о возможности возникновения землетрясения выдают при увеличении в приземной атмосфере годового суммарного содержания указанных поллютантов свыше 20% по сравнению со среднегодовым значением, полученным за период проведенного мониторинга.

2. Способ по п.1, отличающийся тем, что средне- и короткосрочный прогноз землетрясений осуществляют по результатам регионального и локального атмогеохимического мониторинга на территории сейсмоактивных коллизионных зон континентов за период не менее 10 лет.



 

Похожие патенты:

Изобретение относится к области геологии и может быть использовано для выявления и оценки динамического влияния активного разлома земной коры. Сущность: отбирают пробы воздуха из почвенного слоя в выбранных точках исследуемой территории.

Изобретение относится к устройствам для зондирования гидросферы. Заявлен термозонд для измерения вертикального распределения температуры воды, состоящий из корпуса, представляющего собой жесткую конструкцию, снабженного стабилизатором и размещенного в кассете, снабженной механизмом расчленения с корпусом термозонда.

Изобретение относится к исследованию скважин и может быть использовано для непрерывного контроля параметров в скважине. Техническим результатом является упрощение конструкции системы наблюдения за параметрами в скважине.

Изобретение относится к области поисков месторождений углеводородов. Сущность: бурят серию шурфов до глубины 1-3 м.

Изобретение относится к способам количественной оценки природных процессов и может быть использовано для определения массового расхода водяного пара на вулканах.

Изобретение относится к области геофизики и может быть использовано для прогнозирования места и тренда (увеличения или уменьшения) сейсмической опасности. Сущность: осуществляют мониторинг ситуации, по крайней мере, в одной зоне ожидаемого сейсмического события, принадлежащей исследуемому сейсмоактивному региону.
Изобретение относится к способам поиска залежей нефти и газа и может быть использовано для обнаружения углеводородного сырья в породах фундамента. Сущность: в антиклинальные поднятия (купола) известных залежей углеводородов бурят новые скважины, вскрывающие нижележащие породы фундамента, или углубляют существующие скважины.

Изобретение относится к способам комплексного определения металлогенической специализации базит-гипербазитовых расслоенных массивов архейских кристаллических щитов и может быть использовано для раздельного прогноза и поиска промышленных объектов платинометалльного и медно-никелевого горнорудного сырья.

Использование: изобретение относится к области сейсмологии и предназначено при изучении прогноза землетрясений. Сущность: исследования проводятся на территории измерительного полигона, например городской агломерации или важного хозяйственного объекта, определяют M - магнитуду и t - время землетрясения известными мониторинговыми наблюдениями с аппаратурой, размещаемой в пределах территории измерительного полигона.

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6 корреляторы, первый 3.1 и второй 3.2 преобразователи аналог-код, первый 3.3 и второй 3.4 ключи, формирователь 3.6 модулирующего кода, задающий генератор 3.6, фазовый манипулятор 3.7, усилитель 3.8 мощности, передающую антенну 3.0, перемножители 5.1 и 6.1, фильтры 5.2 и 6.2 нижних частот, экстремальные регуляторы 5.3 и 6.3, регулируемые линии задержки 5.4 и 6.4.

Изобретение относится к области нефтегазовой геологии и может быть использовано для прогноза и поисков месторождений углеводородов в ловушках антиклинального типа. Сущность: на основе структурных карт и сейсмогеологических профилей по ранее выполненным сейсморазведочным исследованиям в пределах ранее изученных участков исследуемой нефтегазоносной провинции (НГП) определяют стратиграфический интервал вниз по геологическому разрезу, до которого четко наблюдается удовлетворительное пространственное соответствие морфологии дневной поверхности с морфологией палеорельефов литостратиграфических (сейсмостратиграфических) горизонтов. Сканируют топографические карты всех масштабов от 1:25000 до 1:1000000 и в этих же масштабах схему ранее выявленных месторождений (если они есть) по всей территории намеченных работ. Разбраковывают по топографическим картам территорию исследования на участки по степени относительной расчлененности рельефа, которая выражается шириной водораздельных пространств, которые определяют в основном морфоскульптуру дневной поверхности. При этом ширина водораздельных пространств, измеряемая многими десятками километров и даже более ста километров, указывает на перспективность участка на поиски гигантских и крупных месторождений углеводородов. Участки, в пределах которых ширина водораздельных пространств характеризуется значениями до первых десятков километров, перспективны на выявление преимущественно мелких и средних месторождений углеводородов. Разбраковывают территорию исследования на участки по относительной высоте рельефа. При этом участки с относительно большей высотой рельефа указывают на относительно большую амплитуду рельефа поверхностей по нижезалегающим литостратиграфическим комплексам, что предполагает вероятность открытия более высокоамплитудных месторождений углеводородов. По результатам разбраковок территории по указанным параметрам выделяют участки, перспективные на открытие гигантских, крупных, средних и мелких месторождений углеводородов. По результатам выполненного анализа выбирают участок, соответствующий решаемым задачам, в пределах которого будут выполняться прогноз и последующие поиски соответствующих месторождений углеводородов по топографическим картам масштаба 1:25000. Измеряют значения длинной и короткой осей выявленных ранее месторождений углеводородов и значения их сумм для каждого месторождения. Сопоставляют схемы в масштабе 1:25000 всех ранее выявленных месторождений углеводородов в пределах изучаемой нефтегазоносной провинции, области или района с топографической картой аналогичного масштаба с целью выяснения степени соответствия в плане контуров выявленных месторождений с контурами локальных положительных форм современного рельефа. По результатам этого сопоставления проводят разбраковку ранее выявленных месторождений углеводородов на три группы: на месторождения, плановое положение контура которых практически точно совпадает с контуром соответствующих им локальных положительных форм рельефа; на месторождения, плановое положение которых смещено на расстояние, не превышающее половины величины соответствующего линейного размера локальной положительной формы дневной поверхности; и на месторождения, плановое положение которых смещено на расстояние, превышающее величину соответствующего линейного размера локальной положительной формы дневной поверхности. Находят для каждого месторождения последней группы значения суммы их линейных размеров, при этом максимальное значение суммы линейных размеров месторождения определяют как «критическое». Делают вывод о том, что для месторождений, у которых значение суммы их линейных размеров соответствует или меньше критического значения, достоверность прогноза по данному способу в пределах данной территории не достаточна. Выявляют по топографической карте локальные положительные формы дневной поверхности, значение суммы линейных размеров которых превышает критическое значение. Делают вывод о том, что этим локальным положительным формам дневной поверхности в плане по регионально продуктивным отложениям соответствуют примерно такие же по линейным размерам, ориентировке и конфигурации месторождения углеводородов. Замеряют площадь спрогнозированных месторождений и определяют величины прогнозных ресурсов углеводородов в них по устанавливаемой для каждой НГП эмпирической зависимости между площадью месторождений и их запасами. Исходя из размеров, конфигурации и ориентировки короткой и длинной осей выявленных положительных форм современного рельефа, проектируют все параметры сети поисковых сейсмопрофилей. При этом для гигантских и крупных антиклинальных ловушек размер сейсмопрофилей, параллельных длинной оси ловушки, должен составлять удвоенный размер длинной оси положительной формы рельефа, а размер сейсмопрофилей, параллельных короткой оси ловушки, должен составлять трехкратный размер короткой оси положительной формы рельефа. Для средних и мелких ловушек размер сейсмопрофилей, параллельных длинной оси ловушки, должен составлять утроенный размер длинной оси положительной формы рельефа, а размер сейсмопрофилей, параллельных короткой оси ловушки, должен составлять пятикратный размер короткой оси положительной формы рельефа. При этом одну часть сейсмопрофилей проектируют перпендикулярно короткой оси спрогнозированного месторождения, а другую - перпендикулярно длиной его оси. По спроектированной сети сейсмопрофилей выполняют сейсморазведочные наблюдения по каждому из спрогнозированных месторождений углеводородов. Строят по целевым отражающим горизонтам структурные карты, на основе которых рекомендуют и закладывают поисковые скважины. Технический результат: повышение достоверности прогнозирования, уменьшение объемов поисковых работ. 8 ил.

Изобретение относится к области маркшейдерско-геодезического мониторинга и может быть использовано для обеспечения безопасности разработки месторождений нефти и газа. Согласно заявленному решению на исследуемой территории проводят геодезические измерения и определяют смещения Ngeod геодезических реперов на север U i n , восток U i e и по вертикали U i v (i=1, 2,…, Ngeod). За тот же интервал времени определяют смещения Nsat устойчиво отражающих площадок в направлении на спутник U j L O S (j=1, 2,…, Nsat) с помощью радарной спутниковой интерферометрии. После чего осуществляют разбивку разрабатываемого месторождения на K элементарных объемов. Рассчитывают смещения в точке j-й устойчиво отражающей площадки в направлении на спутник V j , k L O S , которые возникают в результате увеличения давления на единицу в k-м элементарном объеме, и смещения в точке i-го геодезического репера соответственно на север, восток и по вертикали V i , k n , V i , k e и V i , k v , которые возникают в результате увеличения давления на единицу в k-м элементарном объеме. Определяют в каждом объеме изменения давления ΔPk. После чего определяют три компоненты вектора смещений земной поверхности. Технический результат - повышение точности определения смещений земной поверхности. 4 ил.

Изобретение относится к области разведочной геологии и может быть использовано для определения различных свойств углеводородных пластовых флюидов. В заявленном изобретении раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во флюидах. Раскрытая, являющая примером установка включает в себя скважинный узел и наземный узел. Скважинный узел 300 включает в себя датчик 305, 325 для измерения колебательного сигнала, представляющего перемещение струны, вибрирующей во флюиде, на внутрискважинном месте в стволе скважины, устройство 332 моделирования колебательного сигнала для вычисления модельного параметра на основании измеряемого колебательного сигнала и первый телеметрический модуль 340 для передачи вычисляемого модельного параметра к месту на земной поверхности. Наземный узел включает в себя второй телеметрический модуль для приема вычисляемого модельного параметра от скважинного узла и анализатор вязкости для оценивания вязкости флюида на основании вычисляемого модельного параметра. Способ обработки измерений струн, вибрирующих во флюиде, включает операцию измерения колебательного сигнала и вычисление модельного параметра вибрации струны на основании измеряемого колебательного сигнала. Данный модельный параметр используется для определения вязкости пластового флюида. Технический результат - повышение точности определения свойств пластовых флюидов. 5 н. и 27 з.п. ф-лы, 7 ил.

Изобретение относится к способам обнаружения предвестников землетрясений и может быть использовано для выявления возможности наступления землетрясений в районе озере Байкал. Сущность: из зоны пересечения глубинных разломов на территории озера Байкал, где неоднократно происходили землетрясения различной силы, отбирают пробы воды. Отбор проб осуществляют посредством водозабора, включающего в себя глубинный водоприемник (8), электронасос (9), расположенный в водозаборной станции на берегу Байкала, фильтры для грубой (10) и тонкой (11) очистки воды. Исследуют концентрации растворенного в глубинной воде гелия. По графикам изменения концентраций гелия делают вывод о возможном землетрясении. Технический результат: выявление возможности наступления землетрясения. 1 з.п.ф-лы, 4 ил.

Изобретение относится к области геологии и может быть использовано для прогнозирования зон развития вторичных коллекторов трещинного типа в осадочном чехле. Сущность: регистрируют сейсмические отраженные волны привязанных к выбранному комплексу отложений. Проводят литолого-петрофизические исследования образцов пород для определения наиболее вероятного генезиса вторичных коллекторов. Выделяют литотипы, по которым происходит формирование вторичных коллекторов трещинного типа. Бурят скважины в антиклинальных структурах и определяют глубины залегания замков складок, морфологические параметры структур, включая максимальный изгиб пластов, ширину, длину, площадь, интенсивность складкообразования. По результатам промыслово-геофизических исследований скважин определяют значения вторичной пористости, измеряют пластовые давления в интервалах испытания, устанавливают критическое значение вторичной пористости - Кпвткр, устанавливают многомерную корреляционную связь вторичной пористости Кпвт=f(i, gradp, J, Кпоб, H), где i - максимальный изгиб пластов; gradp - градиент пластового давления; J=i/S - интенсивность складкообразования; S - площадь структуры; Кпоб - общая пористость; Н - глубина залегания замка складки. Далее на неизученных участках территории проводят детальные полевые сейсмические исследования с загущенной через не более 100 м сеткой сейсмических профилей. Обрабатывают полевые сейсмические материалы. Выявляют наличие антиклинальных структур и глубинных разломов. Строят сейсмо-геологические профили вдоль и поперек выявленных структур. Определяют глубины залегания замков складок, морфологические параметры структур. По установленной зависимости Кпоб=f(Н) определяют значения общей пористости на глубинах залегания горизонта на вновь выявленных структурах. Определяют прогнозную величину градиента пластового давления. По установленной многомерной корреляционной связи вторичной пористости Кпвт=f(i, gradp, J, Кпоб, H) прогнозируют величину Кпвт. Сравнивают Кпвт с нижним пределом Кпвткр для границы «коллектор-неколлектор», на основе чего прогнозируют вероятность развития вторичных коллекторов трещинного типа, целесообразность постановки бурения на этих структурах и порядок ввода скважин в бурение. Причем при отношении Кпвт/Кпвткр>1,2 целесообразно бурение по профилю трех зависимых скважин, при отношении Кпвт/Кпвткр=(0,7÷1,2) - бурение только одной скважины в своде структуры. Технический результат: повышение эффективности прогнозирования. 1 ил., 5 табл.
Изобретение относится к области интерферометрических исследований поверхности Земли и может быть использовано для обнаружения возможности наступления катастрофических явлений. Сущность: проводят межвитковую дифференциальную интерферометрию поверхности Земли, получая пары комплексных радиолокационных изображений (КРЛИ). Пары КРЛИ, образующие интерференционную пару, получают на витках, разделенных по времени. Кроме того, запись пары КРЛИ производят в соответствии с фазами приливных воздействий Луны и Солнца. Сравнивают полученные дифференциальные интерферометрические картины с эталонными интерферометрическими картинами. При обнаружении значительных отличий между этими картинами рассчитывают параметры напряженно-деформированного состояния земной коры и оценивают опасность ее повреждений. Технический результат: повышение точности обнаружения возможных катастрофических явлений.
Изобретение относится к области поиска и разведки месторождений полезных ископаемых и может быть использовано для определения контуров промышленного оруденения золоторудных месторождений со свободным золотом, не имеющих четких геологических границ. Сущность: отбирают геологические пробы по сетке опробования. Проводят пробоподготовку, заключающуюся в дроблении, измельчении, сокращении, делении проб, отборе аналитических проб. В аналитических пробах определяют содержание золота. Выделяют с учетом принятых кондиций богатые и бедные участки золоторудного месторождения. Оконтуривают промышленное оруденение золоторудного месторождения. Затем на бедных участках на расстоянии не более трех шагов опробования от границы богатого участка отбирают дополнительные геологические пробы. Проводят пробоподготовку дополнительных геологических проб. Отбирают аналитические пробы массой не менее чем в два раза большей, чем масса основной аналитической пробы. Обрабатывают каждую дополнительную аналитическую пробу в центробежном поле с центростремительным ускорением более 25 единиц ускорения свободного падения, получая концентраты и хвосты. В полученных концентратах и хвостах определяют содержание золота и перерассчитывают его на соответствующую дополнительную аналитическую пробу. По результатам перерасчета судят об отнесении данного участка к промышленному оруденению с последующим уточнением контура. Технический результат: повышение точности определения контура промышленного оруденения за счет перевода части забалансовых руд в балансовые. 1 з.п.ф-лы.

Изобретение относится к геологии и может быть использовано для определения палеотемператур катагенеза, что характеризует степень катагенетической зрелости органического вещества (OВ) пород. Из исследуемых пород производят отбор образцов осадочных пород, выделяют из них нерастворимое органическое вещество микрофитофоссилий и исследуют его оптическим методом с установлением палеотемпературы. Исследование оптическим методом проводят в два этапа. На первом этапе в проходящем свете из морфологических групп микрофитофоссилий выделяют преобладающую группу микрофитофоссилий, в ней выделяют группы толстостенных и тонкостенных микрофитофоссилий. Для каждой выделенной группы определяют индекс окраски. На втором этапе исследования уточняют количественные характеристики на основе спектральных характеристик выделенных групп микрофитофоссилий в инфракрасном диапазоне света. Результирующие оценки палеотемпературы микрофитофоссилий определяют на основе сопоставления результатов исследований первого и второго этапов. Технический результат - повышение достоверности определения палеотемператур катагенеза безвитринитовых отложений. 1 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области геодезического мониторинга и может быть использовано для отслеживания изменений земной коры и прогнозирования землетрясений. Сущность: геодезическим методом выявляют динамические смещения по линиям, перпендикулярным сейсмогенному разлому (11). Причем измерения проводят на пунктах контроля, которые устанавливают вдоль или вблизи линий, перпендикулярных сейсмогенному разлому (11). Пункты контроля выполняют с постоянным расположением на них базовых станций (9) или приемников (10) спутниковой навигации. Базовые станции (9) и приемники (10) спутниковой навигации устанавливают под укрытиями. Открытие и закрытие верхней части укрытий (крыши) дистанционно управляемо. К каждой базовой станции (9) подключают модули дистанционного управления и сбора данных, предназначенные для передачи по беспроводной связи собираемых данных в центр их сбора и обработки. Технический результат: повышение эффективности и точности прогноза. 8 з.п.ф-лы, 5 ил.

Изобретение относится к гидродинамическим и гидрохимическим исследованиям вод торфяных почв. Техническим результатом является определение изменения химического состава болотных вод по глубине торфяной залежи в условиях их гидродинамического режима во времени. В способе определяют закономерность распределения совокупности коэффициентов равновесности за различные периоды протекания однонаправленных процессов, характеризующих связь химических и гидродинамических процессов, протекающих по толщине торфяной залежи. Комплексом для отбора проб определяют расходы поступающей воды. Методом унифицирования производят расчет коэффициентов равновесности полученных данных. Приводят их в единообразный, безразмерный вид методом математического обобщения. Изменение совокупности коэффициентов равновесности позволяет эффективно оценивать степень и динамику изменения химического состава воды и ее гидродинамического режима от продолжительности и интенсивности процессов. Сохраняющаяся взаимосвязь коэффициентов равновесности, распределенных во времени и глубине, показывает равновесность экосистемы болот. 8 табл., 9 ил.

Изобретение относится к области сейсмологии и может быть использовано для предсказания возможности возникновения землетрясений в пределах коллизионных зон континентов. Сущность: на основе многолетнего мониторинга определяют среднегодовые содержания в приземной атмосфере следующих поллютантов: пыль, оксиды углерода, азота и серы. В случае увеличения в приземной атмосфере годового суммарного содержания указанных поллютантов более чем на 20 по сравнению со среднегодовым значением, полученным за период проведенного мониторинга, делают вывод о возможности возникновения землетрясения. Технический результат: предсказание возможности возникновения землетрясений в пределах коллизионных зон континентов. 1 з.п.ф-лы.

Наверх