Рекомбинантная плазмидная днк philp07, кодирующая гибридный белок с проинсулином lispro человека, клетка escherichia coli, трансформированная рекомбинантной плазмидной днк philp07, и штамм бактерий escherichia coli jm109/philp07-продуцент гибридного белка с проинсулином lispro человека



Рекомбинантная плазмидная днк philp07, кодирующая гибридный белок с проинсулином lispro человека, клетка escherichia coli, трансформированная рекомбинантной плазмидной днк philp07, и штамм бактерий escherichia coli jm109/philp07-продуцент гибридного белка с проинсулином lispro человека
Рекомбинантная плазмидная днк philp07, кодирующая гибридный белок с проинсулином lispro человека, клетка escherichia coli, трансформированная рекомбинантной плазмидной днк philp07, и штамм бактерий escherichia coli jm109/philp07-продуцент гибридного белка с проинсулином lispro человека
Рекомбинантная плазмидная днк philp07, кодирующая гибридный белок с проинсулином lispro человека, клетка escherichia coli, трансформированная рекомбинантной плазмидной днк philp07, и штамм бактерий escherichia coli jm109/philp07-продуцент гибридного белка с проинсулином lispro человека
Рекомбинантная плазмидная днк philp07, кодирующая гибридный белок с проинсулином lispro человека, клетка escherichia coli, трансформированная рекомбинантной плазмидной днк philp07, и штамм бактерий escherichia coli jm109/philp07-продуцент гибридного белка с проинсулином lispro человека

 

C12N15/00 - Получение мутаций или генная инженерия; ДНК или РНК, связанные с генной инженерией, векторы, например плазмиды или их выделение, получение или очистка; использование их хозяев (мутанты или микроорганизмы, полученные генной инженерией C12N 1/00,C12N 5/00,C12N 7/00; новые виды растений A01H; разведение растений из тканевых культур A01H 4/00; новые виды животных A01K 67/00; использование лекарственных препаратов, содержащих генетический материал, который включен в клетки живого организма, для лечения генетических заболеваний, для генной терапии A61K 48/00 пептиды вообще C07K)

Владельцы патента RU 2514480:

Общество с ограниченной ответственностью "БиоКлонТек" (RU)

Изобретение относится к области биотехнологии и представляет собой рекомбинантную плазмидную ДНК pHILP07, направляющую синтез гибридного белка человека с проинсулином Lispro человека, содержащую ДНК, кодирующую гибридный белок с проинсулином Lispro человека размером 134 а.о. с аминокислотной последовательностью, представленной на фиг.2, содержащей аминокислотные последовательности лидерного пептида в виде N-концевого фрагмента гамма-интерферона человека, соединенного с проинсулином Lispro пептидным линкером. На основе рекомбинантной плазмиды pHILP07 получен штамм Escherichia coli JM109/pHILP07 - продуцент гибридного белка с проинсулином Lispro, зарегистрированный в ФГУП ГосНИИгенетики ВКПМ под номером В-11410. Изобретение позволяет упростить технологию выделения инсулина Lispro и повысить его выход. 3 н. и 1 з.п. ф-лы, 2 ил., 2 пр.

 

Изобретение относится к области биотехнологии, в частности к генной инженерии, и касается нового штамма бактерий Escherichia coli JM109/pHILP07, который может быть использован для получения генно-инженерного инсулина Lispro - аналога инсулина человека быстрого действия, применяемого при изготовлении лекарственных препаратов для лечения инсулинозависимого сахарного диабета.

В настоящее время сахарный диабет (обычно также называемый «диабет») является одним из наиболее распространенных заболеваний в мире. Диабет представляет собой метаболическое расстройство, вызванное абсолютным или относительным дефицитом инсулина, который представляет собой единственный гипогликемический гормон, и основным признаком сахарного диабета является постоянная гипергликемия. Непрерывность гипергликемического состояния не только усугубляет метаболические расстройства, вызванные недостатком инсулина, но также вызывает микроангиопатию в почках, нервной ткани, сетчатке и им подобных органах и макроангиопатию, такую как артериосклероз. Диабет ассоциирован также с целым рядом хронических осложнений, включающих микрососудистые заболевания, такие как ретинопатия, нефропатия и невропатия, и макрососудистые заболевания, такие как ишемическая болезнь сердца (RU 2358738, 2009).

Во всем мире от сахарного диабета страдают примерно 120 миллионов людей. Среди них примерно 12 миллионов страдают диабетом типа I, для которых необходима замена отсутствующей эндокринной секреции инсулина (RU 2313362, 2007). Для лечения сахарного диабета предлагаются различные гипогликемические средства, такие как препараты инсулина, стимуляторы секреции инсулина, средства, сенсибилизирующие к инсулину, и ингибиторы α-глюкозидазы (RU 2358738, 2009). Хотя возможность применения указанных гипогликемических средств подтверждена в клинической практике, однако их практическое применение связано с целым рядом проблем. Например, в случае, когда у больных сахарным диабетом значительно снижается способность поджелудочной железы секретировать инсулин, эффективность средств, стимулирующих секрецию инсулина, и средств, сенсибилизирующих к инсулину, уменьшается.

Долгие годы основным препаратом, применяемым для профилактики и лечения диабета, является инсулин. Человеческий инсулин представляет собой полипептид, содержащий А-цепь из 21 аминокислоты и В-цепь из 30 аминокислот и имеющий одну внутреннюю дисульфидную связь в А-цепи и две дисульфидные связи, которые связывают А-цепь и В-цепь (ЕА 05586, 2009). Инсулин первоначально биологически синтезируется как "препроинсулин" специализированными клетками в островках Лангерганса поджелудочной железы. Препроинсулин представляет собой линейную молекулу, содержащую сигнальный пептид из 24 аминокислот (SP), В-цепь (В), С-пептид из 31 аминокислоты (С) и А-цепь (А), присоединенные в порядке, представленном формулой "SP-B-С-А". После транспорта в эндоплазматический ретикулум, сигнальный пептид отщепляется от препроинсулина с продуцированием "проинсулина (В-С-А)". Проинсулин образует дисульфидные связи в эндоплазматическом ретикулуме, принимая свою трехмерную структуру. Проинсулин расщепляется ферментом PC1/3 в точке соединения В-С, а затем расщепляется ферментом РС2 в точке соединения С-А. И наконец, два N-концевых основных аминокислотных остатка у С-конца В-цепи отщепляются карбоксипептидазой с образованием инсулина.

Пораженным болезнью людям в течение всех оставшихся лет жизни предлагается вводить инсулин путем инъекции неоднократно несколько раз в сутки. При использовании препаратов обычного инсулина возникает опасность возникновения ранней послеобеденной гипергликемии, сопровождаемой гипогликемией перед следующим приемом пищи.

Проблему удалось преодолеть после получения генно-инженерных аналогов инсулина с различным сроком воздействия на организм (Walsh G. Appl. Microbiol. BiotechnoL, 2005, v.67, p.151-159). Лечение больных сахарным диабетом I типа включает, в частности, использование комбинации препаратов инсулина человека быстрого (короткого) и длительного (пролонгированного) действия. Короткодействующий инсулин должен быстро достигать пика активности в соответствии с подъемом уровня глюкозы, связанным с приемом пищи, и прекращать свое действие после его падения. Инсулин пролонгированного действия, напротив, должен в течение длительного времени обеспечивать определенный базовый уровень глюкозы в промежутках между приемами пищи.

В настоящее время в промышленных масштабах производят «быстрые» инсулины «Lispro» (инсулин человека LysB28, ProB29), у которого в аминокислотной последовательности В-цепи инвертированы остатки пролина-В28 и лизина-В29 В-цепи, «Glulysin» (Lys В (3), Glu В (29) человеческий инсулин) и «Aspart» (инсулин человека AspB28), в молекуле которого остаток пролина в положении В28 В-цепи заменен остатком аспарагиновой кислоты. Эти замены уменьшили тенденцию молекул инсулина человека к агрегации и время абсорбции гормона из места инъекции (Setter S.M., Corbett C.F., Campbell P.K., White J.R. Ann. Pharmacother., 2000; v.34, p.1423-1431), что привело к значительному снижению времени начала действия препаратов, увеличению максимально достижимой концентрации препаратов в крови и более быстрому восстановлению исходного уровня гормонов в крови (Simpson K.L., Spenser C.M. Drugs, 1999, v.57, p.759-765).

Применение инсулина Lispro (Wood A.J.J. N. Engl. J. Med., 1997, v.337, p.176-183) обеспечивает снижение способности к образованию агрегатов, позволило увеличить скорость абсорбции инсулина после инъекции, увеличить уровень содержания препарата в плазме и уменьшить продолжительность его действия (Howey D.C., Bowsher R.R., Brunelle R.L., Woodworth J.R. Diabetes, 1994, v.43, p.396-402). Действие инсулина Lispro начинается через 15 мин после подкожной инъекции, достигает максимальных значений через ~1 ч и прекращается спустя 2-4 ч (Torlone E., Fanelli С., Rambotti A.M., Kassi G., Modarelli F., Di Vincenzo A., Epifano L., Ciofetta M., Pampanelli S., Brunetti P. Diabetologia, 1994, v.37, p.713-720).

Для получения генно-инженерных аналогов инсулина предлагается применять в качестве продуцентов различные генно-модифицированные микроорганизмы. В частности, разработана технология получения инсулинов Aspart и Lispro с использованием штаммов метилотрофных дрожжей родов Pichia, Candida, Hansenula или Torulopsis, в частности с использованием в качестве клетки-хозяина Pichia pastoris, GS115 (WO 2010/016069, 2010; RU 2458989, 2012).

Наиболее близким по технической сущности к заявляемой группе изобретений является технология получения инсулина Lispro, в которой используется рекомбинантная плазмидная ДНК pPL-3-1 с молекулярной массой 3,3 МДа, кодирующая гибридный полипептид массой около 17 кДа, в котором IgG-связывающий домен белка А из S.aureus соединен через пептидный линкер His6GlySerArg с аминокислотной последовательностью проинсулина Lispro человека и штамм Escherichia coli TG-1/pLP-3-1, представляющий собой клетки Escherichia coli TG-1 трансформированные плазмидой pPL-3-1 (RU 2235776, 2004).

Существенным недостатком штамма E.coli TG-1/pLP-3-1 является высокая доля лидерного пептида в составе продуцируемого гибридного белка, при этом доля инсулина Aspart в гибридном белке составляет около 30%, что удорожает процесс производства и снижает выход целевого продукта.

Задачей заявляемой группы изобретения является создание нового штамма, продуцирующего гибридный белок с более высокой долей инсулина Lispro, что позволяет упростить дальнейшую технологию выделения инсулина Lispro и повысить его выход.

Техническая задача состояла в конструировании плазмиды, направляющей синтез гибридного белка с проинсулином Lispro с уменьшенной долей лидерного пептида в составе продуцируемого гибридного белка, и создании высокопродуктивного штамма Е.Coli на ее основе.

Технический результат достигался конструированием рекомбинантной плазмиды pHILP07, детерминирующей синтез гибридного белка с молекулярной массой около 14,7 кДа, в котором N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3) соединен через пептидный линкер (SEQ ID NO:4) с аминокислотной последовательностью проинсулина Lispro человека (SEQ ID NO:5), и созданием штамма-продуцента Escherichia coli JM109/pHILP07, обеспечивающего индуцибельный биосинтез гибридного белка с долей инсулина Lispro 39% и с уровнем экспрессии гибридного белка в клетке не ниже 30% от суммарного клеточного белка.

Получена рекомбинантная плазмида pHILP07 (фиг.1), содержащая ДНК, с последовательностью нуклеотидов, представленной на фиг.2., кодирующая гибридный белок (фиг.2), состоящий из кодируемых аминокислотных последовательностей: лидерного пептида, представляющего собой N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3), пептидного линкера (SEQ ID NO:4), и проинсулина Lispro человека (SEQ ID NO:5).

Новая рекомбинантная плазмида pHILP07 кодирует гибридный белок размером 134 а.о. с молекулярной массой 14,7 кДа, в котором аминокислотные последовательности лидерного пептида, представляющего собой N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3), и проинсулина Lispro человека (SEQ ID NO:5) соединены пептидным линкером (SEQ ID NO:4).

Указанная плазмида состоит из фрагмента BamHI-EcoRI плазмиды рКК223-3 (Brosius J., Dull Т. J., Sleeter D.D., Noller H.F. J. Mol. Biol., 1981, v.148, p.107-127), содержащего промотор транскрипции tac; фрагмента ДНК EcoRI-BamHI (SEQ ID NO:1), содержащего ДНК (SEQ ID NO:6), содержащую последовательность Шайн-Дальгарно, которая расположена между EcoRI сайтом и стартовым кодоном гена гибридного белка, и последовательность, кодирующую N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3) и пептидный линкер (SEQ ID NO:4); фрагмента ДНК BamHI-HindIII (SEQ ID NO:2), кодирующего аминокислотную последовательность проинсулина Lispro человека (SEQ ID NO:5); фрагмента HindIII-SnaI плазмиды рКК223-3, содержащего терминатор транскрипции рибосомного оперона E.coli, ген β-лактамазы (bla), определяющий устойчивость клеток бактерий к ампициллину и участок инициации репликации (ori); и Eco47III-EheI фрагмента плазмиды рКК223-3; сайты узнавания рестрикционными эндонуклеазами, расположенные на следующем расстоянии вправо от сайта EcoRI: BamHI - 155 п.о., HpaI - 168 п.о., HindIII - 426 п.о., Pvu I - 1366 п.о.

Оптимальные результаты достигаются при использовании в качестве ДНК с последовательностью Шайн-Дальгарно ДНК, содержащую последовательность Шайн-Дальгарно и 7-10 нуклеотидов до стартового кодона гибридного белка, что обеспечивает эффективную трансляцию гибридного белка.

В качестве генетического маркера может использоваться не только ген β-лактамазы (bla), но и другие гены, определяющие устойчивость клеток бактерий к антибиотикам, или иные последовательности, обеспечивающие достижение подобного или аналогичного эффекта.

Достоинство заявляемой плазмидной конструкции и штамма-продуцента, содержащего эту плазмиду, заключается в биосинтезе гибридного полипептида с более высокой долей нсулина Lispro, которая составляет 39%, благодаря уменьшению размера лидерной последовательности.

В заявляемую группу изобретений входят также трансформированные клетки Escherichia coli, содержащие указанную рекомбинантную плазмиду, кодирующую гибридный белок с проинсулином Lispro человека, а также штамм бактерий Escherichia coli JM109/pHILP07 - продуцент гибридного белка с проинсулином Lispro человека.

Также изобретение относится к трансформированным клеткам Escherichia coli, содержащим указанную рекомбинантную плазмиду, кодирующую гибридный белок с проинсулином Lispro человека, а также штамму бактерий Escherichia coli JM109/pHILP07 - продуценту гибридного белка с проинсулином Lispro человека.

Штамм-продуцент Е.coli JM109/pHILP07 получают путем трансформации компетентных клеток Escherichia coli JM109 рекомбинантной плазмидной ДНК pHILP07. После трансформации отбирают колонии, выращенные на среде с ампициллином, выделяют из них плазмиды и подвергают их рестрикционному анализу и секвенированию. Линию клеток, несущую плазмиду pHILP07, несколько раз пересевают на среду с агарозой с добавлением ампициллина и полученной моноклоновой культурой инокулируют 5 мл жидкой среды с ампициллином. Культуру проверяют на наличие индуцируемой экспрессии гибридного белка, фасуют, добавляют глицерин и хранят при минус 70°С.

Новый штамм Escherichia coli JM109/pHILP07, несущий плазмиду pHILP07, является продуцентом гибридного белка, содержащего аминокислотную последовательность проинсулина Lispro человека, и характеризуется следующими признаками.

Морфологические признаки: клетки мелкие, палочковидной формы, грамотрицательные, неспороносные, размером 1×3,5 мкм, подвижные, с хорошо различимыми тельцами включения после индукции синтеза гибридного белка.

Культуральные признаки: при росте на агаризованной среде LB колонии круглые, гладкие, полупрозрачные, блестящие, серые. Край ровный, диаметр колоний 1-3 мм, консистенция пастообразная. Рост в жидких средах (LB, минимальная среда с глюкозой) характеризуется ровным помутнением.

Физиолого-биохимические признаки: клетки растут при температуре 4-42°С, оптимум рН 6,8-7,6. В качестве источника азота используют как минеральные соли аммония, так и органические соединения: аминокислоты, пептон, триптон, дрожжевой экстракт. В качестве источника углерода при росте на минимальной среде используют глицерин, углеводы, аминокислоты.

Устойчивость к антибиотикам: клетки штамма-продуцента проявляют устойчивость к ампициллину (до 500 мг/мл), обусловленную наличием в плазмиде гена β-лактамазы (bla).

Стабильность плазмиды в штамме. При поддержание клеток в течение нескольких месяцев на агаризованной среде LB, содержащей ампициллин, не наблюдаются потери или перестройки плазмиды, влияющие на экспрессию гибридного белка.

Новый штамм продуцирует гибридный белок, доля инсулина Lispro в котором составляет 39% и который после индуцированной экспрессии накапливается в виде телец включения, а его содержание составляет не менее 30% от общего белка клетки.

Полученный штамм-продуцент Е.coli JM109/pHILP07 депонирован в ФГУП ГосНИИгенетики ВКПМ под номером В-11410 (справка о депонировании прилагается).

Сущность изобретения иллюстрируется следующими иллюстративными материалами.

На фиг.1 представлена физическая карта рекомбинантной плазмиды pHILP07, где используются следующие обозначения:

Ptac - промотор транскрипции; T1T2 - rrnB терминаторы транскрипции рибосомного оперона E.coli; ori - участок инициации репликации; bla - ген β-лактамазы; leader - лидер, N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3); LK (linker) - пептидный линкер (SEQ ID NO:4); proinsulin Lispro - проинсулин Lispro человека (SEQ ID NO:5). Указанные уникальные сайты узнавания эндонуклеазами рестрикции расположены на следующем расстоянии вправо от сайта EcoRI: BamHI - 155 п.о., HpaI - 168 п.o., HindIII - 426 п.o., Pvu I - 1366 п.о.

На фиг.2 представлены нуклеотидная последовательность гена гибридного белка с происулином Lispro человека в составе рекомбинантной плазмиды pHILP07 и кодируемая им аминокислотная последовательность.

Сущность и преимущества изобретения иллюстрируется следующими примерами.

Пример 1. Конструирование плазмиды pHILP07, направляющей синтез гибридного белка с проинсулином Lispro человека.

Рекомбинантную плазмиду pHILP07 конструировали на основе вектора рКК223-3 (Brosius J., Dull Т. J., Sleeter D.D., Noller H.F. J. Mol. Biol., 1981, v.148, p.107-127), который предварительно модифицировали. На первом этапе из плазмидной ДНК рКК223-3 удаляют фрагмент BamHI-EheI размером примерно 830 п.о., путем (при помощи) достройки «липких» концов после частичного гидролиза по BamHI и полного гидролиза по Ehe I и последующего лигирования полученных «тупых» концов (RU 2263147, 2005). Затем полученную плазмиду pКК223-3-del размером примерно 3750 п.о. делегировали по rop-гену (негативному регулятору копийности) для увеличения числа ее копий на бактериальную клетку (Twigg A.J. and Sherrat D. Nature, 1980, v.283, p.216-218). С этой целью ДНК плазмиды pКК223-3-del подвергали полному гидролизу рестриктазами Eco47III и SnaI, а полученный фрагмент Eco47III-SnaI (3,2 т.п.о.) лигировали. В результате получали плазмиду pКК223-3-del2 размером 3250 п.о., которую использовали в качестве вектора для клонирования фрагмента ДНК размером 160 п.о. (SEQ ID NO:1), фланкированного сайтами рестрикции EcoRI и BamHI и содержащего последовательность Шайн-Дальгарно и последовательность, кодирующую N-концевой фрагмент гамма-интерферона человека и пептидный линкер. Указанный фрагмент ДНК (SEQ ID NO:1) синтезировали химическим способом и встраивали в плазмиду pКК223-3-del2 по сайтами EcoRI и BamHI. В результате получали плазмидную ДНК pKK-GI-del02 размером примерно 3400 п.о., содержащую между сайтами EcoRI и BamHI последовательность Шайн-Дальгарно и последовательность, кодирующую N-концевой фрагмент гамма-интерферона человека и пептидный линкер.

Далее плазмида pKK-GI-del02 была использована для конструирования плазмидной ДИК, кодирующей гибридный белок, в котором N-концевая последовательность гамма-интерферона (SEQ ID NO:3) через пептидный линкер (SEQ ID NO:4) соединена с последовательностью проинсулина Lispro человека (SEQ ID NO:5). Для этого синтезировали химическим способом фрагмент ДНК размером 410 п.о. (SEQ ID NO:2), фланкированный сайтами рестрикции BamHI и HindIII и содержащий кодон для аргинина и нуклеотидную последовательность, кодирующую проинсулин Lispro человека, оптимизированную с учетом частоты встречаемости кодонов в геноме Е.coli. Указанный фрагмент ДНК клонировали в плазмиду pKK-GI-del02 по BamHI и HindIII сайтам.

В результате получили рекомбинантную плазмидную ДНК pHILP07, строение которой подтверждали рестрикционным анализом. Структура гена, кодирующего гибридный белок, была подтверждена секвенированием.

Плазмидная ДНК pHILP07 позволяет направлять синтез гибридного белка с более высокой долей инсулина Lispro, которая составляет 39%, благодаря уменьшению размера лидерной последовательности.

Пример 2. Получение штамма E.coli JM109/pHILP07 - продуцента гибридного белка с проинсулином Lispro человека.

Плазмидной ДНК pHILP07 трансформируют компетентные клетки штамма E.coli JM109 и высевают на LB-агар, содержащий 100 мкг/мл ампициллина. Отдельно локализованную колонию трижды пересевают на чашки с LB-агаром, содержащим 100 мкг/мл ампициллина. Полученной моноклоновой культурой инокулируют 5 мл жидкой среды LB с ампициллином и инкубируют в течение ночи, при интенсивном встряхивании, при 37°С. Полученный штамм-продуцент E.coli JM109/pHILP07 хранят в 15% глицерине при минус 70°С.

Для определения уровня индуцируемой экспрессии гибридного белка, ночную культуру засевают в разведении 1:50 в 5 мл жидкой среды LB, содержащей 100 мкг/мл ампициллина, и растят до мутности 0,8 при 37°С на качалке при 200 об/мин. К культуре добавляют ИПТГ до концентрации 1,0 мМ и продолжают инкубацию в тех же условиях в течение 3 часов. Клетки собирают центрифугированием, осадок суспендируют в буфере, содержащем 62,5 мМ трис-HCl, рН 6,8, 3% додецилсульфата натрия, 5% 2-меркаптоэтанола, 10% глицерина и 0,01% бромфенолового синего и прогревают 3 мин на кипящей водяной бане. Полученный лизат клеток анализируют электрофорезом в 18% полиакриламидном геле с додецилсульфатом натрия. Гель окрашивают Coomassie R-250, сканируют и проводят его денситометрию. По данным денситометрии выход гибридного белка составляет 29±3% от общего белка клетки.

Преимуществом заявляемой группы изобретений по сравнению с аналогами является увеличение доли инсулина Lispro в гибридном белке, которая составляет 39%, что позволяет соответственно повысить выходы при его производстве.

1. Рекомбинантная плазмидная ДНК pHILP07, направляющая синтез гибридного белка человека с проинсулином Lispro человека, представленная на фиг.1, содержащая ДНК, кодирующую гибридный белок с проинсулином Lispro человека размером 134 а.о. с последовательностью, представленной на фиг.2, содержащей в своей структуре аминокислотные последовательности лидерного пептида в виде N-концевого фрагмента гамма-интерферона человека SEQ ID NO:3, проинсулин Lispro человека SEQ ID NO:5, соединенные между собой пептидным линкером SEQ ID NO:4, а также ДНК SEQ ID NO:6, содержащая последовательность Шайн-Дальгарно, расположенную между EcoRI сайтом и стартовым кодоном гена гибридного белка, и сайты узнавания эндонуклеазами рестрикции, расположенные на следующем расстоянии вправо от сайта EcoRI: BamHI - 155 п.о., Hpal - 168 п.о., HindIII - 426 п.о., Pvu 1-1366 п.о.

2. Рекомбинантаная плазмидная ДНК по п.1 отличается тем, что ДНК, содержащая последовательность Шайн-Дальгарно, содержит последовательность Шайн-Дальгарно и нуклеотидную последовательность, состоящую из 7-10 нуклеотидов.

3. Клетка Escherichia coli, содержащая рекомбинантную плазмидную ДНК pHILP07 по п.1, - продуцент гибридного белка, содержащего проинсулин Lispro человека.

4. Штамм бактерий Escherichia coli JM109/pHILP07 - продуцент гибридного белка с проинсулином Lispro человека, зарегистрированный в ФГУП ГосНИИгенетики ВКПМ под номером B-11410.



 

Похожие патенты:

Настоящее изобретение относится к области биотехнологии, конкретно к новому пептидному аналогу инсулиноподобного фактора роста-1 (IGF-1), содержащему аминокислотную замену метионина в положении 59 на Asn, Leu, Nle, Ile, Arg, A6c, Glu, Trp или Tyr, а также другие дополнительные замены, вставки и делеции.

Изобретение относится к области биотехнологии, конкретно к получению модифицированных белков IGF-1, и может быть использовано в медицине. .
Изобретение относится к области биотехнологии, в частности к генной и белковой инженерии, и касается способа получения рекомбинантного с-пептида человека. .

Изобретение относится к области медицины, а именно к генной терапии, и касается нуклеотидной последовательности, кодирующей инсулиноподобный фактор роста человека, IGF-1, представленную синтетическим геном, включающим последовательность SEQ ID NO:1, рекомбинантной плазмидной ДНК, содержащей эту последовательность, эукариотической клетки, содержащей рекомбинантную плазмидную ДНК, конструкции для генной терапии и фармацевтической композиции для генной терапии, обладающей регенеративным и ранозаживляющим действием.

Изобретение относится к области биотехнологии, а именно к получению рекомбинантного инсулина человека, и может быть использовано для приготовления лекарственных препаратов для лечения сахарного диабета.

Изобретение относится к генной инженерии и может быть использовано в фармацевтической промышленности при создании лекарственных препаратов для лечения инсулинозависимого сахарного диабета.

Изобретение относится к генной инженерии, конкретно к получению проинсулина Glargin, и может быть использовано для создания лекарственных препаратов нового поколения для лечения инсулинозависимого сахарного диабета.

Изобретение относится к генной инженерии и может быть использовано для получения высокоочищенного генно-инженерного инсулина Lyspro - быстродействующего аналога инсулина человека.
Изобретение относится к области биотехнологии, а именно к получению генно-инженерного инсулина человека для изготовления лекарственных препаратов, применяемых при лечении сахарного диабета.

Изобретение относится к области биотехнологии и может быть использовано в медико-биологической промышленности. .
Изобретение относится к области биотехнологии. Штамм гриба Aspergillus oryzae Аmу Т-52-3-21 продуцирует мальтогенную α-амилазу и депонирован в ВКМ ИБФМ им.

Изобретение относится к области молекулярной биологии и биотехнологии. Предложен способ получения дрожжевой библиотеки, включающий инкубацию клеток дрожжей в растворе с 0,01-1 М ацетата лития и 1-100 мМ дитиотреитола, получение суспензии, содержащей линеаризованный ДНК вектор и ДНК вставку в соотношении 1:0,5-1:10, сорбит и CaCl2 или МgCl2 при соотношении 4 мкг ДНК вектора к 400 мкл 1,6×109 клеток дрожжей/мл, и электропорацию раствора дрожжевых клеток суспензией при напряжении 0,5-12,5 кВ/см с емкостью 10-50 мкФ.

Изобретение относится к области биотехнологии, конкретно к способу получения неприродных искусственных олигонуклеотидов, потенциально способных образовывать стабильные в физиологических и близких к физиологическим условиях неканонические структуры - несовершенные G-квадруплексы (ImGQ), включающие одну нуклеотидную замену в G4 плоскости в G-квадруплексах (GQ).

Изобретение относится к молекулярной генетике. Способ включает: получение кДНК EML4-ALK с помощью полимеразной цепной реакции с обратной транскрипцией (ОТ-ПЦР) на матрице РНК гена EML4-ALK с использованием специфичных праймеров; амплификацию фрагментов гена EML4-ALK методом мультиплексной ПЦР на матрице кДНК, полученной на первом этапе ОТ-ПЦР, с помощью набора высокоспецифичных праймеров; получение флуоресцентно-меченого ПЦР-продукта на втором этапе ОТ-ПЦР; создание биочипа для анализа транслокаций EML4-ALK, содержащего набор иммобилизованных зондов; гибридизацию флуоресцентно-меченого ПЦР-продукта с зондами в гелевых ячейках на пластиковой подложке биочипа; регистрацию и интерпретацию результатов гибридизации.

Изобретение относится к области биотехнологии, конкретно к созданию рекомбинантных плазмид, обеспечивающих экспрессию полиэпитопных опухоль-ассоциированных антигенов в дендритных клетках, способных стимулировать специфические цитотоксические клетки, и может быть использовано в медицине.

Изобретение относится к области биохимии и представляет собой плазмиду, определяющую синтез α-галактозидазы α-PsGal, включающую NcoI/SalI - фрагмент плазмиды pET-40b(+) (Novagen) и фрагмент ДНК, размером 2142 пар оснований, содержащий химерный ген, состоящий из структурной части гена α-PsGal, адаптированной по N-концу для экспрессии в клетках E.

Настоящее изобретение относится к области иммунологии. Предложено гуманизированное антитело к человеческому интегрину альфа-9 (α9), полученное из антитела Y9A2 мыши и обладающее улучшенной активностью и термостабильностью.

Группа изобретений относится к области биотехнологии. Вектор экспрессии содержит: (a) ориджин репликации OriP, полученный из вируса Эпштейна-Барр (EBV), где ориджин репликации содержит: 1) элемент симметрии второго порядка (DS); и 2) участок дупликации (FR), который содержит участок связывания EBNA; (b) ориджин репликации SV40; (c) участок инсерции для вставки представляющего интерес гена; (d) промотор EF-1б, функционально связанный с участком инсерции; (e) сигнал поли-A; (f) бактериальный ориджин репликации; (g) селектируемый маркер; и необязательно содержащий (h) последовательность нуклеиновой кислоты, кодирующую константную область тяжелой или легкой цепи антитела, функционально связанную с участком инсерции.

Изобретение относится к области медицины, нейробиологии и фармакогенетике и касается способа получения валидной молекулярно-генетической модели абсансной эпилепсии человека.

Изобретение относится к биотехнологии и представляет собой бактерию рода Escherichia, которая продуцирует L-аминокислоту, выбранную из группы, состоящей из L-глутамина, L-глутаминовой кислоты, L-пролина, L-аргинина, L-цитруллина и L-орнитина.

Изобретение относится к области биотехнологии и представляет штамм - реципиент Bacillus pumilus 2A-5 ВКПМ В-10743 с низкой протеолитической активностью. Изобретение позволяет расширить ассортимент штаммов с низкой протеолитической активностью для производства чистых гомологичных и рекомбинантных белков, а также с повышенной продуктивностью в качестве продуцента щелочной фосфатазы.
Наверх