Быстродействующий драйвер дифференциальной линии связи

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления и преобразования аналоговых сигналов, в структуре «систем на кристалле» и «систем в корпусе» различного функционального назначения (например, операционных усилителей, работающих на емкостную нагрузку). Технический результат заключается в повышении быстродействия драйвера при работе на емкостную нагрузку за счет исключения влияния на переходный процесс первого и второго конденсаторов цепи нагрузки. Технический результат достигается за счет быстродействующего драйвера дифференциальной линии связи, который содержит первый и второй источники входных противофазных напряжений, связанных с соответствующими входами первого и второго выходных каскадов, первый и второй конденсаторы нагрузки, подключенные к соответствующим выходам первого и второго выходных каскадов, выход первого выходного каскада, вход первого неинвертирующего повторителя напряжения, токовый выход первого инвертирующего повторителя тока, первый дополнительный конденсатор, второй дополнительный конденсатор. 5 ил.

 

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления и преобразования аналоговых сигналов, в структуре «систем на кристалле» и «систем в корпусе» различного функционального назначения (например, операционных усилителей, работающих на емкостную нагрузку).

Известны схемы драйверов линий связи, построенных на основе операционных усилителей с отрицательной обратной связью, которые стали основой многих серийных микросхем первого и второго поколения [1-7].

Ближайшим прототипом (фиг.1) заявляемого устройства является драйвер дифференциальной линии связи, описанный в патентной заявке US 2006/0202753, содержащий первый 1 и второй 2 источники входных противофазных напряжений, связанных с соответствующими входами первого 3 и второго 4 выходных каскадов, первый 5 и второй 6 конденсаторы нагрузки, подключенные к соответствующим выходам 7 и 8 первого 3 и второго 4 выходных каскадов. Конденсаторы 5 и 6 моделируют емкостную составляющую цепи нагрузки, например емкости дифференциальной линии связи.

Существенный недостаток известного драйвера состоит в том, что он характеризуется сравнительно низким быстродействием из-за влияния на переходный процесс первого 5 и второго 6 конденсаторов цепи нагрузки.

Основная задача предлагаемого изобретения состоит в повышении быстродействия драйвера при работе на емкостную нагрузку, расширении диапазона его рабочих частот.

Поставленная задача достигается тем, что в драйвере дифференциальной линии связи (фиг.1), содержащем первый 1 и второй 2 источники входных противофазных напряжений, связанных с соответствующими входами первого 3 и второго 4 выходных каскадов, первый 5 и второй 6 конденсаторы нагрузки, подключенные к соответствующим выходам 7 и 8 первого 3 и второго 4 выходных каскадов, предусмотрены новые элементы и связи - выход 7 первого 3 выходного каскада соединен с входом первого 9 неинвертирующего повторителя напряжения и токовым выходом первого 10 инвертирующего повторителя тока, выход 8 второго 4 выходного каскада соединен с входом второго 11 неинвертирующего повторителя напряжения и токовым выходом второго 12 инвертирующего повторителя тока, причем между выходом первого 9 неинвертирующего повторителя напряжения и входом второго 12 инвертирующего повторителя тока включен первый 13 дополнительный конденсатор, а между выходом второго 11 неинвертирующего повторителя напряжения и входом первого 10 инвертирующего повторителя тока включен второй 14 дополнительный конденсатор.

На фиг.1 приведена схема драйвера-прототипа.

На фиг.2 показана схема заявляемого устройства в соответствии с формулой изобретения.

На фиг.3 представлена компьютерная модель схемы заявляемого устройства фиг.2 в среде PSpice, на которой, в соответствии со спецификой интерфейса PSpice, приняты следующие обозначения элементов, соответствующие фиг.2: R1=Rвых.3 (16), R2=Rвых.4 (18), Cп1=C5, Cп2=C6, Cк1=C13, Cк2=С14, F2 - усилитель тока 12, F3 - усилитель тока 10. Неинвертирующие повторители напряжения, обозначенные символом «1», соответствуют неинвертирующим повторителям 9 и 11 схемы фиг.2.

На фиг.4 приведена зависимость времени установления напряжения (tуст) на выходе 7 первого 3 выходного каскада драйвера от значения емкости дополнительных конденсаторов 13 и 14 (Cк1=C13, Cк2=C14).

На фиг.5 показана зависимость времени установления напряжения на выходе 8 второго 4 выходного каскада драйвера от значения емкости дополнительных конденсаторов 13 и 14 (Cк1=C13, Cк2=C14).

Из графиков фиг.4, фиг.5 видно, что при введении первого 13 и второго 14 дополнительных конденсаторов время установления выходных импульсов драйвера уменьшается более чем 20 раз. Чем ближе значение емкости Cк=C13=C14 к емкости Cн=C6=C5, тем меньше tуст.

Быстродействующий драйвер дифференциальной линии связи содержит первый 1 и второй 2 источники входных противофазных напряжений, связанных с соответствующими входами первого 3 и второго 4 выходных каскадов, первый 5 и второй 6 конденсаторы нагрузки, подключенные к соответствующим выходам 7 и 8 первого 3 и второго 4 выходных каскадов. Выход 7 первого 3 выходного каскада соединен с входом первого 9 неинвертирующего повторителя напряжения и токовым выходом первого 10 инвертирующего повторителя тока, выход 8 второго 4 выходного каскада соединен с входом второго 11 неинвертирующего повторителя напряжения и токовым выходом второго 12 инвертирующего повторителя тока, причем между выходом первого 9 неинвертирующего повторителя напряжения и входом второго 12 инвертирующего повторителя тока включен первый 13 дополнительный конденсатор, а между выходом второго 11 неинвертирующего повторителя напряжения и входом первого 10 инвертирующего повторителя тока включен второй 14 дополнительный конденсатор.

Рассмотрим работу известного (фиг.1) и предлагаемого (фиг.2) устройств.

При скачкообразном положительном изменении входного напряжения на входе первого 3 выходного каскада фиг.1 и отрицательном изменении входного напряжения на входе второго 4 выходного каскада начинается процесс заряда первого 5 конденсатора цепи нагрузки (С5) и разряда второго 6 конденсатора цепи нагрузки (С6). При этом постоянные времени цепи заряда и разряда определяются выходными сопротивлениями первого 3 выходного каскада (Rвых.3) и емкостью первого 5 конденсатора нагрузки (C5), а также выходным сопротивлением второго 4 выходного каскада (Rвых.4) и емкостью второго 6 конденсатора нагрузки (С6). В конечном итоге эти постоянные времени оказывают отрицательное влияние на быстродействие драйвера-прототипа, у которого время установления переходного процесса для многих практических случаев оказывается недопустимо большим.

В заявляемой схеме фиг.2 напряжение на первом 5 конденсаторе нагрузки С5 передается на выход неинвертирующего усилителя напряжения 9, что создает ток через первый 13 дополнительный конденсатор. В результате на выходе инвертирующего усилителя тока 12 формируется корректирующий импульс тока, способствующий более быстрому разряду конденсатора 6 (С6). Об этом свидетельствуют графики фиг.5, когда при Cк≈С13=19,9 пф время установления переходного процесса уменьшается с 30 нс до 1,3 нс, т.е. более чем в 20 раз.

Аналогично, уменьшение напряжения на втором 6 конденсаторе нагрузки (C6) передается на выход неинвертирующего усилителя напряжения 11, что создает ток через второй 14 дополнительный конденсатор. В результате на выходе инвертирующего усилителя тока 10 формируется корректирующий импульс тока, способствующий более быстрому заряду конденсатора 5. Об этом свидетельствуют графики фиг.5, когда при Cк≈С13=19,9 пф время установления переходного процесса уменьшается с 30 нс до 1,3 нс, т.е. более чем в 20 раз.

Таким образом, заявляемый драйвер обеспечивает при емкостной нагрузке более высокое быстродействие.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 3769605, fig.2.

2. Патент US 7863977, fig.1.

3. Патент US 5345471, fig.1B.

4. Патент US 7327189, fig.7.

5. Патентная заявка US 2001/0050333, fig.3.

6. Патентная заявка US 2003/0137345, fig.2.

7. Патент US 6222416.

8. Патент US 5557238, fig.1.

9. Патентная заявка US 2011/0158435, fig.1.

10. Патентная заявка US 2010/0259323, fig.2.

11. Патент US 6741132, fig.4.

12. Патентная заявка US 2011/0227652, fig.2.

13. Патентная заявка US 2009/0045876, fig.1a.

Быстродействующий драйвер дифференциальной линии связи, содержащий первый (1) и второй (2) источники входных противофазных напряжений, связанных с соответствующими входами первого (3) и второго (4) выходных каскадов, первый (5) и второй (6) конденсаторы нагрузки, подключенные к соответствующим выходам (7) и (8) первого (3) и второго (4) выходных каскадов, отличающийся тем, что выход (7) первого (3) выходного каскада соединен с входом первого (9) неинвертирующего повторителя напряжения и токовым выходом первого (10) инвертирующего повторителя тока, выход (8) второго (4) выходного каскада соединен с входом второго (11) неинвертирующего повторителя напряжения и токовым выходом второго (12) инвертирующего повторителя тока, причем между выходом первого (9) неинвертирующего повторителя напряжения и входом второго (12) инвертирующего повторителя тока включен первый (13) дополнительный конденсатор, а между выходом второго (11) неинвертирующего повторителя напряжения и входом первого (10) инвертирующего повторителя тока включен второй (14) дополнительный конденсатор.



 

Похожие патенты:

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения.

Изобретение относится к области радиотехники и связи. Техническим результатом является расширение диапазона активной работы входного каскада ОУ для дифференциального сигнала, а также получение граничных напряжений его проходной характеристики iвых=f(uвх) на уровне Uгр=1÷2 В, что приводит к повышению быстродействия ОУ более чем на порядок.

Изобретение относится к устройствам усиления аналоговых сигналов. Техническим результатом является расширение диапазона активной работы входного каскада операционного усилителя (ОУ) для дифференциального сигнала.

Изобретение относится к области радиотехники и связи. Техническим результатом является расширение диапазона активной работы входного каскада ОУ для дифференциального сигнала за счет новых элементов связи.

Изобретение относится к устройствам усиления аналоговых сигналов. .

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. .

Изобретение относится к области радиотехники и связи. .

Изобретение относится к области радиотехники и связи. .

Изобретение относится к области радиотехники и связи. .

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления и преобразования аналоговых и цифровых импульсных сигналов в устройствах различного функционального назначения, работающих на емкостную нагрузку. Достигаемый технический результат - повышение быстродействия драйвера при работе на емкостную нагрузку, расширение диапазона его рабочих частот. Быстродействующий драйвер емкостной нагрузки содержит выходной каскад, вход которого соединен с источником входного сигнала, а выход подключен к конденсатору цепи нагрузки, преобразователь «напряжение-ток», потенциальный вход которого соединен с выходом выходного каскада, потенциальный выход соединен с цепью коррекции, первый токовый выход подключен ко входу первого токового зеркала, согласованного с первой шиной источника питания, второй токовый выход подключен ко входу второго токового зеркала, согласованного со второй шиной источника питания, токовые выходы первого и второго токовых зеркал связаны с выходом выходного каскада, причем приращение токов первого и второго токовых выходов преобразователя «напряжение-ток» для соответствующих полярностей выходных напряжений пропорциональны проводимости цепи коррекции. 1 н. и 1 з.п. ф-лы.,9 ил.

Изобретение относится к области радиотехники. Технический результат заключается в повышении стабильности операционного усилителя на постоянном токе. Устройство содержит входной дифференциальный каскад с токовыми выходами, согласованный с первой шиной источника питания, первое и второе токовые зеркала, согласованные со второй шиной источника питания, первый и второй токостабилизирующие двухполюсники, первый и второй токовые выходы входного дифференциального каскада связаны с эмиттером первого, второго, третьего и четвертого дополнительных транзисторов противоположного типа проводимости, базы первого и третьего дополнительных транзисторов объединены и подключены к источнику вспомогательного напряжения, коллектор первого дополнительного транзистора соединен со входом первого токового зеркала, коллектор третьего дополнительного транзистора соединен со входом второго токового зеркала, первый вспомогательный выход устройства связан с объединенными базами второго и четвертого дополнительных транзисторов через первый дополнительный резистор, второй вспомогательный выход устройства связан с объединенными базами второго и четвертого дополнительных транзисторов через второй дополнительный резистор. 3 з.п. ф-лы, 5 ил.

Группа изобретений относится к усилителю устройства обработки сигналов. Технический результат заключается в обеспечении возможности усиления входного сигнала, содержащего низкочастотный компонент. Когда переключатель (SW1) задается выключенным, а переключатель (SW2) задается включенным, напряжение контактного вывода (205) SigOut стабилизируется с помощью опорного напряжения, и напряжение смещения прикладывается к конденсатору (C1). Изменяя переключатель (SW2) из включенного состояния в выключенное при напряжении смещения, сохраненном в конденсаторе (C1), сигнал обнаружения, который вводится через контактный вывод (201) SigIn, усиливается с помощью опорного напряжения в качестве опорного уровня, и усиленный сигнал выводится из контактного вывода (205) SigOut. 2 н. и 10 з.п. ф-лы, 27 ил.

Изобретение относится к схемам входных каскадов на КМОП-транзисторах. Технический результат: расширение диапазона активной работы дифференциального входного каскада. Исток первого входного транзистора соединен со стоком четвертого входного полевого транзистора через первый дополнительный резистор, исток второго входного транзистора соединен со стоком третьего входного полевого транзистора через второй дополнительный резистор и через дополнительную цепь смещения потенциалов связан с затвором второго выходного транзистора, который подключен ко второй шине источника питания через дополнительный токостабилизирующий двухполюсник. 13 ил.

Изобретение относится к области радиотехники и связи. Техническим результатом является увеличение ширины полосы пропускания операционного усилителя (ОУ), а также повышение быстродействия ОУ при импульсных входных сигналах. ОУ содержит два входных транзистора, два последовательно соединенных прямосмещенных р-n-перехода, два токостабилизирующих двухполюсника, две шины источника питания, два промежуточных транзистора, два вспомогательных источника напряжения питания, два токостабилизирующих резистора и два токовых зеркала. 1 з.п. ф-лы, 2 ил.
Наверх