Способ определения максимальных истинных напряжений и деформаций



Способ определения максимальных истинных напряжений и деформаций
Способ определения максимальных истинных напряжений и деформаций

 


Владельцы патента RU 2516592:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) (RU)

Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок. Сущность: осуществляют растяжение образца, регистрируют усилие деформирования, минимальный диаметр образца, продольный радиус шейки, по которым затем расчетным путем определяют зависимость истинного напряжения от степени истинных деформаций, определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения путем введения поправочного коэффициента снижения напряжений, строят скорректированную истинную диаграмму деформирования. Определяют максимальную истинную деформацию при разрыве с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва. Определяют показатель деформационного упрочнения расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца, а максимальные истинные напряжения находят с учетом полученного значения показателя деформационного упрочнения, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации, истинных напряжений и деформаций в момент разрыва образца. Технический результат: упрощение способа определения максимальных истинных напряжений и деформаций за счет исключения сложных процедур многократной токарной обработки шейки при сохранении достоверности полученных результатов. 1 ил., 2 табл.

 

Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок.

После образования шейки при растяжении образца в районе его минимального сечения формируется сложное, неоднородное по поперечному сечению напряженное состояние, что приводит к завышению напряжения и занижению деформации. Для приведения объемного напряженного состояния к линейному (свойственного образцу до образования шейки) вводят поправочный коэффициент, учитывающий жесткость напряженного состояния.

Известен способ определения характеристик прочности и текучести конструкционных материалов, на основании которого изготавливают образец, а затем нагружают его вплоть до разрушения, регистрируют диаграмму в координатах «усилие - деформация», максимальное растягивающее усилие и продольную относительную пластическую деформацию отрыва, по которым судят, в частности, об условных и истинных напряжениях прочности материала (Авторское свидетельство СССР №1747989 А1, кл G01N 3/00. опубл. БИ №26 15.07.92).

Недостатком этого способа является отсутствие учета влияния вида напряженного состояния, связанного с сосредоточенной деформацией в шейке, на характеристики прочности и пластичности, что приводит к искажению результатов по определению характеристик прочности и пластичности.

Известен также способ определения характеристик прочности и текучести конструкционных материалов при различной степени объемной деформации, когда образец нагружают до разрушения, регистрируют диаграмму «усилие - деформация», максимальное растягивающее усилие, продольную относительную пластическую деформацию отрыва и по ним с учетом значений твердости судят об условном и истинном напряжении прочности материала (Авторское свидетельство СССР №1747989 А1, М кл. G01N 3/00 15.07.92). Однако способ не дает информации о характеристиках пластичности и влиянии напряженного состояния в шейке при испытании пластичных металлов, т.е. сопротивление большим пластическим деформациям.

Решением, наиболее близким к предложенному по своей сущности и принятому за прототип, является способ определения максимальных истинных напряжений и деформаций, который состоит в том, что при растяжении образца на стадии шейкообразования регистрируют усилие деформирования F и изменение диаметра d, растягивают образец до деформации, не вызывающей в шейке существенных геометрических изменений, влияющих на напряженное состояние в минимальном сечении шейки, разгружают образец, проводят переточку шейки на конусообразную форму с минимальным углом наклона образующей конуса, что снижает до минимально возможных значений параметр жесткости напряженного состояния в деформируемой зоне, обеспечивающий закрепление деформации в области шейки, измеряют обусловленную усилием деформацию ψ в минимальном сечении шейки, по которой затем расчетным путем определяют зависимость истинного напряжения S от степени истинной деформации е, повторяют аналогичную процедуру испытаний вплоть до разрушения образца. Величины истинных напряжений и деформаций при разрыве принимают за максимальные напряжения и деформации (Патент РФ 2319944 С1, кл. G01N 3/00 19.06.2006).

Недостатком способа является высокая трудоемкость, связанная с необходимостью периодической установки образца в центрах токарного станка и обеспечения соосности его установки относительно геометрии формирующейся шейки, обеспечения конусообразной формы обработки с расчетом минимального угла наклона образующих конуса. При этом эксцентриситет приложения нагрузки или неоднородность свойств вызывают нарушение соосности, не позволяющее выполнить соосную с шейкой обточку, что приводит к искажению экспериментальных результатов.

Таким образом, задача состоит в устранении отмеченных недостатков. Техническим результатом заявленного изобретения является упрощение способа определения максимальных истинных напряжений и деформаций за счет исключения сложных процедур многократной токарной обработки шейки при сохранении достоверности полученных результатов.

Указанный технический результат достигается тем, что в способе определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающемся в том, что осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимости истинного напряжения (S) от степени истинной деформации (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения Se путем введения поправочного коэффициента К, строят скорректированную истинную диаграмму деформирования; определяют максимальную истинную деформацию при разрыве emax с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле

e max = ln [ 1 ( 1 d k 2 d 0 2 ) ( 1,46 exp ( 0,92 η ) ) 1 ]

где d0 - исходный диаметр образца;

dk - минимальный диаметр образца при разрыве;

η - параметр жесткости напряженного состояния, определяемый по формуле: η = 1 3 + ln ( 1 + d k 4 R k )

Rk - продольный радиус шейки непосредственно перед разрывом образца;

затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле

n = t g α к а с t g α с е к

где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,

а максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации emax, истинных напряжений Se,k и деформаций ek в момент разрыва образца

S max = S e , k ( e max e k ) n

Существенным отличием предлагаемого способа является то, что величины максимальных истинных напряжений и максимальных истинных деформаций определяют по изменению параметров шейки с учетом новых взаимосвязей, установленных между максимальной истинной деформацией и параметрами шейки, определяют параметр деформационного упрочнения при степенной аппроксимации истинной диаграммы деформирования на стадии предразрушения, что позволяет полностью исключить сложные процедуры периодической токарной обработки контура шейки, предусмотренные прототипом, при сохранении достоверности полученных результатов.

В результате испытание образца по предложенному способу дает возможность определить максимальные истинные напряжения и деформации, приведенные к линейному напряженному состоянию.

Способ иллюстрируется нижеприведенным чертежом, на котором представлены: 1 - диаграмма истинных напряжений при стандартных испытаниях; 2 - диаграмма, скорректированная по напряжениям на линейное напряженное состояние; 3 - касательная к скорректированной диаграмме растяжения в точке предразрушения; угол αсек, тангенс которого численно равен секущему модулю; угол αкас, тангенс которого численно равен касательному модулю; точка Д на диаграмме деформирования, отмеченная по полученным значениям номинальных истинных напряжений Smax и деформаций emax.

Способ определения максимальных истинных напряжений и деформаций реализуется следующим образом (на примере цилиндрического образца).

Исходные значения характеристик прочности и пластичности материала определяют на основе предварительных испытаний на растяжение образцов, форма и размеры которых предусмотрены ГОСТ 1497-84. Режимы проведения испытаний назначаются согласно упомянутому ГОСТу. В процессе испытания регистрируют усилие деформирования (F), соответствующее ему значение минимального диаметра (d), рассчитывают величину условных напряжений (σ) и деформации (ε) по формулам,

σ = F A 0 , ε = Δ l l 0 , ( 1 )

истинного напряжения S и истинной деформации e по формулам:

σ = F A , ε = ln A 0 A , ( 2 )

где A0 и А - начальная и текущая площади поперечного сечения образца ( A = π d 2 4 )

Испытания образца по предлагаемому способу проводят в несколько этапов (ступеней), задавая на каждом из них определенную степень деформации и контролируя ее по изменению минимального диаметра образца. Первоначально образец с исходным диаметром d0 устанавливают в захваты разрывной машины. Производят растяжение образца с записью машинной диаграммы, нагружая его до максимальной нагрузки Fmax, соответствующей σB, а затем разгружают. Измеряют диаметр di поперечного сечения образца и вычисляют истинные напряжение S и относительное удлинение е по формулам (2).

На последующих ступенях нагружения вплоть до разрушения деформация локализуется в области шейки, в минимальном сечении которой определяют диаметр di и продольный радиус шейки Ri. Истинные напряжения S и деформации е также определяют по формулам (2). Строят истинную диаграмму деформирования S □ е. В минимальном сечении шейки образца формируется объемное напряженное состояние, которое, как показано Бриджменом П. (Исследование больших пластических деформаций и разрыва. - М.: Либкор, 2010), а также Давиденковым Н.Н. и Спиридоновой Н.И. (Заводская лаборатория. - 1946 г. - №6. - С.588-592), влияет на величину истинных напряжений, завышая их. Для приведения истинных напряжений к линейному напряженному состоянию, т.е. для исключения влияния сложного напряженного состояния на величину истинных напряжений, вводят корректирующий коэффициент К

K = ( 1 + 4 R d ) ln ( 1 + d 4 R ) , ( 3 )

находят скорректированное (приведенное к линейному напряженному состоянию) истинное напряжение Se

S e = S K ( 4 )

и строят скорректированную истинную диаграмму деформирования в координатах Se □ е.

Объемное напряженное состояние, формируемое в шейке, также влияет на величину пластических деформаций. Приведение к линейному напряженному состоянию максимальных значений истинных деформаций осуществляется по формуле:

e max = ln [ 1 ( 1 d k 2 d 0 2 ) ( 1,46 exp ( 0,92 η ) ) 1 ]

где η - параметр жесткости напряженного состояния при формировании шейки, который определяется по формуле: η = 1 3 + ln ( 1 + d k 4 R k )

Для оценки максимальных истинных напряжений, соответствующих emax, принимается степенная аппроксимация истинной диаграммы деформирования (ГОСТ 25.503-97 «Методы механических испытаний металлов. Метод испытаний на сжатие», £646-00 «Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials»).

Определение показателя деформационного упрочнения n проводится расчетно-графическим методом путем обработки истинной диаграммы деформирования в соответствии с выражением

n = t g α к а с t g α с е к

где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца. Величина максимальных истинных напряжений рассчитывается с учетом определенных выше максимальной истинной деформации emax, параметра деформационного упрочнения n, степенной аппроксимации диаграммы деформирования, истинных напряжений Se,k и деформаций ek, соответствующих моменту разрыва образца, по формуле: S max = S e , k ( e max e k ) n

Проведена экспериментальная проверка способа.

Испытывались пятикратные цилиндрические образцы из титанового сплава 5В с рабочей длиной 40 мм диаметром 10 мм на разрывной машине УМЭ-ЮТМ с записью диаграммы в координатах «нагрузка F - удлинение Δl». Испытание на растяжение проведено в соответствии с ГОСТ 1497-84. Дополнительно в процессе испытания на стадии шейкообразования проводились периодические разгрузки образца с целью измерения диаметра в минимальном сечении шейки di и продольного радиуса шейки Ri, по результатам которых была построена истинная диаграмма деформирования в координатах «истинные напряжения S - истинные (логарифмические) деформации е» (кривая 1). Затем строится приведенная к линейному напряженному состоянию по напряжениям истинная диаграмма деформирования «истинные напряжения Se - истинные деформации е» (кривая 2). Se определяли по формуле

S e = S K

где K = ( 1 + 4 R 4 ) ln ( 1 + d 4 R )

Результаты расчетов приведены в таблице 1.

Моменту разрушения соответствовали истинные напряжения Se,k и истинные деформации ek.

Таблица 1
Параметр Этапы нагружения
1 2 3 4 5 6 7 8 9
Истинная деформация (е, %) 6,5 12,1 15,3 19,7 23.7 28,7 34,1 38,1 46,8
Истинные напряжения (S, МПа) 974 1019 1041 1066 1093 1129 1154 1174 1247
Скорректированные истинные напряжения (Se, МПа) 974 1019 1041 1066 1080 1109 1114 1116 1135
Диаметр шейки (d, мм) 9,70 9,43 9,28 9,08 8,90 8,68 8,45 8,28 7,93
Продольный радиус шейки (R, мм) 90 60 29 18 8

Определение максимальных истинных деформаций по предложенному способу начинаются с установления жесткости напряженного состояния, предшествующего моменту разрыва образца. С этой целью разорванный образец устанавливается в центрах установочного стола микроскопа БМИ-1Ц и измеряются диаметр образца в минимальном сечении dk=7,93 мм и продольный радиус шейки Rk=8 мм. Определяется параметр жесткости напряженного состояния η по формуле

η = 1 3 + ln ( 1 + d k 4 R ) = 1 3 + ln ( 1 + 7,93 4 8 ) = 0,55

Затем с учетом этого параметра определяется величина максимальных истинных деформаций emax, приведенная к линейному напряженному состоянию:

e max = ln [ 1 ( 1 d k 2 d 0 2 ) ( 1,46 exp ( 0,92 η ) ) 1 ] = = ln [ 1 ( 1 7,93 2 10 2 ) ( 1,46 exp ( 0,92 0,55 ) ) 1 ] = 0,56.

Для определения максимальных истинных напряжений Smax устанавливается показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования. С этой

целью на диаграмме деформирования проводится касательная (прямая 3) к кривой деформирования в точке, соответствующей моменту разрыва образца (диаграмма 2, точка А). Из точки А опускается перпендикуляр до пересечения с осью абсцисс (точка В). Из начала координат проводится луч, параллельный касательной до пересечения с отрезком АВ (точка C). За показатель деформационного упрочнения принимается отношение отрезка ВС к АС: n = B C A C = 0,11

Максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, максимальной деформации emax в момент разрыва образца, истинных напряжений Se,k и истинных деформаций ek по формуле

S max = S e , k ( e max e k ) n = 1135 ( 0,56 0.47 ) 0,11 = 1157 М П а

Определенные по предлагаемому способу значения максимальных истинных напряжений и максимальных истинных напряжений отмечены на диаграмме точкой Д: Smax=1157 МПа, emax=56%.

Проведено определение Smax и emax по прототипу. Результаты расчетов приведены в таблице 2.

Таблица 2
Параметр Этапы нагружения
1 2 3 4 5 6 7 8 9 10
Истинная деформация (е, %) 7,73 10,24 18,21 21,85 24,65 28,60 34,32 39,12 47,44 55,68
Истинные напряжения (S, МПа) 976 995 1047 1067 1077 1101 1133 1135 1166 1169
Скорректированные истинные напряжения (Se, МПа) 976 995 1047 1067 1064 1081 1114 1115 1147 1150
Диаметр шейки (d, мм) 9,64 9,52 9,15 8,98 8,86 8,69 8,44 8,24 7,90 7,59
Продольный радиус шейки (R, мм) 90 60 60 60 60 60

Результаты расчетов по прототипу (Smax.прот.=1150 МПа, emax.прот.=55,7%) и заявленному способу (Smax=1157 МПа, emax=56%) практически совпадают.

Данный способ позволил определить максимальные истинные напряжения и максимальные истинные деформации, приведенные к линейному напряженному состоянию, исключив высокую трудоемкость испытания по прототипу, связанную с необходимостью периодической переточки формы образующейся шейки и обеспечения конусообразной формы обработки с расчетом минимального угла наклона образующей конуса.

Способ определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающийся в следующем: осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимость истинного напряжения (S) от степени истинных деформаций (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения Se путем введения поправочного коэффициента снижения напряжений К, строят скорректированную истинную диаграмму деформирования, отличающийся тем, что определяют максимальную истинную деформацию при разрыве emax с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле
e max = ln [ 1 ( 1 d k 2 d 0 2 ) ( 1,46 exp ( 0,92 η ) ) 1 ]
где d0 - исходный диаметр образца;
dk - минимальный диаметр образца при разрыве;
η - параметр жесткости напряженного состояния, определяемый по формуле: η = 1 3 + ln ( 1 + d k 4 R k )
Rk - продольный радиус шейки непосредственно перед разрывом образца;
затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле
n = t g α к а с t g α с е к
где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,
а максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации emax, истинных напряжений Se,k и деформаций ek в момент разрыва образца по формуле
S max = S e , k ( e max e k ) n



 

Похожие патенты:

Изобретение относится к области механики конструкций и материалов и может быть использовано при испытании образцов тонкостенных плоских силовых элементов конструкций летательных аппаратов, машин и др.

Изобретение относится к области определения и контроля качества строительных материалов и конструкций, а именно к разрушающему определению физико-механических свойств бетонов в конструкциях - прочности на сжатие, на растяжение при изгибе и при раскалывании через разрушение образца при раскалывании по указанной схеме приложения нагрузки к образцу.

Изобретение относится к испытательной технике, к испытаниям на прочность. Центробежная установка для испытания образцов содержит основание, установленную на нем платформу с приводом вращения, вал, установленный на платформе перпендикулярно ее оси с возможностью вращения вместе с платформой, механизм вращения вала вокруг своей оси, камеру, закрепленную на торце вала.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд для исследования энергообмена при разрушении содержит корпус, установленные на нем захваты образца, механизм нагружения, включающий две гибкие тяги, одним концом связанные с захватами, привод вращения, возбудитель колебаний нагрузки, установленный на валу привода вращения и расположенный между тягами, и натяжной механизм, связанный с другим концом гибких тяг.

Изобретение относится к области методов контроля качества сталей и сплавов. Технический результат - повышение точности измерений.

Изобретение относится к пожарному делу и может быть использовано для испытания стационарных пожарных лестниц. При испытании стационарных пожарных лестниц используют телескопическую метрическую стойку с индикаторами часового типа, располагаемую между ступенями лестницы, нагрузка на которую происходит за счет давления динамометрических пружин с созданием необходимой нагрузки, а разность отсчетов по метрической шкале стойки определяет величину остаточной деформации и пригодность дальнейшего использования лестницы.

Изобретения относятся к области горного дела и предназначены для контроля разрушения образцов горных пород при изменении их напряженно-деформированного состояния.

Изобретение относится к обработке металлов давлением и может быть использовано для выборочного достоверного контроля качества резьбовых и гребенчатых полумуфт, используемых в механизмах различного назначения.

Изобретение относится к области строительства и предназначено для определения механических свойств мерзлых грунтов в лабораторных условиях. .

Изобретение относится к механике разрушения твердых тел и может быть использовано при определении прочностных свойств композиционных материалов и горных пород в строительной и горной областях промышленности.

Изобретение относится к испытательной технике, к центробежным установкам для исследования энергообмена при деформировании и разрушении образцов материалов. Центробежная установка содержит основание, установленные на основании платформу с приводом вращения, закрепленный на платформе пассивный захват образца, активный захват образца, центробежный груз, соединенный с активным захватом, и электромагниты для взаимодействия с центробежным грузом по количеству пиков в цикле. Центробежная установка дополнительно снабжена второй платформой, установленной на основании коаксиально первой платформе, и приводом вращения второй платформы. Электромагниты закреплены на второй платформе, а их расположение на второй платформе определяется направлениями изгиба образца в пиках. Технический результат: расширение функциональных возможностей центробежных установок путем обеспечения циклических испытаний при нагружении образца как центробежными, так и механическими нагрузками и одновременно центробежными и механическими нагрузками при регулировании величин и соотношений нагрузок в ходе испытания. 1 ил.

Изобретение относится к испытательной технике и применяется при исследованиях влияния массовых сил на энергообмен при деформировании и разрушении материалов и изделий. Центробежная установка содержит основание, установленный на нем первый привод вращения с валом, первую платформу вращения, закрепленную на валу первого привода вращения, второй привод вращения с валом, перпендикулярным валу первого привода вращения, установленный на первой платформе, третий привод вращения с валом, перпендикулярным валу второго привода вращения, и камеру для размещения образца, соединенную с валом третьего привода вращения. Центробежная установка дополнительно снабжена второй платформой вращения, установленной на валу второго привода вращения, при этом третий привод вращения с валом размещен на второй платформе. Технический результат: повышение объема информации при исследованиях влияния массовых сил на энергообмен при деформировании и разрушении материалов и изделий путем обеспечения испытаний при одновременном нагружении образца тремя центробежными нагрузками с независимым регулированием величин этих нагрузок. 1 ил.

Изобретение относится к оценке эксплуатационных свойств топлив для реактивных двигателей (авиакеросинов), в частности определения в них количества антиоксидантов, и может быть применено в нефтехимической, авиационной и других отраслях промышленности. Способ заключается в использовании для определения количества антиоксидантов в испытуемом авиакеросине зависимости показателя совместимости авиакеросинов с резиной от содержания в них антиоксидантов. В качестве образца резины в способе используют уплотнительное резиновое кольцо, которое сжимают на 20% его толщины, помещают в испытуемый авиакеросин и непрерывно в течение всего испытания фиксируют усилие сжатия для определения показателя совместимости авиакеросина с резиной. При расчете показателя совместимости авиакеросина с резиной применяют формулу, включающую максимальное усилие сжатия резинового кольца и величину усилия сжатия кольца после 3-х часов его выдержки в авиакеросине при 150°C. 3 ил., 3 табл., 1 пр.

Изобретение относится к механическим испытаниям горных пород и материалов, имеющих хрупкий характер разрушения, и может быть использовано при инженерно-геологических изысканиях. Сущность: осуществляют нагружение образца двумя встречно направленными сферическими инденторами до его раскалывания, фиксируют разрушающую силу, определяют в разрушенном образце площадь поверхности трещины отрыва, проходящую через ось нагружения, и геометрические параметры разрушенных зон в областях контакта с обоими сферическими инденторами, вычисляют растягивающее напряжение разрыва образца и среднее сжимающее напряжение на границе большей из разрушенных зон и определяют в качестве механических свойств образца предел прочности и сопротивление срезу. Из обломков разрушенного образца собирают составной образец, на торцах которого определяют геометрические параметры разрушенных зон - диаметр остаточных отпечатков от инденторов и длину лунок выкола вдоль поверхности трещины отрыва. Определяют площадь поверхности большей разрушенной зоны на контакте с инденторами, предел прочности при всестороннем растяжении, максимальное сопротивление срезу и коэффициент Пуассона по формулам. Технический результат: упрощение испытаний, повышение точности определения механических свойств образцов и информативности испытаний. 5 табл., 2 ил.

Изобретение относится к испытательной технике, а именно к устройствам для определения физико-механических свойств образцов. Реверсор содержит попарно соединенные направляющими колонками внешние и внутренние траверсы с отверстиями, силовой шток и две соединительные втулки, установленные в отверстиях траверс и связанные с внешними траверсами. Между внутренними траверсами на направляющих колонках неподвижных траверс дополнительно установлена направляющая траверса с отверстием в центре под силовой шток. На силовом штоке закреплен плоский элемент, выполненный в виде 3-х лучевой звезды. Силовой шток выполнен с возможностью замены и соединен с плоским элементом. Над внутренней неподвижной траверсой и под внутренней подвижной траверсой размещены жестко соединенные с ними Т-образные площадки. В центре Т-образной площадки неподвижной внутренней траверсы закреплен опорный стол для испытуемого образца, на этой же площадке установлен теплоизолированный от траверс нагревательный элемент. В центре Т-образной площадки подвижной внутренней траверсы снизу жестко закреплен шар для самоцентровки силового штока и плоского элемента. На нижней поверхности внутренней неподвижной траверсы под лучами плоского элемента жестко закреплены три Г-образные державки с установленными на них датчиками перемещения. Технический результат: расширение функциональных возможностей реверсора за счет возможности исследований физико-механических свойств образцов из любого материала при температуре выше комнатной. 3 з.п. ф-лы, 5 ил.

Изобретение относится к испытательной технике, а именно к стендам для определения предела прочности хрупких и малопрочных материалов. Стенд содержит основание, опоры, нагружающее устройство, снабженное силоизмерителем, и образец в виде диска, размещенный между опорами через прокладки из материала, модуль упругости которого меньше модуля упругости материала образца, причем одна из опор жестко закреплена на основании и является неподвижной, а другая опора - подвижная и соединена через шток с нагружающим устройством. Стенд снабжен фиксирующим устройством и корпусом, одна из стенок которого является опорой, жестко закрепленной на основании, а в противоположной ей стенке выполнено направляющее отверстие для штока. На периферии диска диаметрально противоположно выполнены цилиндрические выемки, в которых установлены прокладки в виде роликов, причем номинальные диаметры роликов и выемок равны и намного меньше диаметра диска, а фиксирующее устройство установлено в корпусе, обеспечивая соосность штока, роликов и диска. Технический результат: повышение точности определения предела прочности материала образца. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области строительства и машиностроения, а именно, к определению физико-механических свойств изделий, и может быть использовано для исследования прочностных свойств твердых материалов. Сущность: осуществляют ступенчатое нагружение конструкции нагрузкой одностороннего действия сжатия или растяжения путем приложения нагрузки на образец с измерением величины нагрузок, деформаций материала образца конструкции. Испытание образца конструкции на сжатие и растяжение проводят без перестановки образца на испытательном стенде, для чего изменяют направление действия нагрузки на обратное и создают знакопеременное нагружение. Изменение направления нагрузок создают реверсным устройством, а величину и скорость нагружения - приводом одностороннего действия. Стенд содержит основание, подвижную платформу, привод. Стенд дополнительно снабжен, по меньшей мере, двумя подвижными силовыми платформами, а привод выполнен в виде устройства одностороннего действия, причем на стенде выполнено реверсное устройство, силовое устройство и регулировочный механизм Технический результат: при пропорциональном увеличении нагрузки достигается равенство продольных деформаций на четырех гранях образца в пределах одного деления индикаторов - при центральном нагружении и текущие их значения при внецентренном нагружении; причем нагружение возможно производить с любым значением эксцентриситета в пределах сечения образца. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к текстильному материаловедению и предназначено для объективной оценки свойств трикотажных полотен для одежды в текстильной и легкой промышленности. Способ состоит в том, что образец из испытуемого трикотажного полотна подвергают испытаниям путем извлечения одной петли из структуры трикотажного полотна по предварительно рассчитанной длине нити в петле с последующим расчетом усилия, требуемого для извлечения единицы длины нити в петле, по формуле: , где fn - закрепленность петли в структуре трикотажного полотна, мН/мм; Fn - усилие, требуемое для извлечения петли из трикотажного полотна, мН; ln - длина нити в петле, мм. Достигается повышение объективности и достоверности определения. 2 табл., 3 ил.

Изобретение относится к испытательной технике, а именно к нагружающим механизмам установок для испытания образцов материалов на ползучесть и длительную прочность при комнатной температуре, и может быть применено в заводской и исследовательской лабораториях. Нагружающий механизм установки содержит каркас, рычажное нагружающее устройство со штангой и тарелкой для грузов, тяги и балки, соединяющие нижний рычаг с образцами, четыре планки с продолговатыми отверстиями на одних концах планок и четыре образца, испытывающие изгиб с кручением. Стороны планок, не имеющие продолговатых отверстий, жестко соединены винтами с одними головками образцов, испытывающих изгиб с кручением, а другие головки этих образцов соединены болтами с каркасом. Стороны планок с винтами в них, имеющие продолговатые отверстия, соединены осями с нижними головками образцов, испытывающих растяжение, а винты в планках позволяют изменять расстояние от осей до продольных осей образцов, испытывающих изгиб с кручением. Верхние головки образцов, испытывающих растяжение, соединены с двумя балками, с которыми в свою очередь соединены нижние головки дополнительно установленных четырех образцов, испытывающих растяжение, а верхние головки дополнительно установленных четырех образцов, испытывающих растяжение, соединены с балкой, которая с помощью двух тяг соединена с нижним рычагом рычажного нагружающего устройства. Технический результат - повышение производительности за счет обеспечения одновременных испытаний восьми образцов на растяжение и расширение функциональных возможностей путем одновременного испытания четырех образцов на изгиб с кручением. 2 ил.

Изобретение относится к испытательной технике, в частности к машинам для механических испытаний растяжением, например геосинтетических материалов для дорожных покрытий и т.д., и может применяться в соответствующих областях техники. Машина содержит захваты для образцов, состоящие из верхних и нижних зажимов, рычажно-рейтерное устройство, связанное с верхним захватом, приводы рейтера и нижнего захвата, связанные с блоком управления. захваты образцов расположены последовательно, при этом подвижные зажимы захватов уравновешиваются противовесами, а верхний и нижний зажимы в каждом захвате имеют ограничение хода относительно друг друга. Второй вариант выполнения машины отличается от первого тем, что между рычажно-рейтерной системой и захватами дополнительно установлен силоизмерительный датчик. Технический результат: обеспечение одновременного испытания нескольких образцов и возможность установки произвольного количества образцов от одного до количества установленных в машине захватов, а также быстрое и плавное приложение нагрузки к образцам. 2 н.п. ф-лы, 2 ил.
Наверх