Композиция на основе диацетата бетулина



Композиция на основе диацетата бетулина
Композиция на основе диацетата бетулина
Композиция на основе диацетата бетулина

 


Владельцы патента RU 2517157:

Федеральное государственное бюджетное учреждение науки Институт химии и химической технологии Сибирского отделения Российской академии наук (ИХХТ СО РАН) (RU)
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) (RU)

Изобретение относится к фармацевтической промышленности, в частности к композиции производного бетулина с биосовместимым носителем. Композиция, содержащая диацетат бетулина с арабиногалактаном, при определенном соотношении компонентов. Вышеописанная композиция обладает улучшенной растворимостью и проявляет противоопухолевые свойства. 3 з. п. ф-лы, 3 ил., 3 табл., 5 пр.

 

Изобретение относится к химико-фармацевтической промышленности, в частности, к производству композиций фармакологически активных веществ.

Диацетат бетулина (C34H54O4, 3β,28-диацетокси-луп 20(29)-ен), сложный эфир уксусной кислоты и бетулина, получают из бересты березы. Диацетат бетулина (ДАБ) проявляет гепатопротекторные, гиполипидемические, желчегонные, антиоксидантные свойства и является перспективным препаратом для фармации [Патент РФ №2324700. Опубл. 20.05.2008; Патент РФ №2436791. Опубл. 20.12.2011].

Основным препятствием для использования диацетата бетулина в качестве лечебного средства для внутреннего и наружного применения является низкая биологическая доступность, связанная с его плохой растворимостью.

Известны разные способы увеличения растворимости и повышения биологической доступности бетулина, одним из которых является создание композиций с водорастворимыми носителями.

Известно фунгицидное средство, включающее в качестве активного ингредиента тебуконазол и природные или синтетические водорастворимые полимеры в массовом соотношении тебуконазол: водорастворимые полимеры 1:0-5) соответственно, при этом его получают путем механохимического взаимодействия тебуконазола с водорастворимыми полимерами [Патент РФ №2469536. Опубл. 20.12.2012 г.].

Известно лекарственное средство, представляющее собой комплекс нифедипина с арабиногалактаном при весовом соотношении компонентов нифедипин: арабиногалактан, равном 1:(10-40), полученное механической обработкой в планетарной мельнице при ускорении 60 g [Патент РФ №2391980. Опубл. 20.06.2010 г.].

Недостатком данных композиций является их узкая направленность (фунгицидное и кардиотропное средства).

Наиболее близкой к предолагаемому изобретению является композиция бетулина с биосовместимыми носителями - полиэтиленгликолем и поливинилпирролидоном, при следующем соотношении компонентов: бетулин (активное вещество) - 10-25%, полимерный носитель - 75-90%, полученная механической активацией в мельнице-активаторе в течение 10-30 мин при нагрузке на мелющие тела не более 20 g и в соотношении массы смеси к массе мелющих тел 1:30 [Патент РФ №2401118. Опубл. 10.10.2010].

Недостатком данной композиции является использование в качестве носителей синтетических полимеров.

Задача настоящего изобретения состоит в создании новой композиции на основе диацетата бетулина (ДАБ) и природного полимерного носителя с улучшенной растворимостью и проявляющей противоопухолевые свойства.

Поставленная задача решается тем, что в композиции производного бетулина с биосовместимым носителем, согласно изобретению, в качестве производного бетулина используют диацетат бетулина, а в качестве биосовместимого носителя - арабиногалактан при соотношении компонентов, масс.%: диацетат бетулина - 10%, арабиногалактан - остальное, при этом ее получают механохимической активацией диацетата бетулина с арабиногалактаном либо растворением смеси исходных или механоактивированных компонентов в воде с последующим выпариванием раствора.

Композиция представляет собой либо порошок белого цвета с желтоватым оттенком, либо прозрачные пленки, легко растворимые в воде. Полученная композиция проявляет противоопухолевые свойства.

Авторами было показано, что при механохимической обработке диацетата бетулина с водорастворимыми полимерами полиэтиленгликолем и поливинилпирролидоном не удалось повысить растворимость диацетата бетулина, что связано с тем, что диацетат бетулина не образует молекулярных комплексов с данными полимерами [Михайленко М.А., Шахтшнейдер Т.П., Дребущак В.А., Кузнецова С.А., Скворцова Г.П., Болдырев В.В. Влияние механической обработки на свойства бетулина и их смеси с водорастворимыми полимерами // Химия природных соединений. 2011. №2. С.211-214].

Арабиногалактан (АГ) - водорастворимый природный дешевый, доступный и нетоксичный полисахарид, выделяемый из древесины лиственницы, обладающий комплексом уникальных свойств. Арабиногалактан безвреден, разрешен для применения в качестве добавок к продуктам питания и в биологически активные добавки. Он имеет низкую среднечисленную молекулярную массу, гарантирующую повышенную водорастворимость создаваемых композиций. Макромолекула АГ имеет разветвленное строение, что способствует прочному удерживанию ДАБ в боковой цепи арабиногалактана.

Данную композицию получают следующим образом.

Исходные компоненты - диацетат бетулина и арабиногалактан - получают по оригинальным методикам [Патент РФ №2436791 и патент РФ №2273646], хотя можно использовать ДАБ и АГ, полученные другими способами, но с чистотой не менее 95%. Композицию получают путем растворения смеси исходных или механоактивированных компонентов в воде с последующим выпариванием раствора либо совместной механохимической обработкой исходных компонентов, не приводящей к их деструкции, в мельнице-активаторе в течение 10-30 минут при нагрузке не мелющие тела не более 10 g и соотношении массы смеси к массе мелющих тел 1:30. Для предотвращения деструкции исходных компонентов, могут быть использованы высокоэнергонапряженные мельницы-активаторы с охлаждаемыми реакторами, причем плотность материала реактора и мелющих тел не должна превышать плотность стали, или аппараты с пониженной нагрузкой на мелющие тела. Одним из таких аппаратов является мельница SPEX 8000 (CertiPrep Corp., США).

Растворение АГ и его смесей с ДАБ в воде проводили в тестере растворимости Varian 705 DS. В сосуд с водой помещали 200 мг АГ или 180 мг АГ и 20 мг ДАБ и выдерживали при постоянном перемешивании при 37°C в течение 2 суток. После чего раствор отфильтровывали с помощью фильтров с диаметром пор 0.2 мкм. Фильтраты подвергали выпариванию при пониженном давлении и температуре 35-40°C (ротационный испаритель ИР-1М, Россия). Полученные прозрачные пленки исследовали рентгендифракционными, хроматографическими и спектроскопическими методами.

Рентгенофазовый анализ (РФА) проводили с использованием дифрактометра D8 DISCOVER с двухкоординатным детектором (Bruker), CuKα-излучение, 2θ=5÷40. ИК-спектры получали методом нарушенного полного внутреннего отражения (НПВО) в диапазоне частот 4000-500 см-1 на Фурье ИК-спектрометре Digilab Excalibur 3100 (Varian) без прессования образцов. Молекулярно-массовое распределение (ММР) образцов исследовали методом гель-проникающей хроматографии на хроматографе Agilent 1200 с рефрактометрическим детектором 1260 Infinity (колонка PL aquagel-OH 40 300*7.5 мм, температура колонки 30°C, элюент 0,1 М LiNO3 1 мл/мин). Калибровка колонки осуществлялась с помощью стандартных образцов декстранов (SIGMA-ALDRICH) с молекулярными массами 10600, 20000, 41272, 70000. Хроматограммы отнормированы на максимум поглощения рефрактометрического детектора. Электронномикроскопические наблюдения осуществляли с помощью электронного микроскопа ТМ-100 (Hitachi, Япония). Для определения содержания ДАБ навеску образца 9-10 мг подвергали трехкратной экстракции 1 мл хлороформа. Полученный экстракт выпаривали и проводили растворение в 1 мл этанола. Содержание ДАБ определяли хроматографически с помощью хроматографа Милихром А-02 (ЗАО «ЭкоНова», Россия). Условия хроматографирования: колонка N2301 2.0*75 мм, сорбент ProntoSIL 120-5C18 AQ, размер частиц 5.0 мкм, подвижная фаза Н2О (А)-CH3CN (В), градиентный режим 80-100-100% В. Скорость потока 100 мкл/мин, Т=35°C. Содержание ДАБ определяли на длине волны 200 и 210 нм.

Путем выпаривания в ротационном испарителе водных растворов смесей АГ с ДАБ получены слабоокрашенные (желтоватые) прозрачные пленки, легко подвергавшиеся повторному растворению в гораздо меньших объемах воды, нежели было использовано для их получения, с образованием вязкого раствора. Поверхность пленок достаточно гладкая, а на электронно-микроскопическом изображении пленки видна неупорядоченная внутренняя структура. Толщина пленок составляла около 10 мкм. Рентгенофазовый анализ показал, что пленки являются аморфными и стабильны по отношению к кристаллизации (аморфное состояние пленок сохранялось в течение 1 года).

Изобретение поясняется конкретными примерами.

Пример 1. Смесь, состоящую из 0,02 г диацетата бетулина и 0,18 г АГ, без проведения механоактивации растворяли в 250 мл дистиллированной воды при 37°C в течение 24 часов. Затем проводили центрифугирование и фильтрование полученного раствора. Фильтрат подвергали испарению с помощью ротационного испарителя, после удаления воды получали слабоокрашенные прозрачные пленки, которые исследовали методом ВЭЖХ. Растворимость пленки в воде - 100% (см. табл.1).

Пример 2. Смесь, состоящую из 0,2 г диацетата бетулина и 1,8 г АГ, активировали в мельнице SPEX 8000 (CertiPrep Corp., США) в стальном барабане объемом 40 мл с мелющими телами в виде стальных шаров диаметром 6 мм и ускорением мелющих тел 8-10 g, загрузка 30 г. Механическую обработку проводили в течение 10 минут, после чего смесь растворяли в 250 мл дистиллированной воды при 37°C в течение 24 часов. Затем проводили центрифугирование и фильтрование полученного раствора. Фильтрат подвергали испарению с помощью ротационного испарителя, после удаления воды получали слабоокрашенные прозрачные пленки, которые исследовали методом ВЭЖХ. Растворимость пленки в воде - 100% (см. табл.1).

Пример 3. Смесь, состоящую из 0.2 г диацетата бетулина и 1.8 г АГ, активировали в мельнице SPEX 8000 (CertiPrep Corp., США) в стальном барабане объемом 40 мл с мелющими телами в виде стальных шаров диаметром 6 мм и ускорением мелющих тел 8-10 g, загрузка 30 г. Механическую обработку проводили в течение 30 минут, после чего смесь растворяли в 250 мл дистиллированной воды при 37°C в течение 24 часов. Затем проводили центрифугирование и фильтрование полученного раствора. Фильтрат подвергали испарению с помощью ротационного испарителя, после удаления воды получали слабоокрашенные прозрачные пленки, которые исследовали методом ВЭЖХ. Растворимость пленки в воде - 100%. (см. табл.1).

Пример 4. Смесь, состоящую из 0,2 г диацетата бетулина и 1,8 г АГ, активировали в мельнице SPEX 8000 (CertiPrep Corp., США) в стальном барабане объемом 40 мл с мелющими телами в виде стальных шаров диаметром 6 мм и ускорением мелющих тел 8-10 g, загрузка 30 г, в течение 10 минут. Получали образцы в виде порошка, которые исследовали методом ВЭЖХ. Растворимость порошка в воде - 20-25% (см. табл.1).

Пример 5. Смесь, состоящую из 0,2 г диацетата бетулина и 1,8 г АГ, активировали в мельнице SPEX 8000 (CertiPrep Corp., США) в стальном барабане объемом 40 мл с мелющими телами в виде стальных шаров диаметром 6 мм и ускорением мелющих тел 8-10 g, загрузка 30 г, в течение 30 минут. Получали образцы в виде порошка, которые исследовали методом ВЭЖХ. Растворимость порошка в воде - 20-25% (см. табл.1).

В таблице 1 представлены данные по растворимости в воде смесей ДАБ-АГ.

Таблица 1
№ п/п Смеси (композиции) ДАБ-АГ (1:9, масс.) Внешний вид Продолжительность механо-активации (мин) Растворимость смеси в воде, %
Физическая смесь
1 Пленка 0 100
2 Механоактивированная смесь Пленка 10 100
3 Механоактивированная смесь Пленка 30 100
10
4 Механоактивированная смесь Порошок 20-25
5 Механоактивированная смесь Порошок 30 20-25

Из таблицы следует, что как физическая, так и механоактивированные смеси ДАБ и АГ в виде пленок растворяются полностью, а механоактивированные (МА) смеси в виде порошка растворяются частично.

Следует отметить, что содержание ДАБ в пленках, полученных выпариванием водных растворов физических смесей ДАБ-АГ, определенное с помощью ВЭЖХ анализа экстрактов в хлороформе, составляет 2-2,5% от массы пленки. При растворении пленки в воде были получены растворы с концентрацией ДАБ 0,15-0,18 мг/мл, в то время как чистый ДАБ в воде практически нерастворим (~10-2-10-3 мг/мл).

В таблице 2 приведены данные по молекулярным массам и степени полидисперсности композиций АГ-ДАБ (9:1, масс.) в виде пленок, полученных выпариванием водного раствора, в зависимости от продолжительности механической активации. Для сравнения в знаменателе дроби приведены значения для чистого АГ.

Таблица 2
№ п/п Продолжительность механо-активации (мин) Средневесовая молекулярная масса Mw Среднечисловая молекулярная масса Mn
Mw/Mn
1 0 15680/17210 11260/11890 1,39/1,45
2 10 17030/14650 10680/10270 1,5/1,43
3 30 14560/15260 10430/10710 1,40/1,43

Обнаружено, что ДАБ не извлекается из водного раствора смеси ДАБ с АГ экстракцией гексаном. Это говорит о том, что в водном растворе, по-видимому, образуется прочный межмолекулярный комплекс АГ с ДАБ. Аналогично, в случае пленок, полученных выпариванием водных растворов смесей АГ с ДАБ, экстракции диацетата бетулина этиловым спиртом, в котором АГ не растворим, не происходит.

На рис. 1 представлены ИК-спектры смесей ДАБ-АГ: 1 - физическая смесь 1:9 (масс.) в виде порошка, 2 - механоактивированная смесь 1:9 (масс.) в виде порошка, 3 - механоактивированный АГ, 4 - пленка, полученная выпариванием водного раствора физической смеси.

В ИК-спектрах пленок, полученных выпариванием фильтратов, присутствуют полосы поглощения, относящиеся к ДАБ. При этом не наблюдается существенного сдвига полос в ИК-спектрах, что говорит о том, что водородные связи между компонентами, по-видимому, не образуются. Молекулы ДАБ, вероятно, находятся внутри полисахаридной оболочки и связаны с молекулами АГ за счет Ван-дер-Ваальсовых взаимодействий.

Учитывая линейные размеры молекулы ДАБ и сопоставляя молекулярную массу ДАБ с молекулярной массой комплекса, можно предположить, что ДАБ может взаимодействовать с несколькими макромолекулами АГ.

На рис.2 представлены дифрактограммы механоактивированных композиций ДАБ с АГ 1: 9 (по массе): 1 - после 5 мин механической активации, 2 - после 15 мин механической активации, 3 - после 30 мин механической активации. Исчезновение рефлексов ДАБ на рентгенограммах механоактивированных смесей подтверждает распределение тонко диспергированного вещества в матрице носителя с образованием механокомпозита. Согласно данным рентгенофазового анализа смесей ДАБ с АГ можно утверждать, что механоактивированные композиции ДАБ с АГ являются рентгеноаморфными.

В ИК-спектрах механоактивированных смесей не наблюдается сдвига максимумов полос, относящихся к колебаниям ν(C=O) и (С-O), по сравнению с физической смесью компонентов, что может свидетельствовать о распределении ДАБ в матрице АГ без образования межмолекулярных водородных связей. Возможно образование комплекса за счет Ван-дер-Ваальсовых взаимодействий.

Содержание ДАБ в пленке, полученной выпариванием водного раствора механически активированной смеси, практически не отличалось от содержания ДАБ в пленках, полученных в случае физических смесей аналогичного состава. Следовательно, как в случае механоактивированных, так и в случае физических смесей, можно получить ДАБ в виде комплекса с АГ путем растворения смесей в воде и испарения растворителя. Учитывая, что полученные пленки легко подвергаются растворению в гораздо меньших объемах воды, чем было использовано для их получения, исследование фармакологической активности таких материалов в дальнейших экспериментах может представлять интерес для использования их в медицине. Использование пленок, благодаря их полному растворению, позволит избежать избыточных количеств ДАБ при приготовлении препаратов.

Токсикологическое исследование.

Проведенное токсикологическое исследование показало, что полученные механокомпозиты диацетата бетулина с арабиногалактаном, так же как и индивидуальные вещества, в дозе 2000 мг/кг не являются ядовитыми и, согласно международной токсикологической классификации, их можно отнести к 4 классу малотоксичных веществ. Исследование фармакологической активности полученных комплексов в дальнейших экспериментах может представлять интерес для использования их в медицине.

Изучение противоопухолевой активности комплекса диацетата бетулина с арабиногалактаном на клетках асцитной аденокарциномы Эрлиха в экспериментах in vitro.

Противоопухолевую активность МА композитов ДАБ с АГ в сравнении с чистыми ДАБ и АГ определяли по данным ионного гомеостаза и доли апоптотических и некротических асцитных клеток асцитной аденокарциномы Эрлиха через 24 ч после воздействия препаратов.

Оценку ионного гомеостаза проводили с учетом концентрации ионов натрия, калия, кальция через 3 ч после добавления препаратов. Для определения влияния исследуемых веществ на параметры ионного гомеостаза отмытые асцитные клетки инкубировали в готовой среде для культивирования с концентрацией исследуемых веществ 0,5 мг/мл, в течение 3-х ч при температуре 37°C, 5% СО2 и влажности 6%. Для определения уровня внутриклеточного кальция использовали флуоресцентный зонд GreenCa2+ натрия - SBFI-AM, калия - PBFI-AM. Отмытые бесцветным раствором Хенкса клетки инкубировали с зондом в конечной концентрации 0,05 мг/мл в течение 30 мин при 37°C, после чего их отмывали от избытка красителя. Интенсивность флуоресценции измеряли на проточном цитометре Beckman Coulter FC500. Собственную флуоресценцию клеток без красителя принимали за нулевую.

Для определения доли апоптотических и некротических клеток отмытые асцитные клетки инкубировали в растворе Хенкса, содержащем флуоресцентные красители - Hoechst 33342 (1 мг/мл) и Propidium iodide (1 мг/мл), 10-15 мин при комнатной температуре. Количество апоптотических (ярко голубых), некротических (красных и красно-голубых) и слабо светящихся голубым живых клеток подсчитывали в режиме флуоресценции, общее количество клеток - в световом режиме в том же поле зрения. Рассчитывали процентное соотношение всех трех фракций клеток.

На рис.3 показано изменение концентрации катионов кальция (А), натрия (Б) и калия (В) в клетках АКЭ под влиянием механокомпозита ДАБ с АГ (2), ДАБ (3) и АГ (4) в сравнении с контролем (1).

Согласно данных ионного гомеостаза (Рис.3), все исследуемые вещества уменьшали долю клеток с высокой концентрацией кальция, что являлось косвенным свидетельством подавления уровня пролиферации клеток асцитной карциномы Эрлиха (АКЭ). Все исследуемые вещества снижали также концентрацию внутриклеточного калия и натрия, однако в большей степени содержание катионов калия в клетке снижалось под воздействием МА композиции ДАБ с АГ. Поскольку известно, что синхронное уменьшение содержания натрия, калия и кальция приводит к индукции апоптоза, следовательно, МА композиция ДАБ с АГ в большей степени стимулирует процесс элиминации клеток асцитной аденокарциномы Эрлиха.

Подтверждением этого являются данные по влиянию исходных веществ ДАБ и АГ и их МА композиции на уровень элиминации клеток АКЭ, которые представлены в таблице 3.

Таблица 3
Показатели выживаемости клеток АКЭ Образец
АГ ДАБ Механокомпозит ДАБ+АГ Контроль
Некроз, % 6,6±0,8 5,0±0,6 6,6±0,9 7,3±0,5
Апоптоз, % 16,7±1,8* 23±2,5* 36±3,8* 3,1±2,8
Общая доля элиминирующихся клеток 23,3±2,8 28,0±3,0 42,6±5,8 10,4±1,3
Примечание: * - достоверность отличий от контроля, Р<0,05.

Согласно представленным данным, под влиянием всех исследуемых веществ увеличилась доля клеток АКЭ в состоянии апоптоза: в присутствии АГ более чем в 5 раз, в присутствии ДАБ более чем в 7 раз, в присутствии МА композиции ДАБ с АГ - почти в 12 раз. На основании данных ионного гомеостаза и определения уровня апоптоза и некроза клеток АКЭ можно утверждать, что композиция диацетата бетулина с арабиногалактаном проявляет противоопухолевые свойства.

Таким образом, получены новые композиции диацетата бетулина с арабиногалактаном в виде порошка и пленок с распределением ДАБ в матрице полимера. Показано, что после выпаривания водного раствора физической или механоактивированной смеси компонентов получены легко растворимые в воде композиции диацетата бетулина с арабиногалактаном в виде аморфных прозрачных пленок, содержащих 2-2,5 мас.% ДАБ. Поскольку полученная композиция ДАБ-АГ имеет повышенную растворимость и, следовательно, биодоступность, по сравнению с чистым ДАБ, она будет иметь улучшенные известные свойства: гепатопротекторные, гиполипидемические, желчегонные и антиоксидантные.

1. Композиция производного бетулина с биосовместимым носителем, отличающаяся тем, что в качестве производного бетулина используют диацетат бетулина, а в качестве биосовместимого носителя - арабиногалактан, при следующем соотношении компонентов, мас.%: диацетат бетулина - 10%, арабиногалактан - остальное, при этом ее получают механохимической активацией диацетата бетулина с арабиногалактаном либо растворением смеси исходных или механоактивированных компонентов в воде с последующим выпариванием раствора.

2. Композиция по п.1, отличающаяся тем, что представляет собой порошок белого цвета с желтоватым оттенком.

3. Композиция по п.1, отличающаяся тем, что представляет собой аморфные прозрачные пленки, легко растворимые в воде.

4. Композиция по п.1, отличающаяся тем, что проявляет противоопухолевые свойства.



 

Похожие патенты:

Группа изобретений относится к адгезионным гидрогелевым композициям, которые предназначены для применения в полости рта. Гидрофильный чувствительный к давлению биоадгезив представляет собой нековалентный комплекс пленкообразующего полимера, по крайней мере, с одним из следующих комплементарных компонентов: полимерным сшивающим агентом, олигомерным сшивающим агентом, низкомолекулярным веществом или смесью, по меньшей мере, из двух указанных компонентов, где пленкообразующий полимер и полимерный сшивающий агент выбраны из класса гидрофильных полимеров.
Группа изобретений относится к области личной гигиены и касается композиции для чистки зубов, которая обеспечивает слущивающий эффект в отношении мягких тканей в полости рта, и ее использования.
Изобретение относится к области косметологии, а именно к косметической композиции для перорального введения, содержащей в качестве единственного активного ингредиента комбинацию ликопина, витамина C, витамина E и не менее одного полифенольного соединения, получаемого из сосновой коры, в которой отношение массового содержания полифенольного соединения к сумме массовых содержаний ликопина, витамина C и витамина E составляет от 0,3 до 0,7.

Изобретение описывает очищающее средство для кожи и рук, содержащее следующие компоненты: a) от 5 до 70 мас.% сложного алкилового эфира и/или диэфира, b) от 0 до 40 мас.% поверхностно-активного вещества, выбранного из группы, включающей этоксилаты жирных спиртов, сульфоэфиры жирных спиртов и соли сульфатированных и/или сульфированных жирных кислот, c) от 0,5 до 10 мас.% средства для придания тиксотропности, такого как органический бентонит, и более 0,1 мас.% гидрофильной пирогенной кремниевой кислоты, d) от 0 до 30 мас.% одного или нескольких абразивных агентов, e) от 0 до 5 мас.% физиологически совместимого сложного эфира угольной кислоты, f) от 0 до <10 мас.% воды, g) при необходимости одно или несколько средств для стабилизации вязкости, h) при необходимости другие косметические вспомогательные вещества.
Изобретение относится к фармацевтической промышленности, в частности к ранозаживляющему препарату, состоящему из стеариновой кислоты; масла касторового; стеарата цинка; 70%-ного спиртового экстракта фитосбора, включающего кору дуба, цветки календулы, цветочные корзинки ромашки аптечной, листья крапивы, взятые в соотношении 1:3:2:1 соответственно; Na-соли жирных кислот шерстяного жира; борной кислоты; вазелина; глицерина; триэтаноламина; очищенной воды; растительного масла; экстракта травы зверобоя продырявленного; масла шиповника или облепихового масла; 10%-ного масляного раствора прополиса; естественного L- аминокислотного-пептидного биокомплекса, полученного путем экстракции 2,0-3,0%-ным водным раствором NaCl нативного содержимого рубца жвачных; очищенного ланолина и его производных.
Изобретение относится к водорастворимой бактерицидной композиции. Композиция включает бактерицидную субстанцию повиаргол в количестве 2,1-7,0 мас.% и зостерин в количестве 1,1-7,0 мас.%.
Изобретение относится к медицине, а именно к урологии, и может быть использовано для лечения мужского бесплодия, обусловленного аутоиммунными реакциями против сперматозоидов.
Изобретение относится к области гигиены и санитарии и предназначено для обработки кожных покровов. Биоцидный состав для пропитки салфеток содержит бензетония хлорид, гидроксиметилглицинат натрия, глицерин, децил полиглюкозу, ниацинамид, липосентол гидро, фенилметанол и дистиллированную воду.
Изобретение относится к фармацевтической промышленности, а именно к средству для лечения и профилактики заболеваний опорно-двигательного аппарата. Средство получено путем отваривания измельченного неочищенного зерна пшеницы твердого сорта в воде, затем фильтрования, далее к полученному отвару добавляют козье молоко, кипятят, добавляют оливковое и облепиховое масло с получением масляной смеси; далее отваривают в воде измельченное растительное сырье, которое состоит из цветков ромашки лекарственной, надземной части полыни, надземной части зверобоя, плодов шиповника, надземной части мяты, фильтруют, полученный отвар смешивают с масляной смесью, до гомогенного состояния.
Изобретение относится к фармацевтической промышленности, в частности к композиции, обладающей гепатопротекторными и иммуностимулирующими свойствами. Композиция, обладающая гепатопротекторными и иммуностимулирующими свойствами, содержит окисленный декстран с молекулярной массой 40-70 кДа, компонент из растительного сырья, выбранный из группы: сухой экстракт плодов расторопши пятнистой, сухой экстракт из травы солянки холмовой, сухой экстракт из травы эхинацеи пурпурной, а также микрокристаллическую целлюлозу в качестве физиологически приемлемого наполнителя, взятые в определенном количестве.
Изобретение относится к фармацевтической промышленности, а именно к композиции, обладающей противовирусной активностью (варианты). Композиция, обладающая противовирусной активностью, включающая глицирризинат аммония, β-циклодекстрин, эмульгатор, консервант, лизоцим, полимерный носитель, регулятор pH, воду деминерализованную, при определенном соотношении компонентов.
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения кровоизлияний в сетчатке глаза и/или стекловидном теле глаза. Для этого проводят сеанс подкожного введения в область сосцевидного отростка препарата «Гистохром» в объеме 0,5 мл, в область височной ямки - препарата «Эхинацея композитум» в объеме 1,0 мл, парабульбарно - препарата «Гемаза» 2500-5000 МE, разведенного на препарате «Лимфомиозот», в объеме 0,5-1,0 мл.
Изобретение относится к медицине, конкретно к фармакологии, и касается применения 4-метил-2,6-диизоборнилфенола в качестве лекарственного средства, обладающего противоишемическими свойствами с высокой степенью активности.

Изобретение относится к фармацевтической промышленности, а именно к средству, обладающему антиоксидантной активностью, содержащему в качестве действующего вещества 5-аминосалициловую кислоту, кверцетин и 5% спиртовой экстракт прополиса, а в качестве основы содержит лутрол F127, кремофор RH-40 и глицерин, при определенном соотношении компонентов.

Изобретение относится к химико-фармацевтической промышленности и представляет собой лекарственное средство, содержащее 97,0-59,5 мас.% основания налтрексона, 0,5-3,0 мас.% кортикостероида, выбранного из триамцинолона, бетаметазона, беклометазона или дексаметазона, 2,0-37,0 мас.% композиции азотсодержащих полимеров и 0,2-0,5 мас.% стеариновой кислоты или стеарата магния.

Изобретение относится к фармацевтике, а именно к ранозаживляющим средствам. .
Изобретение относится к фармацевтической промышленности, в частности к антимикробной композиции. .

Изобретение относится к фармацевтической промышленности, в частности к способу получения бетулиновой кислоты. .

Изобретение относится к медицине, в частности к средству для лечения ран, ожогов и инфекционно-воспалительных заболеваний кожи, придатков кожи и слизистых оболочек.

Изобретение относится к области органической химии и медицины и касается новых аминопроизводных бициклогептанов, а именно фармацевтических солей 2-(1-аминоэтил)бицикло[2.2.1]гептана формулы (1), их применения для лечения гриппа А.
Настоящее изобретение относится к медицине, а именно к композиции, содержащей инкапсулированную тритерпеновую кислоту: бетулиновую кислоту, урсоловую кислоту или их производные в виде солей и эфиров или тритерпеновый спирт - бетулин, которая может быть использована в медицине для лечения и профилактики вирусных инфекций, вызываемых ДНК- и РНК-содержащими вирусами, такими как вирусы гриппа, онковирусы, герпес, опоясывающий лишай, а также инфекций, вызываемых грамположительными и грамотрицательными бактериями: Staphylococcus spp., Streptococcus spp., Enterococcus spp., Shigella spp., Escherichia spp., Salmonella spp., Proteus spp., Acinetobacter spp., Citrobacter spp., Pseudomonas spp., Serratia spp., Klebsiella spp., Antracoides spp., Cryptococcus spp., патогенными грибами рода Microsporum, Trichophyton, Nocardia, Aspergillus, дрожжеподобными грибами рода Candida, в т.ч. полирезистентные штаммы, а также Actinomycetes и некоторыми патогенными простейшими: Entamoeba histolytica, Trichomonas vaginalis. В изобретении предложена композиция, включающая в себя в качестве активного ингредиента 0,5 мас.% бетулин или 0,5 мас.% инкапсулированную тритерпеновую кислоту: бетулиновую кислоту, урсоловую кислоту или их производные в виде солей, эфиров и др., в качестве носителей: β-циклодекстрины, фуллерены, лецитины и полимеры, способные связываться с компонентами с образованием комплексов компонент-носитель и эксципиенты. 3 н.п. ф-лы.
Наверх