Способ определения характеристик осколочного поля боеприпаса и устройство для его осуществления



Способ определения характеристик осколочного поля боеприпаса и устройство для его осуществления
Способ определения характеристик осколочного поля боеприпаса и устройство для его осуществления

 


Владельцы патента RU 2519608:

Мужичек Сергей Михайлович (RU)
Шутов Петр Владимирович (RU)
Ефанов Василий Васильевич (RU)
Махно Игорь Вадимович (RU)

Группа изобретений относится к области испытания боеприпасов. Способ заключается в том, что подрыв боеприпаса осуществляют во взрывной камере, получают временную зависимость фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Устанавливают радиолокационный измеритель скорости так, что ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол α. Частоты Доплера сигналов, отраженных от части осколочного поля, фильтруют при нахождении поля в пределах диаграммы направленности радиолокационного измерителя скорости. Скорости лидирующих и замыкающих осколков, среднюю скорость и глубину осколочного поля определяют по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Затем определяют количество эшелонов осколочного поля. Устройство содержит взрывную камеру, полуцилиндрическую мишень, боеприпас, устройство инициирования, радиолокационный измеритель скорости. Достигается повышение информативности испытаний. 2 н.п. ф-лы, 2 ил.

 

ТИзобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик осколочного действия боеприпасов.

Известен способ определения начальной скорости осколка, заключающийся во взрывном метании осколка в заданном направлении и определении времени пролета осколком расстояния от точки взрыва до некоторого экрана, приведении средней скорости осколка к начальной скорости осколка с помощью уравнения движения его центра массы (А.Н. Дорофеев, А.П. Морозов, Р.С. Саркисян. Авиационные боеприпасы. ВВИА им. проф. Н.Е. Жуковского, 1978, с.210-214, 218-219, 228).

Известно устройство для определения начальной скорости осколка, содержащее устройство метания, экран, устройство регистрации времени пролета осколка от точки взрыва до экрана (А.Н. Дорофеев, А.П. Морозов, Р.С. Саркисян. Авиационные боеприпасы. ВВИА им. проф. Н.Е. Жуковского, 1978, с.210-214, 218-219, 228).

Недостатком известных способа и устройства является недостаточная информативность, так как с их помощью определяется только начальная скорость одного осколка, но не определяются другие характеристики осколочного поля боеприпасов.

Известен способ определения характеристик осколочного поля боеприпасов, заключающийся в подрыве боеприпаса, расположенного горизонтально в центре полуцилиндрической мишени, и последующих расчетах дифференциального закона распределения осколков по направлениям разлета и закона распределения осколков по их массам (А.Н. Дорофеев, А.П. Морозов, Р.С. Саркисян. Авиационные боеприпасы. ВВИА им. проф. Н.Е. Жуковского, 1978, с.210-214, 218-219, 228).

Известно устройство, состоящее из боеприпаса, полуцилиндрической мишени и устройства инициирования (А.Н. Дорофеев, А.П. Морозов, Р.С. Саркисян. Авиационные боеприпасы. ВВИА им. проф. Н.Е. Жуковского, 1978, с.210-214, 218-219, 228).

Недостатком способа и устройства является недостаточная информативность, так как при их использовании определяются не все характеристики осколочного поля поражения боеприпасов, а именно скорости лидирующих и замыкающих осколков, средняя скорость и глубина осколочного поля поражения.

Наиболее близким к изобретению является способ определения характеристик осколочного поля боеприпаса, заключающийся в подрыве боеприпаса, расположенного горизонтально в центре полуцилиндрической мишени, с помощью системы инициирования, определении по пробоинам, образованным осколками боеприпаса, в мишени дифференциального закона распределения осколков по направлениям разлета и закона распределения осколков по их массам, при этом подрыв боеприпаса осуществляют во взрывной камере, получают временную зависимость фильтрованных частот Доплера сигналов, отраженных от части осколочного поля, относительно момента подрыва боеприпаса путем установки радиолокационного измерителя скорости так, что ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол α, осуществлении фильтрации частот Доплера сигналов, отраженных от части осколочного поля, при его нахождении в пределах диаграммы направленности радиолокационного измерителя скорости, определении скорости лидирующих и замыкающих осколков, средней скорости и глубины осколочного поля по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля, относительно момента подрыва боеприпаса, отличающийся тем, что определяют количество эшелонов осколочного поля боеприпаса на основе анализа количества сработавших фильтров частот Доплера сигналов, отраженных от части осколочного поля (Мужичек С.М., Шайморданов С.Г., Новиков И.А., Винокуров В.И., патент РФ на изобретение №2451263 от 20.05.2012 г.).

Наиболее близким к изобретению является устройство определения характеристик осколочного поля боеприпаса, содержащее полуцилиндрическую мишень, взрывную камеру, боеприпас, устройство инициирования, радиолокационный измеритель скорости, электронно-вычислительную машину, при этом взрывная камера имеет щель, ширина и длина которой позволяют улавливать часть осколочного поля боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, радиолокационный измеритель состоит из последовательно соединенных антенны, генератора высокой частоты, блока широкополосных усилителей, n фильтров, n ключей, вторые входы которых соединены с выходом устройства инициирования, а ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол α, выходы n ключей соединены n входами ЭВМ (Мужичек С.М., Шайморданов С.Г., Новиков И.А., Винокуров В.И., патент РФ на изобретение №2451263 от 20.05.2012 г.).

Недостатком способа и устройства является недостаточная информативность, обусловленная невозможностью определения количества эшелонов осколочного поля боеприпасов.

Технической задачей изобретения является повышение информативности способа за счет определения количества эшелонов осколочного поля боеприпасов.

Решение технической задачи или сущность изобретения заключается в том, что в способе определения характеристик осколочного поля поражения боеприпасов, заключающемся в подрыве боеприпаса, расположенного горизонтально в центре полуцилиндрической мишени, с помощью устройства инициирования, определении по пробоинам, образованным осколками боеприпаса в мишени, дифференциального закона распределения осколков по направлениям разлета и закона распределения осколков по их массам, при этом подрыв боеприпаса осуществляют во взрывной камере, получают временную зависимость фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса, путем установки радиолокационного измерителя скорости так, что ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол, осуществлении фильтрации частот Доплера сигналов, отраженных от части осколочного поля, при его нахождении в пределах диаграммы направленности радиолокационного измерителя скорости, определении скорости лидирующих и замыкающих осколков, средней скорости и глубины осколочного поля по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса, дополнительно определяют количество эшелонов осколочного поля боеприпаса путем подсчета количества сработавших фильтров частот Доплера при анализе сигналов, отраженных от части осколочного поля.

Устройство, реализующее описанный способ, содержит полуцилиндрическую мишень, взрывную камеру, боеприпас, устройство инициирования, радиолокационный измеритель скорости, ЭВМ, при этом взрывная камера имеет щель, ширина и длина которой позволяет полуцилиндрической мишени улавливать часть осколочного поля боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, радиолокационный измеритель скорости, состоящий из последовательно соединенных антенны, генератора высокой частоты, блока широкополосных усилителей, n фильтров, n ключей, вторые входы которых соединены с выходом устройства инициирования, а ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол α, выходы n ключей соединены с n входами микроЭВМ, в которое дополнительно введен блок определения эшелонов осколочного поля боеприпаса, первый вход и вторая группа входов которого соединены соответственно с первым и группой вторых выходов радиолокационного измерителя скорости, а первый и второй выходы блока определения эшелонов осколочного поля боеприпаса соединены с одними из n-входов микроЭВМ, блок определения эшелонов осколочного поля боеприпаса состоит из дифференцирующей цепи, первого и второго диодов, элемента НЕ, элемента И, генератора сигналов, первого и второго счетчиков, n триггеров, n линий задержек, элемента ИЛИ, при этом первой вход и вторая группа входов блока определения эшелонов осколочного поля боеприпаса являются соответственно входом дифференцирующей цепи и первыми входами n-триггеров, выход дифференцирующей цепи соединен с входами первого и второго диодов, выходы которых соединены соответственно непосредственно и через элемент НЕ с первым и вторым входами элемента И, третий вход которого соединен с выходом генератора импульсов, а выход - с первым входом первого счетчика, кроме того, выход дифференцирующей цепи соединен со вторыми входами n-триггеров и вторыми входами первого и второго счетчиков, выходы n-триггеров соединены n-входами линий задержек, выходы которых соединены с входами элемента ИЛИ, выход которого соединен с первым входом второго счетчика, выходы первого и второго счетчиков являются соответственно первым и вторым выходами блока определения эшелонов осколочного поля боеприпаса.

На фиг.1 приведена схема устройства определения характеристик осколочного поля поражения боеприпаса, где: 2 - полуцилиндрическая мишень; 1 - взрывная камера, 3 - боеприпас, 4 - устройство инициирования; 5 - радиолокационное устройство, 6 - микроЭВМ, 7 - блок определения эшелонов осколочного поля боеприпасов, 8 - антенна; 9 - генератор высокой частоты; 10 - блок широкополосных усилителей; 11 - фильтры; 12 - ключи; 13 - дифференцирующая цепь, 14, 15 - диоды, 16 - элемент НЕ, 17 - элемент И, 18 - генератор сигналов, 19, 20 - счетчики, 21 - триггеры, 22 - линии задержек, 23 - элемент ИЛИ. На фиг.2 приведена схема размещения боеприпаса во взрывной камере.

Устройство определения характеристик осколочного поля поражения осколочно-фугасных боеприпасов содержит взрывную камеру 1, полуцилиндрическую мишень 2, боеприпас 3, устройство 4 инициирования, радиолокационный измеритель 5 скорости, микроЭВМ 6, блок 7 определения эшелонов осколочного поля боеприпасов, радиолокационный измеритель 5 скорости состоит из последовательно соединенных антенны 8, генератора 9 высокой частоты, блока 10 широкополосных усилителей, n фильтров 11, n ключей 12, блок 7 определения эшелонов осколочного поля боеприпаса состоит из дифференцирующей цепи 13, первого 14 и второго 15 диодов, элемента НЕ 16, элемента И 17, генератора 18 сигналов, первого 19 и второго 20 счетчиков, n-триггеров 21, n-линий задержек 22, элемента ИЛИ 23.

Устройство функционирует следующим образом.

Исследуемый боеприпас размещается во взрывной камере 1 на высоте h от пола так, чтобы продукты взрыва его заряда взрывчатого вещества не оказывали влияния на процесс измерения скорости осколков, а продольная ось боеприпаса была совмещена со щелью взрывной камеры 1 таким образом, чтобы в щель попала часть осколочного поля боеприпаса, летящая в направлении, определяемом двугранным углом Δθ.

Пространство между щелью и полуцилиндрической мишенью 2 облучается СВЧ-энергией √, излучаемой генератором 9 через антенну 8.

Исследуемый боеприпас 3 подрывается с помощью устройства 4 инициирования, сигналом от которого происходит открывание n ключей 12.

При попадании заданной части осколочного поля в диаграмму направленности антенны 8 на выходе генератора 9 формируются сигналы с частотами Доплера Δfn, зависящими от скорости движения осколочного поля. Эти сигналы усиливаются в блоке широкополосных усилителей 10 и поступают на входы n фильтров 11. На выходе каждого фильтра 11 формируется сигнал, соответствующий частоте настройки фильтра fn.

Сигналы с выходов n фильтров 11 через первые входы n ключей 12 поступают на n входы микроЭВМ 6.

МикроЭВМ 6 осуществляет отображение временной зависимости фильтрованных частот Доплера сигналов, отраженных от заданной части осколочного поля относительно момента подрыва боеприпаса 3, определяет частоту (скорость) лидирующих и замыкающих осколков и глубину осколочного поля. Так, скорость лидирующих осколков определяется по значению частоты Доплера fn сигнала первого относительно момента подрыва боеприпаса 3 из выражения

Vn=(λfn)/2cosα,

где λ - длина волны излучаемого сигнала, α - угол.

Скорость замыкающих осколков определяется по значению частоты Доплера fз сигнала последнего относительно момента подрыва боеприпаса 3 из выражения

Vn=(λfз)/2cosα,

где λ - длина волны излучаемого сигнала, α - угол.

Средняя скорость осколочного потока определяется из выражения

V c p . = V n V 3 2 .

Далее определяют время t1 и t2, соответствующее моментам появления и пропадания сигнала, отраженного от осколочного поля боеприпаса 3.

Это происходит следующим образом.

С выхода блока 10 широкополосных усилителей сигнал, длительность которого пропорциональна размерам осколочного поля боеприпаса, поступает через дифференцирующую цепь 13 на входы первого 14 и второго 15 диодов. Первый 14 и второй 15 диоды включен по прямой и обратной схемам и обеспечивают фиксацию переднего и заднего фронта поступившего сигнала. Сигналы с выхода первого 14 и второго 15 диодов поступают на первый и второй входы элемента И 17, соответственно непосредственно и через элемент НЕ 16.

Элемент И 17 обеспечивает измерения временного интервала между передним и задним фронтами поступившего сигнала за счет прохождения сигнала с выхода генератора 18 импульсов на первый вход первого 19 счетчика. Сигнал с выхода первого 19 счетчика, пропорциональный длительности импульса, поступает на один из входов микроЭВМ 6, где определяется глубина осколочного поля из выражения Ln=(Vn-V3)(t2-t1).

Количество эшелонов осколочного поля боеприпаса определяют путем подсчета количества сработавших фильтров 11. Это происходит следующим образом.

Сигналы со вторых выходов радиолокационного измерителя 5 скорости (выходов n фильтров 11) поступают на первые входы триггеров 21, которые в исходном положении обнулены, сигналом с выхода дифференцирующей цепи 13. Количество сработавших триггеров 21 зависит от эшелонов осколков. С выходов триггеров сигналы поступают на n линий задержек 22, которые обеспечивают разную временную задержку. С выходов n линий задержек 22 последовательность сигналов через элемент ИЛИ поступает на вход второго 20 счетчика, с выхода которого сигналы поступают на один из входов микроЭВМ.

Затем осколочное поле боеприпаса поступает на полуцилиндрическую мишень 2, которая изготовлена в виде листов картона, поделенного на сектора. После замера пробоин определяется закон распределения осколков по угловым секторам.

1. Способ определения характеристик осколочного поля боеприпаса, заключающийся в подрыве боеприпаса, расположенного горизонтально в центре полуцилиндрической мишени с помощью системы инициирования, определении по пробоинам, образованным осколками боеприпаса, в мишени дифференциального закона распределения осколков по направлениям разлета и закона распределения осколков по их массам, при этом подрыв боеприпаса осуществляют во взрывной камере, получают временную зависимость фильтрованных частот Доплера сигналов, отраженных от части осколочного поля, относительно момента подрыва боеприпаса путем установки радиолокационного измерителя скорости так, что ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол α, осуществлении фильтрации частот Доплера сигналов, отраженных от части осколочного поля, при его нахождении в пределах диаграммы направленности радиолокационного измерителя скорости, определении скорости лидирующих и замыкающих осколков, средней скорости и глубины осколочного поля по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля, относительно момента подрыва боеприпаса, отличающийся тем, что определяют количество эшелонов осколочного поля боеприпаса путем подсчета количества сработавших фильтров частот Доплера при анализе сигналов, отраженных от части осколочного поля.

2. Устройство определения характеристик осколочного поля боеприпасов содержит взрывную камеру, полуцилиндрическую мишень, боеприпас, устройство инициирования, радиолокационный измеритель скорости, микроЭВМ, при этом взрывная камера имеет щель, ширина и длина которой позволяют улавливать часть осколочного поля боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, радиолокационный измеритель состоит из последовательно соединенных антенны, генератора высокой частоты, блока широкополосных усилителей, n фильтров, n ключей, вторые входы которых соединены с выходом устройства инициирования, а ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол α, выход блока широкополосных усилителей, выходы n фильтров, n ключей являются соответственно первым, второй и третьей группой выходов радиолокационного измерителя скорости, третья группа выходов которого соединена с n входами микроЭВМ, отличающееся тем, что дополнительно введен блок определения эшелонов осколочного поля боеприпаса, первый вход и вторая группа входов которого соединены соответственно с первым и группой вторых выходов радиолокационного измерителя скорости, а первый и второй выходы блока определения эшелонов осколочного поля боеприпаса соединены с одними из n-входов микроЭВМ, блок определения эшелонов осколочного поля боеприпаса состоит из дифференцирующей цепи, первого и второго диодов, элемента НЕ, элемента И, генератора сигналов, первого и второго счетчиков, n- триггеров, n-линий задержек, элемента ИЛИ, при этом первый вход и вторая группа входов блока определения эшелонов осколочного поля боеприпаса являются соответственно входом дифференцирующей цепи и первыми входами n-триггеров, выход дифференцирующей цепи соединен с входами первого и второго диодов, выходы которых соединены соответственно непосредственно и через элемент НЕ с первым и вторым входами элемента И, третий вход которого соединен с выходом генератора импульсов, а выход - с первым входом первого счетчика, кроме того, выход дифференцирующей цепи соединен со вторыми входами n-триггеров и вторыми входами первого и второго счетчиков, выходы n-триггеров соединены n-входами линий задержек, выходы которых соединены с входами элемента ИЛИ, выход которого соединен с первым входом второго счетчика, выходы первого и второго счетчиков являются соответственно первым и вторым выходами блока определения эшелонов осколочного поля боеприпаса.



 

Похожие патенты:

Группа изобретений относится к области испытания боеприпасов. Способ заключается в размещении полуцилиндрической мишени, выполненной в виде N секторов неконтактных датчиков и определении дифференциального закона распределения осколков по направлениям разлета в каждом эшелоне осколочного поля боеприпаса на основании фиксации координат сработавших чувствительных элементов линейки фотоприемников в картинной плоскости.

Группа изобретений относится к области полигонных испытаний боеприпасов. Предусмотрено дополнительное размещение двух датчиков на заданном расстоянии между собой, выполнение конструкции датчиков в виде трех перпендикулярно расположенных линеек излучающих диодов и фотоприемников, осуществление подрыва снаряда на траектории движения и формирование поля поражения снаряда.

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного напряжения, фиксируют момент t1 подачи тока и значение величины поданного тока I.

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного тока, фиксируют момент t1 подачи тока и значение величины поданного тока I.

Группа изобретений относится к области испытаний осколочного боеприпаса с осесимметричным полем разлета осколков. Способ включает подрыв боеприпаса, установленного в заданное положение в центре профилированной мишенной стенки, размеченной на зоны, соответствующие направлениям разлета осколков в принятой системе координат, регистрацию попаданий, улавливание и подсчет числа осколков, попадающих в каждую зону, измерение размеров и площади пробоин.

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия полей поражения дистанционных боеприпасов. .

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности боевых частей дистанционных боеприпасов.

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик явления аэроудара, возникающего в отсеках конструкции объектов техники в результате действия полей поражения боеприпасов.

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда. .

Группа изобретений относится к области испытания боеприпасов. Способ заключается в размещении полуцилиндрической мишени и определении дифференциального закона распределения осколков по направлениям разлета в каждом эшелоне осколочного поля боеприпаса на основе последовательной фиксации комбинаций координат сработавших элементов матрицы чувствительных элементов линеек фотоприемника в картинной плоскости относительно первой строки матрицы чувствительных элементов линейки фотоприемников, расположенных по оси Х. Определяют массу осколков. Определяют закон распределения осколков по массе в каждом эшелоне осколочного поля боеприпасов на основе последовательной фиксации комбинации координат срабатывания элементов матрицы чувствительных элементов фотоприемников в пространстве. Определяют количество эшелонов осколочного поля боеприпаса на основе определения последовательностей срабатывания первой строки элементов матрицы чувствительных элементов линейки фотоприемника, расположенной по оси Х. После чего определяют динамику изменения распределения осколков по направлению и массе в каждом эшелоне осколочного поля боеприпаса на основе фиксации комбинаций сработавших элементов матрицы чувствительных элементов линейки фотоприемника в пространстве относительно каждой строки элементов матрицы чувствительных элементов фотоприемников, расположенных по оси Z. Устройство содержит взрывную камеру, устройство инициирования и боеприпас, микроЭВМ, радиолокационный измеритель скорости и полуцилиндрическую мишень. Достигается повышение информативности испытаний. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к области испытательной и измерительной техники, а именно к способам определения фугасного действия объекта испытаний. Способ заключается в том, что на пункте управления испытаниями устанавливают информационный датчик, имеющий геодезическую привязку к системе пространственных координат испытательной площадки. Затем устанавливают на объект испытаний маяк, включают маяк объекта испытаний и измерители давления, имеющие приемо-передающую антенну, соединенные каждый с матрицей n датчиков воздушной ударной волны, расположенных в каждой измерительной точке. Принимают информационным датчиком сигналы от маяка объекта испытаний и измерителей давления. После чего обрабатывают поступившие сигналы, определяют пространственные координаты объекта испытаний и измерителей давления на испытательной площадке, сохраняют координаты объекта испытаний и измерителей давления в памяти ЭВМ. Убирают маяк с объекта испытаний, производят подрыв объекта испытаний, измеряют параметры и среднюю скорость воздушной ударной волны в каждой измерительной точке. По запросу информационного датчика передают показания, зафиксированные в измерителях давления на пункте управления испытаниями. Обрабатывают результаты измерений и записывают параметры воздушной ударной волны в каждой измерительной точке в блок памяти ЭВМ. Затем формируют в автоматизированном режиме документ испытания. Достигается повышение информативности испытаний. 1 н.п., 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в осуществлении подрыва боеприпаса во взрывной камере и получении временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Устанавливают радиолокационный измеритель скорости так, что ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры острый угол α. Частоты Доплера сигналов, отраженных от части осколочного поля, фильтруют при нахождении поля в пределах диаграммы направленности радиолокационного измерителя скорости. Скорости лидирующих и замыкающих осколков, среднюю скорость и глубину осколочного поля определяют по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Определяют динамику развития осколочного поля боеприпаса путем дискретизации процесса измерений при анализе сигналов, отраженных от части осколочного поля. Устройство содержит мишень, взрывную камеру, боеприпас, устройство инициирования, радиолокационный измеритель скорости, микроЭВМ, привод антенны, датчик привода, цифроаналоговый преобразователь и блок определения характеристик осколочного поля боеприпаса. Взрывная камера имеет щель, ширина и длина которой позволяют улавливать часть осколочного поля боеприпаса. Радиолокационный измеритель состоит из последовательно соединенных антенны, генератора высокой частоты и блока широкополосных усилителей, n фильтров, n ключей. Достигается повышение информативности испытаний. 2 н.п. ф-лы, 2 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в том, что при проведении испытаний определяют в автоматизированном режиме законы распределения поражающих элементов поля поражения боеприпаса по форме, массе, направлениям и скорости разлета, общее число поражающих элементов, величины показателей поражающего действия поля поражения дистанционного боеприпаса. Получают (уточняют) зависимости, связывающие показатели, характеризующие поражающее действие поля поражения дистанционного боеприпаса с величинами его физических факторов и техническими характеристиками поражаемого объекта при минимально необходимом количестве испытаний. Строят координатный закон поражения исследуемого объекта. Определяют величину интегральной характеристики эффективности поражающего действия боеприпаса дистанционного действия для исследуемого объекта. Сравнивают по величине интегральной характеристики дистанционные боеприпасы между собой. Устройство содержит устройство метания, трубку холодной пристрелки, исследуемый объект, первый и второй блоки неконтактных датчиков, блок передающих устройств, блок определения показателей поражающего действия боеприпаса и определения величины интегральной характеристики эффективности боеприпаса, устройство инициирования и взрывную камеру. Достигается повышение оперативности и точности получения исходных данных, а также снижение трудоемкости и стоимости проведения испытаний. 2 н. и 3 з.п. ф-лы, 6 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в том, что подрыв боеприпаса осуществляют во взрывной камере, получают временную зависимость фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Скорости лидирующих и замыкающих осколков, среднюю скорость и глубину осколочного поля определяют по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Размещают полуцилиндрическую мишень, выполненную в виде N секторов неконтактных датчиков, и определяют дифференциальный закон распределения осколков по направлениям разлета на основании фиксации координат сработавших чувствительных элементов линеек фотоприемников в картинной плоскости. Затем определяют закон распределения осколков по их массе на основе фиксации координат сработавших чувствительных элементов линеек фотоприемников в пространстве. Определяют временные интервалы между эшелонами осколочного поля боеприпаса на основе фиксации последовательности срабатываний чувствительных элементов линейки фотоприемника, расположенных по оси Z. После чего определяют динамику изменения закона распределения осколков по направлению и массе на основе фиксации комбинации сработавших чувствительных элементов линеек фотоприемников в картинной плоскости относительно оси Z. Устройство содержит взрывную камеру, устройство инициирования и боеприпас, микроЭВМ, радиолокационный измеритель скорости и полуцилиндрическую мишень. Достигается повышение информативности испытаний. 2 н. и 4 з.п. ф-лы, 6 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в размещении полуцилиндрической мишени, выполненной в виде N секторов неконтактных датчиков и определении дифференциального закона распределения осколков по направлениям разлета в каждом эшелоне осколочного поля боеприпасов на основе фиксации координат сработавших чувствительных элементов фотоприемника в картинной плоскости. Затем определяют массу осколков. После чего определяют закон распределения осколков по массе в каждом эшелоне осколочного поля боеприпасов на основе определения массы и фиксации координат сработавших чувствительных элементов в пространстве. Устройство содержит взрывную камеру, устройство инициирования и боеприпас, ПЭВМ, радиолокационный измеритель скорости и полуцилиндрическую мишень, выполненную в виде бесконтактных датчиков с N секторами, N блоков первичной обработки информации. Взрывная камера имеет щель, ширина и длина которой позволяют улавливать часть осколочного поля боеприпаса. Радиолокационный измеритель состоит из последовательно соединенных антенны, генератора высокой частоты, блока широкополосных усилителей, n фильтров, первых входов n ключей, причем вторые входы n ключей соединены с выходом устройства инициирования. Выходы n ключей соединены n входами ПЭВМ. Достигается повышение информативности испытаний. 2 н. и 3 з.п. ф-лы, 5 ил.

Группа изобретений относится к области испытания боеприпасов и может быть использована при испытаниях боеприпасов дистанционного действия. Способ включает осуществление с помощью устройства инициирования последовательного подрыва набора опытных боеприпасов с полным накрытием их полями поражения входной стенки имитатора типового топливного отсека с последующим образованием пробоин в имитаторе топливного бака, осуществление непосредственного контакта продуктов взрыва, осколков, паров и выливающегося из пробоин имитатора топливного бака топлива, воспламенение и горение топлива, фиксацию факта возгорания топлива. Устройство содержит исследуемый боеприпас, имитатор типового топливного отсека, металлическую пластину заданной толщины, приемник излучения, блок обработки сигналов, устройство инициирования и взрывную камеру, имеющую щель, ширина и длина которой позволяет выделять часть поля поражения боеприпаса и набор опытных боеприпасов. Достигается повышение точности определения зажигательной способности боеприпасов дистанционного действия, а также повышение информативности за счет определения количественных показателей, позволяющих оценить зажигательную способность дистанционных боеприпасов и сравнить их между собой по зажигательной способности. 2 н.п. ф-лы, 2 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в том, что размещают полуцилиндрическую мишень, выполненную в виде N секторов неконтактных датчиков и определяют дифференциальный закон распределения осколков по направлениям разлета в каждом эшелоне осколочного поля боеприпаса на основе фиксации координат сработавших чувствительных элементов линейки фотоприемников в картинной плоскости. Затем определяют массу осколков. Определяют закон распределения осколков по массе в каждом эшелоне осколочного поля боеприпаса. После чего определяют предельную толщину преграды, пробиваемую осколком. Устройство содержит взрывную камеру, устройство инициирования и боеприпас, ПЭВМ, радиолокационный измеритель скорости и полуцилиндрическую мишень. Достигается повышение информативности испытаний. 2 н. и 3 з.п. ф-лы, 13 ил.

Группа изобретений относится к области испытаний боеприпасов. При испытании производят выстрел объекта испытания в виде фрагмента или уменьшенной модели боеприпаса из баллистической установки, подрывают в заданной точке его заряд, регистрируют характеристики проходящей воздушной ударной волны, образованной при подрыве объекта испытания, имеющего на момент подрыва собственную скорость, и их распределения в полупространстве. Используя метод подобия и полученные коэффициенты, определяют характеристики фугасности реального боеприпаса, имеющего собственную скорость, и их распределение в безграничном пространстве. По второму варианту после размещения на жесткой поверхности измерительной площадки датчиков давления производят выстрел боеприпаса из баллистической установки, подрывают в заданной точке его заряд и регистрируют характеристики проходящей воздушной ударной волны, образованной при подрыве боеприпаса. Используя метод подобия, определяют характеристики фугасности боеприпаса, имеющего собственную скорость, и их распределение в безграничном пространстве. Обеспечивается возможность экспериментального определения близких к абсолютным значениям характеристик фугасности при подрыве боеприпаса, имеющего собственную скорость полета. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области испытаний боеприпасов. Способ испытания боеприпасов на гидроудар заключается в том, что типовой отсек выполняют герметичным, оснащают его закрывающейся заливной горловиной и полностью заполняют жидкостью. Последовательно увеличивая плотность поля поражения опытных боеприпасов, добиваются полного разрушения отсека за счет гидроудара, измеряют для случая полного разрушения типового отсека величину критического среднего максимального давления гидроудара, возникающего в отсеке после пробития поражающими элементами опытного боеприпаса входной стенки отсека. Рассчитывают критическую энергию гидроудара в отсеке, рассчитывают удельную критическую энергию потока поражающих элементов для типового отсека, затем рассчитывают величину критического показателя гидроудара для типового отсека. Измеряют величину среднего максимального давления гидроудара, возникающего в типовом отсеке после пробития поражающими элементами испытываемого боеприпаса входной стенки отсека. Рассчитывают удельную энергию гидроудара в отсеке, рассчитывают величину показателя гидроудара поля поражения испытываемого боеприпаса. Сравнивают величину показателя гидроудара поля поражения испытываемого боеприпаса с величиной критического показателя гидроудара. По результатам сравнения судят о способности поля поражения испытываемого боеприпаса создавать гидроудар в отсеках объектов техники, заполненных жидкостью, а также сравнивают поля поражения боеприпасов между собой (по гидроудару). Достигается повышение информативности способа за счет определения результатов воздействия поля поражения боеприпаса на отсеки объекта техники, заполненные жидкостью, а именно оценки явления гидроудара, возникающего в отсеках объектов техники, заполненных жидкостью, при воздействии поля поражения боеприпаса. 1 ил.
Наверх