Алмазный детектор



Алмазный детектор
Алмазный детектор
Алмазный детектор
Алмазный детектор
Алмазный детектор
Алмазный детектор
Алмазный детектор

 


Владельцы патента RU 2522772:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)

Изобретение относится к ядерной физике и может быть использовано для регистрации ядерных излучений, например, для регистрации спектров быстрых нейтронов в экспериментальных исследованиях и на объектах ядерной энергетики. Алмазный детектор содержит чувствительный к ядерному излучению элемент, выполненный в виде алмазной пластины с контактами, размещенными противоположно на двух плоскостях алмазной пластины, имеющими большую площадь, токовводы, соединенные с соответствующими контактами на алмазной пластине с помощью проволочек, и корпус, при этом в алмазный детектор дополнительно введены оправка из высокотемпературного изоляционного материала, например, сапфира с отверстием, размеры которого соответствуют размерам алмазной пластины, и пружина, токовводы выполнены в виде плоских пружин, проволочки соединены с контактами на алмазной пластине и токовводами посредством сварки, например, ультразвуковой микросварки, а корпус выполнен совместимым с триаксиальной линией связи. Технический результат - расширение области применения и повышение надежности. 6 з.п. ф-лы, 7 ил.

 

Изобретение относится к области ядерной физики и может быть использовано для регистрации ядерных излучений, например, для регистрации спектров быстрых нейтронов в экспериментальных исследованиях и на объектах ядерной энергетики.

Известен способ регистрации спектров быстрых нейтронов с применением полупроводникового детектора [1]. Недостатками этого детектора являются невозможность работы в условиях высоких температур и агрессивной среды.

Известен алмазный детектор для регистрации ядерных излучений, например, для регистрации спектров быстрых нейтронов [2]. Алмазный детектор содержит чувствительный к ядерному излучению элемент, выполненный в виде алмазной пластины с контактами, размещенными противоположно на двух плоскостях алмазной пластины, имеющими большую площадь, токовводы, соединенные с соответствующими контактами на алмазной пластине с помощью проволочек, и корпус. Для крепления алмазной пластины служат две одинаковые прокладки из полиэтилена или фторопласта и металлическая гайка, ввинчивающаяся в корпус. Алмазный детектор имеет три токоввода. Первый и второй токовводы - изолированные. Третий - неизолированный. Первый и второй токовводы подсоединяются соответственно к первому и второму контактам на алмазной пластине с помощью проволочек, которые припаиваются или привариваются к токовводам, а к контактам на алмазной пластине присоединяются посредством аквадага или серебряной пасты с последующей термообработкой. Третий токоввод приваривается к корпусу и служит для заземления. Свободные концы токовводов подсоединяются к разъему и далее с помощью кабеля к усилителю и регистрирующей аппаратуре.

Алмазный детектор устанавливают на пути регистрируемого ядерного излучения и прикладывают напряжение от внешнего источника питания к первому контакту на алмазной пластине, а со второго снимают сигналы, обусловленные падающим ядерным излучением. Недостатком этого устройства является узкий температурный диапазон и невозможность использования в агрессивных средах. Например, в токамаке ИТЭР (Интернациональный термоядерный экспериментальный реактор) в камере ВНК (вертикальная нейтронная камера), где алмазный детектор должен быть установлен для работы в составе спектрометра быстрых нейтронов: температура - 150°C, а при технологической подготовке камеры - 250°C, поток нейтронов в канале коллиматора 105-1010 нейтрон/(см2·с), магнитное поле до 1,5 Тл. В таких условиях конструкционные материалы (фторопласт, полиэтилен, токопроводящие компаунды), применяемые в алмазном детекторе [2], становятся неработоспособными и загрязняют рабочий объем ИТЭР, а детали и узлы с применением ферромагнитных материалов испытывают большие механические нагрузки. Кроме того, конструкции корпуса и токовводов не обеспечивают необходимой помехозащищенности алмазного детектора и полосы пропускания для сигналов, поступающих с его чувствительного элемента к регистрирующей аппаратуре, находящейся на большом (~ 30 м) расстоянии от алмазного детектора.

Техническим результатом данного изобретения является расширение области применения и повышение надежности.

Для достижения указанного технического результата в известном алмазном детекторе, содержащем чувствительный к ядерному излучению элемент, выполненный в виде алмазной пластины с контактами, размещенными противоположно на двух плоскостях алмазной пластины, имеющими большую площадь, токовводы, соединенные с соответствующими контактами на алмазной пластине с помощью проволочек, и корпус, предложено в алмазный детектор дополнительно ввести оправку из высокотемпературного изоляционного материала, например, сапфира с отверстием, размеры которого соответствуют размерам алмазной пластины, и пружину, токовводы выполнять в виде плоских пружин, проволочки соединять с контактами на алмазной пластине и токовводами посредством сварки, например, ультразвуковой микросварки, а корпус выполнять совместимым с триаксиальной линией связи. Дополнительно ввести вставки и гайку, изготовленные из высокотемпературного изоляционного конструкционного материала, например, технической керамики DEGUSSIT AL23. Контакты на двух противоположных плоскостях алмазной пластины, имеющих большую площадь, изготавливать из золота и наносить, например, методом вакуумного напыления, причем толщина каждого контакта должна составлять 30 нм. Дополнительно ввести альфа источник, например, Am241 с активностью 500 Бк и геттер, причем альфа источник жестко закрепить под крышкой внутреннего экранирующего корпуса, а геттер жестко закрепить на внутренней поверхности наружного экранирующего корпуса. Дополнительно ввести трубку, через которую алмазный детектор вакуумировать, после чего трубку опрессовать. На токовводы и пружину нанести золотое покрытие, например, методом вакуумного напыления. Все детали алмазного детектора выполнять из немагнитных материалов, а наружный экранирующий корпус из немагнитного материала, работоспособного в агрессивных средах, например, нержавеющей стали.

На фиг.1 представлен общий вид алмазного детектора, на фиг.2 - вид по стрелке А на фиг.1, на фиг.3 - разрез Б-Б на фиг.1, на фиг.4 - разрез В-В на фиг.1, на фиг.5 - узел оправки с алмазной пластиной и токовводами, на фиг.6 - вид по стрелке Г на фиг.5, на фиг.7 - алмазная пластина с контактами.

Алмазный детектор содержит чувствительный к ядерному излучению элемент, выполненный в виде алмазной пластины 1 с первым контактом 2 и вторым контактом 3 из золота, нанесенными, например, методом вакуумного напыления на двух противоположных плоскостях алмазной пластины 1, имеющих большую площадь, причем толщина каждого контакта составляет 30 нм. Алмазная пластина 1 размещена в оправке 4 из высокотемпературного изоляционного материала, например, сапфира с отверстием, размеры которого соответствуют размерам алмазной пластины 1. Фиксация алмазной пластины 1 в оправке 4 достигается с помощью пружины 5, выполненной в виде гроверной шайбы, первого токоввода 6 и второго токоввода 7, которые в свою очередь крепятся к оправке 4 с помощью крепежных деталей 8. Первый токоввод 6 и второй токоввод 7 выполнены в виде плоских пружин и также как пружина 5 изготовляются из немагнитного материала, обладающего пружинными свойствами, например, бериллиевой бронзы. Первый токоввод 6, второй токоввод 7 и пружина 5 позолочены, например, методом вакуумного напыления. Первый токоввод 6 и второй токоввод 7 имеют в центре отверстие с меньшими размерами по сравнению с размерами алмазной пластины 1 и размерами отверстия в центре оправки 4. При сборке узла оправки 4 с алмазной пластиной 1 центры отверстий первого токоввода 6, второго токоввода 7, центрального отверстия оправки 4 и пружины 5 совпадают. Первый контакт 2 на алмазной пластине 1 соединен с первым токовводом 6 с помощью проволочек 9 и 10, которые привариваются, соответственно, к контакту 2 и токовводу 6 посредством, например, ультразвуковой микросварки. Аналогично второй контакт 3 соединен со вторым токовводом 7 с помощью проволочек 11 и 12. Проволочки 9, 10, 11 и 12 изготавливают из пластичного, немагнитного материала с высокой электропроводностью и температурой плавления, например, золота. Первый токоввод 6 подсоединяется к центральному проводнику 13 с помощью крепежных деталей 14, а второй токоввод 7 к первому внутреннему цилиндру 15 с помощью крепежных деталей 16. Центральный проводник 13 изолируется от первого внутреннего цилиндра 15 первой керамической вставкой 17 и фиксируется с помощью керамической гайки 18. В отверстие, находящееся на оси центрального проводника 13, вставляется и запаивается центральный проводник триаксиальной линии связи, соединяющей алмазный детектор с усилителем и регистрирующей аппаратурой. На первый внутренний цилиндр 15 надевается второй внутренний цилиндр 19, в который ввинчивается первая крышка 20. К первой крышке 20 прикреплены стойки 21 и вторая керамическая вставка 22, а также приварен третий внутренний цилиндр 23. Противоположным концом третий внутренний цилиндр 23 приварен к внутреннему экрану триаксиальной линии связи. Первый внутренний цилиндр 15 закрыт второй крышкой 24, под которой жестко закреплен альфа источник 25, например, Am241 с активностью 500 Бк. Первая 20 и вторая 24 крышки, первый 15, второй 19 и третий 23 внутренние цилиндры образуют внутренний экранирующий корпус алмазного детектора, все детали которого изготовлены из немагнитного материала с высокой электропроводностью, например, электротехнической меди. На наружной поверхности второй крышки 24 сделаны пазы, в которые вставлены по плотной посадке изолирующие третьи керамические вставки 26. Первая 17, вторая 22, третьи 26 вставки и гайка 18 изготовляются из высокотемпературного изоляционного конструкционного материала, например, технической керамики DEGUSSIT AL23. Внутренний экранирующий корпус алмазного детектора с третьими керамическими вставками 26 помещен в первый наружный цилиндр 27, к которому приварена третья крышка 28. К третьей крышке 28 приварен второй наружный цилиндр 29. Противоположным концом второй наружный цилиндр 29 приварен к наружному экрану триаксиальной линии связи. Первый 27, второй 29 наружные цилиндры и третья крышка 28 образуют наружный экранирующий корпус алмазного детектора, все детали которого изготовлены из немагнитного электропроводящего материала, работоспособного в агрессивных средах, например, нержавеющей стали. На внутренней поверхности первого наружного цилиндра 27 жестко закреплен геттер 30. Через трубку 31 алмазный детектор вакуумируется, после чего она опрессовывается.

Алмазный детектор устанавливают на пути регистрируемого ядерного излучения, и прикладывают с помощью триаксиальной линии связи напряжение в диапазоне (50-400) B от внешнего источника питания ко второму контакту 3 на алмазной пластине 1, а с первого контакта 2 снимают сигналы, обусловленные падающим ядерным излучением. Наружный экранирующий корпус алмазного детектора заземляют. При прохождении регистрируемого ядерного излучения через алмазную пластину 1 в ней возникают импульсы тока, обусловленные ионизацией. Эти импульсы образуют во внешней цепи импульсы напряжения, которые усиливаются и регистрируются известной аппаратурой. Альфа источник 25, например, Am241 с активностью 500 Бк используют для калибровки и онлайн тестирования алмазного детектора.

Как показали эксперименты, алмазный детектор стабильно работает без потери качества измерений при температуре до 250°C. Конструкции корпуса и токовводов алмазного детектора обеспечивают необходимую помехозащищенность и полосу пропускания для сигналов, поступающих с его чувствительного элемента к регистрирующей аппаратуре, находящейся на расстоянии 30 м. Это расширяет область применения и повышает надежность по сравнению с прототипом при использовании алмазного детектора в современных токамаках и в установках, которые будут созданы в будущем.

Приведем один из конкретных примеров алмазного детектора. Размеры алмазной пластины - 4.5×4.5×0.5 мм, габаритные размеры корпуса - ⌀49×94 мм. Альфа источник обеспечивает загрузку детектора на уровне 10-50 импульсов/с. Рабочая температура до 250°C,

Источники использованной информации

1. Колеватов Ю.И., Семенов В.П., Трыков Л.А. Спектрометрия нейтронов и гамма-излучения в радиационной физике, М.: Энергоатомиздат. - 1990.

2. Козлов С.Ф. Датчик для измерения удельных потерь энергии ядерных излучений. Авторское свидетельство СССР №451972. М.Кл. СКИТ 1/16. Бюл. №44. Опубл. 14.04.75.

1. Алмазный детектор, содержащий чувствительный к ядерному излучению элемент, выполненный в виде алмазной пластины с контактами, размещенными противоположно на двух плоскостях алмазной пластины, имеющими большую площадь, токовводы, соединенные с соответствующими контактами на алмазной пластине с помощью проволочек, и корпус, отличающийся тем, что в алмазный детектор дополнительно введены оправка из высокотемпературного изоляционного материала, например, сапфира с отверстием, размеры которого соответствуют размерам алмазной пластины, и пружина, токовводы выполнены в виде плоских пружин, проволочки соединены с контактами на алмазной пластине и токовводами посредством сварки, например, ультразвуковой микросварки, а корпус выполнен совместимым с триаксиальной линией связи.

2. Алмазный детектор по п.1, отличающийся тем, что дополнительно введены вставки и гайка, изготовленные из высокотемпературного изоляционного конструкционного материала, например, технической керамики DEGUSSIT AL23.

3. Алмазный детектор по п.1, отличающийся тем, что контакты на двух противоположных плоскостях алмазной пластины, имеющих большую площадь, изготовлены из золота и нанесены, например, методом вакуумного напыления, причем толщина каждого контакта составляет 30 нм.

4. Алмазный детектор по п.1, отличающийся тем, что дополнительно введены альфа источник, например, Am241 с активностью 500 Бк и геттер, причем альфа источник жестко закреплен под крышкой внутреннего экранирующего корпуса, а геттер жестко закреплен на внутренней поверхности наружного экранирующего корпуса.

5. Алмазный детектор по п.1, отличающийся тем, что дополнительно введена трубка, через которую алмазный детектор вакуумируется, после чего она опрессовывается.

6. Алмазный детектор по п.1, отличающийся тем, что токовводы и пружина позолочены, например, методом вакуумного напыления.

7. Алмазный детектор по п.1, отличающийся тем, что все детали алмазного детектора выполнены из немагнитных материалов, а наружный экранирующий корпус - из немагнитного материала, работоспособного в агрессивных средах, например, нержавеющей стали.



 

Похожие патенты:

Использование: для регистрации рентгеновского и ультрафиолетового излучения. Сущность изобретения заключается в том, что автономный приемник для регистрации рентгеновского и ультрафиолетового излучения включает металлический корпус, прозрачную диэлектрическую подложку, фоточувствительный слой из АФН-пленки и металлические контакты, при этом между прозрачной диэлектрической подложкой и металлическим корпусом помещено отражающее покрытие, приемник снабжен полусферической зеркальной крышкой, имеющей окно, прозрачное для рентгеновского и ультрафиолетового излучения.

Изобретение относится к области ядерной физики и может быть использовано в широком спектре приложений регистрации мощных проникающих излучений, в частности в активных зонах атомных электростанций.

Изобретение может быть использовано при изготовлении систем визуализации в компьютерных томографах. Сцинтилляционный материал содержит модифицированный оксисульфид гадолиния (GOS), в котором приблизительно от 25% до 75% гадолиния (Gd) замещено лантаном (La) или приблизительно не более 50% гадолиния (Gd) замещено лютецием (Lu).

Изобретение относится к средствам спектрометрических измерений и может быть использовано в атомной энергетике для измерения активности радионуклидов в высокоактивных газообразных средах.

Предложено устройство для определения максимальной энергии электронов. Устройство содержит фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии и детектор для регистрации электронов.

Изобретение относится к радиационному приборостроению и экспериментальной ядерной физике. Сущность изобретения заключается в том, что излучение регистрируют в N>2 смежных каналах, расположенных так, чтобы включать в себя реперный пик, определяют средние значения частот следования импульсов FN во всех каналах, сравнивают между собой полученные в двух заранее выбранных двух ближайших к вершине реперного пика смежных каналах значения FN и по результатам сравнения формируют основной управляющий сигнал коррекции коэффициента передачи детектирующего тракта, при этом значения границ смежных каналов выбирают пропорциональными членам возрастающей геометрической прогрессии со знаменателем Q, вычисляют нормированные значения средних частот следования импульсов во всех каналах FN(норм)=FN/QN-1, определяют канал, в котором значение FN(норм) максимально, и, если этот канал не окажется одним из заранее выбранных двух ближайших к вершине реперного пика смежных каналов, вырабатывают предварительно установленный для каждого прочего канала дополнительный сигнал коррекции коэффициента передачи детектирующего тракта.
Изобретение относится к технике регистрации ионизирующего излучения, в частности к детекторам рентгеновского излучения. .

Изобретение относится к технике регистрации ядерного излучения с использованием газовых координатно-чувствительных детекторов, работающих в лавинном режиме, и может быть использовано в ядерной физике.

Изобретение относится к области войсковой дозиметрии и обеспечения радиационной безопасности военнослужащих и гражданского персонала ВС РФ в мирное и военное время.

Изобретение относится к газовым ионизационным многопроволочным координатным детекторам, в частности к дрейфовым камерам с тонкостенными дрейфовыми трубками (строу), предназначенным для работы в вакууме, и может быть использовано в экспериментальной ядерной физике для регистрации и определения координат заряженных частиц, проходящих через объем камеры. Дрейфовая камера для работы в вакууме включает цельное кольцо с множеством парных соосных отверстий, расположенных на его боковой поверхности, и тонкостенные дрейфовые трубки с анодными проволоками вдоль их оси, с обоих концов снабженные герметично закрепленными в них самоцентрирующимися наконечниками с изоляционными вставками внутри, вместе с трубками вакуумно-плотно вставленными в дополнительные втулки, которые также вакуумно-плотно, но с возможностью перемещения, установлены в отверстия камеры, а наконечники служат также и для подвода к трубкам газовой смеси, высокого напряжения на анод и вывода электрических сигналов, при этом каждая трубка соединена с двух сторон с системой подачи газовой смеси через энергонезависимые защитные клапаны, снабженные входными и выходными штуцерами, а каждый клапан при этом выполнен в виде вертикально расположенного полого цилиндра с конусным отверстием в его нижней части, в котором соосно ему расположена пробка, образующая в нем зазор и выполненная с возможностью вертикального перемещения вдоль оси конусного отверстия и служащая для перекрытия клапана, при этом все клапаны соединены с дрейфовыми трубками со стороны конусного отверстия. Технический результат - повышение надежности вакуумной камеры. 4 з.п. ф-лы, 4 ил.

Изобретение относится к медицине, а именно к способам и системам для формирования изображения. Пациенту в покое инъецируют первый изотопный радиоактивный индикатор. После первого периода поглощения пациент получает нагрузку и ему инъецируют второй изотопный радиоактивный индикатор. После периода поглощения второго изотопного радиоактивного индикатора первые и вторые данные изотопного формирования изображений одновременно определяются посредством устройств получения данных. Первые и вторые данные изотопного формирования изображений реконструируют в первое изображение или изображение в состоянии покоя, второе изображение или изображение в состоянии нагрузки, и опционально в комбинированное первое и второе изотопное изображение. Изображение с лучшей статистикой изображения сегментируют для генерации параметров сегментации, эти параметры сегментации применяют как к первому изображению или изображению в состоянии покоя, так и ко второму изображению или изображению в состоянии нагрузки. Таким образом, изображение, статистические показатели изображения которого могут оказаться слишком низкими для точной сегментации, точно сегментируют посредством генерации двух, по существу, выровненных изображений и применения одних и тех же параметров сегментации к ним обоим. Система выполнена с возможностью осуществления способа формирования изображений. Использование изобретения обеспечивает выравнивание изображений, соответствующих различным изотопам/радиоактивным индикаторам, а также усовершенствованную пропускную способность для пациентов. 5 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к области низкофоновых экспериментов по поиску редких событий, например взаимодействий темной материи с обычным веществом, и может быть использовано для экспериментов по исследованию взаимодействия нейтрино (антинейтрино) с энергией 1-100 МэВс веществом. Способ регистрации ионизационного сигнала в эмиссионных детекторах излучений включает создание электрического поля в жидком ксеноне, подтягивание электронов ионизации к поверхности раздела жидкость - насыщенный пар, вытягивание (эмиссию) электронов ионизации в газовую фазу и последующую их регистрацию в газовой фазе, при этом в жидком ксеноне растворяют электроотрицательное вещество, обладающее высоким коэффициентом захвата для электронов ионизации, термализованных под поверхностью раздела жидкого и газообразного ксенона, и обладающее одновременно низким коэффициентом захвата для дрейфующих в жидком ксеноне электронов ионизации. Технический результат - существенное уменьшение фона от задержанных подповерхностных электронов, уменьшение энергетического порога регистрации и повышение чувствительности. 1 ил., 1 табл.

Изобретение относится к области метрологического обеспечения измерений доз гамма-излучения с помощью дозиметров, в которых используются газоразрядные счетчики Гейгера-Мюллера. Сущность изобретения состоит в том, что способ градуировки дозиметров гамма-излучения, в которых используются газоразрядные счетчики Гейгера-Мюллера, заключающийся в установлении соотношения между показанием градуируемого дозиметра и измеренной дозой с помощью образцового средства измерений, при этом дозиметры облучают в модельном поле гамма-нейтронного излучения, подобном по энергетическому спектру нейтронов и отношению дозы нейтронов к дозе гамма-излучения радиационному полю, для измерений доз в котором предназначены градуируемые дозиметры. Технический результат - повышение точности измерения дозы гамма-излучения в смешанных гамма-нейтронных полях. 1 ил., 1 табл.

Изобретение относится к системам радиационного контроля. Технический результат заключается в обеспечении возможности контроля доз радиации, получаемых на разных предприятиях. Система содержит: блок передачи данных, выполненный с возможностью связи с каждым контроллером объектов, устройство управления результирующими данными, выполненное с возможностью сбора данных о дозах радиации сотрудников, работающих с радиацией и которые входят и выходят из зон контроля радиации предприятий, работающих с радиацией. Устройство управления результатом/данными выполнено с возможностью управления собранными данными о дозах радиации для каждого сотрудника, работающего с радиацией. Устройство управления основной таблицей сотрудников, выполненное с возможностью управления регистрационными данными сотрудников, работающих с радиацией, для каждого предприятия, работающего с радиацией, в единой основной таблице сотрудников. Когда сотрудника, работающего с радиацией, регистрируют для нескольких предприятий, работающих с радиацией, устройство управления основной таблицей сотрудников группирует регистрационные данные для предприятий, работающих с радиацией, на основе даты первичной регистрации, которая является одной из дат регистрации для предприятий, работающих с радиацией. 2 н. и 8 з.п. ф-лы, 13 ил.

Изобретение относится к медицине, а именно к хирургической онкологии и радионуклидной диагностике, и может использоваться при биопсии сигнальных лимфоузлов (СЛУ) у больных раком молочной железы. Способ проводят с помощью оптической навигационной системы с внутриопухолевым введением меченого коллоидного радиофармпрепарата (РФП), для чего через 3-5 мин после введения РФП производят динамическое сцинтиграфическое исследование подмышечных, парастернальных, над- и подключичных лимфоузлов со стороны локализации опухоли молочной железы. Причем повторяют его в течение 20-30 мин с интервалом 5-10 мин. Выявляют момент появления первого лимфоузла, накапливающего РФП, и рассматривают его в качестве СЛУ. В момент появления сцинтиграфического изображения СЛУ на кожные покровы больной накладывают 4-5 маркеров меток, которые используют при регистрации навигационной системы и располагают: первый маркер - в районе головки плечевой кости, второй - по lin. ах. anterior так, чтобы он не мешал при выполнении биопсии, но при этом был доступен для регистрации перед началом операции, третий - у основания рукоятки грудины, четвертый - на 3-5 см ниже третьего. В случае фиксации пятого маркера его положение жестко не регламентируют. Одновременно устанавливают топографию СЛУ с помощью ОФЭКТ-КТ - эмиссионной компьютерной томографии с последующей рентгеновской компьютерной томографией. При невозможности экспорта объемных зон интереса на ОФЭКТ-КТ изображениях устанавливают топографию СЛУ по отношению к прилегающим анатомическим структурам и полученную информацию переносят в оптическую навигационную систему для идентификации и точного нахождения СЛУ при выполнении биопсии. Способ позволяет идентифицировать истинный СЛУ, определить его точную топографию и с помощью оптической навигационной системы произвести его удаление, избежав неоправданного удаления лимфоузлов второго и третьего порядка. 1 ил., 1 пр.

Изобретение относится к области медицинских исследований с использованием рентгеновского излучения. Способ изготовления матрицы фоточувствительных элементов плоскопанельного детектора рентгеновского изображения, где каждый фоточувствительный элемент, включающий фотоприемную часть и подложку, размещают на общей подложке с обеспечением плоскостности фоточувствительной поверхности матрицы и фиксируют посредством клея, предварительно нанесенного на указанную подложку, при этом перед размещением фоточувствительных элементов на общей подложке в ней выполняют технологические отверстия, упорядоченно расположенные, по меньшей мере, на части площади общей подложки, соответствующей площади подложки каждого фоточувствительного элемента; устанавливают подложку на эталонной плоскости, имеющей средства прижима и обеспечивающей компенсацию неплоскостности общей подложки путем создания усилия прижима, при этом, по крайней мере, часть средств прижима выполнена в виде упорядоченной совокупности выступов, соотнесенных с упомянутыми технологическими отверстиями, и выполненных с возможностью приложения через них в осевом направлении силы прижима; размещают выступы в указанных технологических отверстиях, причем высота указанных выступов выполнена с возможностью обеспечения плоскостности фоточувствительной поверхности матрицы; затем на них устанавливают и временно фиксируют фоточувствительные элементы, опускают плоскость с установленными на указанных выступах фоточувствительными элементами до их контакта с клеем и выдерживают до полного отверждения клея. Технический результат - повышение степени плоскостности фоточувствительной поверхности. 3 з.п. ф-лы, 3 ил.

Изобретение относится к проблеме радиационного анализа материалов, конкретно к способам численной оценки плотности и эффективного атомного номера твердых и жидких многокомпонентных материалов. Способ двухэнергетической оценки средней плотности и эффективного атомного номера многокомпонентных материалов позволяет определять данные параметры в материалах, состоящих из любого количества компонентов, без априорной информации об их характеристиках. Предложенный в изобретении безкалибровочный способ позволяет получить несмещенные оценки плотности и эффективного атомного номера многокомпонентной структуры (без ограничения на количество компонентов) в отсутствии априорной информации о плотности и эффективном номере входящих в нее компонентов. 12 ил.

Изобретение относится к системе интроскопического сканирования инспекционно-досмотрового комплекса, содержащей линейный ускоритель электронов, генерирующий импульсы с чередованием низкой и высокой энергии с минимальным интервалом t между двумя соседними импульсами, и детекторный узел для сбора данных сканирования, включающий в себя детекторные модули, аналого-цифровые преобразователи (АЦП) и каналы детектирования, каждый из которых содержит два интегратора для обработки сигналов одного детекторного модуля. В соответствии с изобретением промежуток времени t1, в течение которого происходит сбор фотонов детекторного модуля от одного импульса излучения, не превышает интервал t между импульсами, равный или превышающий время высвечивания материала сцинтилляционных кристаллов. Также предложен способ интроскопического сканирования, осуществляемый в вышеуказанной системе. Изобретение позволяет устранить явление алиасинга при сохранении достаточно высокой скорости сканирования. 2 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к детекторному узлу для сбора данных сканирования в системе интроскопии. Детекторный узел для сбора данных сканирования в системе интроскопии содержит источник ионизирующего излучения, имеющий корпус детекторного узла, в котором размещены чувствительные элементы, выполненные с возможностью приема ионизирующего излучения и его преобразования в электрический сигнал, связанные с платами аналогово-цифровых преобразователей, при этом корпус детекторного узла выполнен в форме дуги окружности с центром в точке генерации излучения источника ионизирующего излучения, причем чувствительные элементы расположены на одинаковом расстоянии от точки генерации излучения источника ионизирующего излучения и ориентированы перпендикулярно лучам, исходящим из источника ионизирующего излучения. Технический результат - повышение качества радиоскопического изображения. 8 з.п. ф-лы, 3 ил.
Наверх