Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания и устройство для его осуществления

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания заключается в измерении углового перемещения коленчатого вала двигателя от момента открытия впускного клапана первого опорного цилиндра до момента положения вала, соответствующего верхней мертвой точке поршня опорного цилиндра. Измерение углового перемещения коленчатого вала осуществляют на работающем двигателе через измерение угла перемещения распределительного вала, числовые значения которого определяют с помощью электрического устройства и установленных датчика (11) верхней мертвой точки и датчика (12) положения клапана (17). Полученное удвоенное числовое значение измеренного угла, соответствующее углу перемещения коленчатого вала, сравнивают с требованиями технической документации и судят о состоянии газораспределительного механизма. Раскрыто устройство измерения углового перемещения распределительного вала. Технический результат заключается в повышении достоверности измерения угла фаз газораспределения. 2 н. и 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к машиностроению и может быть использовано для контроля фаз газораспределения при диагностировании карбюраторного двигателя внутреннего сгорания (ДВС).

Известен способ для измерения фаз газораспределения двигателя внутреннего сгорания при помощи USB Осциллографа (http://injectorservice.com.ua/phase_plugin.php). Способ диагностирования газораспределительного механизма(ГРМ) осуществляется при помощи программы «USB Осциллографа», которая отображает осциллограмму напряжения выходного сигнала датчика давления в цилиндре в окне программы при работе двигателя на холостом ходу, отмечает моменты, когда поршень диагностируемого цилиндра находится в верхних/нижних мертвых точках; кроме того, подсвечивает допустимый диапазон положения четырех характерных точек и участков графика, положение которых зависит от взаимного положения коленчатого и газораспределительных валов. Измерение положения характерных точек и участков графика давления в цилиндре позволяет судить о правильности взаимного положения коленчатого и газораспределительных валов.

Недостатком данного способа является высокая стоимость оборудования и получение информации в графическом (не цифровом) выражении.

Известно устройство для измерения фаз газораспределения двигателей внутреннего сгорания (RU 2042125 6 МПК G01M 15/00 С1, 20.08.1995), содержащее клапан, вставное седло клапана, осциллограф, седло клапана изолированно от головки цилиндров электронепроводящим материалом, при этом клапан и седло клапана соответственно соединены с осциллографом с образованием электрической цепи.

Недостатком данного устройства является то, что оно не может быть использовано для диагностики серии двигателей, а только для изучения процесса газораспределения на одном опытном двигателе, измерения проводятся в статике, коленчатый вал вращается от постороннего источника.

Наиболее близким по технической сущности и взятым в качестве прототипа является способ диагностирования газораспределительного механизма двигателя внутреннего сгорания (авт.св. SU 1686332 5МПК G01M 15/00 А1, 23.10.1991), включающий измерение линейного перемещения клапанов по углу поворота коленчатого вала двигателя, оценивают изменение усилия открытия клапанов газораспределительного механизма в зависимости от перемещения клапана и угла поворота коленчатого вала и по их комбинациям осуществляют диагностирование. Устройство, для осуществления вышеуказанного способа взятого в качестве прототипа для заявляемого устройства, авт.св SU 1686332 5 МПК G01M 15/00 А1, 23.10.1991, содержит датчик для измерения усилия открытия клапанов, коромысло клапанного механизма, тарелку пружины клапана, устройство для измерения величины линейного перемещения клапанов, понижающий редуктор, потенциометр для преобразования величины угла поворота коленчатого вала в электрический сигнал, блок управления и двухкоординатный самописец, при этом коленчатый вал приводится во вращение от постороннего источника. На двухкоординатном самописце получают график функции усилия на клапане в зависимости от угла поворота коленчатого вала. Сопоставляют полученный при измерении график с эталонным и судят о техническом состоянии газораспределительного механизма (ГРМ).

Данными способом и устройством определяют величину угла фаз газораспределения нецифровым значением параметра угла перемещения коленчатого вала, тогда как техническая документация задает параметры угла цифровыми значениями, что затрудняет диагностику; измерения выполняются на неработающем двигателе, что вносит определенную погрешность в результаты измерения.

Задачей изобретения является совершенствование способа и устройства диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания с повышением достоверности измерения угла фаз газораспределения и качества диагностирования на работающем двигателе.

Решение поставленной задачи в заявляемом способе достигается тем, что измерение углового перемещения коленчатого вала двигателя от момента открытия впускного клапана первого опорного цилиндра до момента положения вала, соответствующего верхней мертвой точке (ВМТ) поршня опорного цилиндра, в отличие от прототипа осуществляют на работающем двигателе через измерение угла перемещения распределительного вала, числовые значения которого определяют с помощью электрического устройства и установленных датчика верхней мертвой точки и датчика положения клапана, удвоенное числовое значение измеренного угла, соответствующее углу перемещения коленчатого вала, сравнивают с требованиями технической документации и судят о состоянии газораспределительного механизма.

Устройство для осуществления способа, включающее механизм фиксации момента положения коленчатого вала, соответствующего верхней мертвой точке поршня опорного цилиндра, датчик фиксации момента начала движения впускного клапана первого опорного цилиндра, блок управления, отличается от прототипа тем, что в качестве механизма фиксации момента положения коленчатого вала, соответствующего верхней мертвой точке поршня опорного цилиндра, использован датчик верхней мертвой точки, а в качестве датчика, фиксирующего момент начала движения клапана, - датчик положения клапана, установленный на съемной технологической крышке клапанов двигателя внутреннего сгорания; устройство представляет собой высоковольтный разрядник, состоящий из одного подвижного электрода, выполненного в виде двухсторонней токопроводной стрелки и секции пронумерованных неподвижных электродов, расположенных на изолированной подложке внутри пустотелого диска из неэлектропроводного материала, установленного на цилиндрической части корпуса привода подвижного электрода разрядника с возможностью углового перемещения вокруг оси и фиксации заданного положения; внутри корпуса соосно валу распределителя зажигания двигателя внутреннего сгорания установлен соединенный с ним жестко вал, на другом конце которого закреплен подвижный электрод; неподвижные электроды установлены в цилиндрической стенке диска в плоскости вращения подвижного электрода радиально, на равном расстоянии друг от друга так, чтобы линейное расстояние между смежными неподвижными электродами было в 2 и более раза больше, чем зазор между острием подвижного электрода и каждого неподвижного электрода, причем каждый из неподвижных электродов электрически связан со своим светодиодом; все светодиоды размещены на панели, расположенной удобно для визуального наблюдения, а каждый светодиод связан электрически с сопротивлением и высоковольтным диодом; в стенке цилиндрической части корпуса привода подвижного электрода разрядника выполнены высоковольтный вход для подачи напряжения от штатной катушки зажигания на бегунок распределителя двигателя внутреннего сгорания и высоковольтный вход для подачи напряжения на подвижный электрод разрядника от дополнительно установленной катушки зажигания или высоковольтного трансформатора.

В результате патентного поиска не выявлено технических решений, идентичных заявляемому, что соответствует критерию «новизна».

Предлагаемый способ и устройство могут применяться в машиностроении для измерения угла газораспределения ДВС при изготовлении, эксплуатации и ремонте двигателя, что соответствует критерию промышленной применимости.

Новая совокупность признаков, а именно: измерение углов фаз газораспределения на работающем двигателе и числовое значение результатов измерения угла позволяет улучшить точность измерения, что подтверждает причинно-следственную связь новой совокупности признаков и достигнутого результата, которая не была известна из уровня техники до создания технического решения, что позволяет сделать вывод о соответствии техническому критерию «изобретательский уровень».

Изобретения поясняются чертежами, где на Фиг.1 изображена принципиальная схема устройства для диагностирования газораспределительного механизма, на Фиг.2 - схема разрядника, на Фиг.3 - схема подключения светодиода.

Предлагаемое устройство содержит (Фиг.1) датчик 11 ВМТ, датчик 12 положения клапана 17, установленный на технологической крышке клапанов ДВС, блок управления 13, корпус 1 привода подвижного электрода 2 разрядника со смонтированным в нем приводом 7 подвижного электрода2 разрядника, неподвижные электроды 3 установлены в цилиндрической стенке пустотелого диска 8 радиально в плоскости вращения подвижного электрода 2 на заданном угловом расстоянии 10 (Фиг.2), например через 1 градус друг от друга, таким образом, чтобы линейное расстояние между смежными неподвижными электродами 3 в 2 и более раза больше, чем радиальный зазор 9 между острием подвижного электрода и каждого неподвижного, такое соотношение препятствует одномоментному электрическому разряду на два смежные электрода. Каждый из неподвижных электродов электрически связан со своим светодиодом 14 (Фиг.3), сопротивлением 15 и высоковольтным диодом 16, пронумерован и расположен на панели, удобно размещенный для визуального наблюдения. В стенке цилиндрической части корпуса 1 привода подвижного электрода разрядника установлены два высоковольтных входа 4 и 5 для передачи высоковольтного электроимпульса, при этом вход 4 обеспечивает функционирование системы зажигания двигателя и обеспечивает работу двигателя на холостом ходу, а вход 5 служит для подачи напряжения на подвижный электрод разрядника от дополнительно установленной катушки зажигания или высоковольтного трансформатора.

Измерение фаз газораспределения при диагностировании газораспределительного механизма выполняют следующим образом. Предварительно отрегулировав зазоры в клапанах 17 двигателя внутреннего сгорания, устанавливают коленчатый вал в положение верхней мертвой точки поршня на такте сжатия. Вместо штатной крышки клапанов устанавливают технологическую крышку (не обозначена) со смонтированным на ней датчиком 12 положения впускного клапана 17 и регулируют положение датчика на момент начала движения клапана (момент размыкания контактов). Устанавливают датчик 11 ВМТ (при отсутствии штатного датчика) и регулируют его на момент начала срабатывания.

Снимают штатную крышку распределителя зажигания и устанавливают на ее место измерительное устройство так, чтобы подвижный электрод 2 разрядника находился в секторе секции неподвижных электродов 3.

Монтируют провода высокого напряжения и дополнительный высоковольтный трансформатор (дополнительную катушку зажигания).

Запускают двигатель, включают питание датчика 11 ВМТ, поворачивая диск 8 с установленной секцией неподвижных электродов 3, находят такое положение, при котором происходит свечение светодиода с нулевым номером, и фиксируют положение диска 8; с помощью трехпозиционного переключателя в блоке управления 13 подают питание на датчик положения клапана 12 и определяют по свечению номер светодиода; цифровое значение номера светодиода соответствует величине угла поворота кулачкового вала от момента положения коленчатого вала в ВМТ до момента начала движения клапана 17, на котором установлен датчик 12; удвоенное числовое значение измеренного угла, соответствующее углу перемещения коленчатого вала, сравнивают с требованиями технической документации и судят о состоянии газораспределительного механизма.

Предлагаемый способ и устройство позволяют производить диагностику двигателя внутреннего сгорания на работающем двигателе и получать результаты измерения угла поворота коленчатого вала относительно ВМТ поршня опорного цилиндра в цифровом значении, что облегчает идентификацию результатов измерений с требованиями технической документации, и повышает их достоверность.

1. Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания, заключающийся в измерении углового перемещения коленчатого вала двигателя от момента открытия впускного клапана первого опорного цилиндра до момента положения вала, соответствующего верхней мертвой точке поршня опорного цилиндра, отличающийся тем, что измерение углового перемещения коленчатого вала осуществляют на работающем двигателе через измерение угла перемещения распределительного вала, числовые значения которого определяют с помощью электрического устройства и установленных датчика верхней мертвой точки и датчика положения клапана, удвоенное числовое значение измеренного угла, соответствующее углу перемещения коленчатого вала, сравнивают с требованиями технической документации и судят о состоянии газораспределительного механизма.

2. Устройство измерения углового перемещения распределительного вала, включающее механизм фиксации момента положения коленчатого вала, соответствующего верхней мертвой точке поршня первого цилиндра, датчик фиксации момента начала движения впускного клапана первого опорного цилиндра, блок управления, отличающееся тем, что в качестве механизма фиксации момента положения коленчатого вала, соответствующего верхней мертвой точке поршня опорного цилиндра, использован датчик верхней мертвой точки, а в качестве датчика, фиксирующего момент начала движения клапана, - датчик положения клапана, установленный на съемной технологической крышке клапанов двигателя внутреннего сгорания; устройство представляет собой высоковольтный разрядник, состоящий из одного подвижного электрода и секции пронумерованных неподвижных электродов, расположенных на изолированной подложке внутри пустотелого диска из неэлектропроводного материала, установленного на цилиндрической части корпуса привода подвижного электрода разрядника с возможностью углового перемещения вокруг оси и фиксации заданного положения; внутри корпуса соосно валу распределителя зажигания двигателя внутреннего сгорания установлен соединенный с ним жестко вал, на другом конце которого закреплен подвижный электрод; неподвижные электроды установлены в цилиндрической стенке диска в плоскости вращения подвижного электрода радиально, на равном расстоянии друг от друга так, чтобы линейное расстояние между смежными неподвижными электродами было в 2 и более раза больше, чем зазор между острием подвижного электрода и каждого неподвижного электрода, причем каждый из неподвижных электродов электрически связан со своим светодиодом; все светодиоды размещены на панели, расположенной удобно для визуального наблюдения, а каждый светодиод электрически связан с сопротивлением и высоковольтным диодом; в стенке цилиндрической части корпуса привода подвижного электрода разрядника выполнены высоковольтный вход для подачи напряжения от штатной катушки зажигания на бегунок распределителя двигателя внутреннего сгорания, и высоковольтный вход для подачи напряжения на подвижный электрод разрядника от дополнительно установленной катушки зажигания или высоковольтного трансформатора.

3. Устройство по п.1, отличающееся тем, что подвижный электрод выполнен в виде двухсторонней токопроводной стрелки.



 

Похожие патенты:

Универсальная безмоторная установка может быть использована для определения параметров рабочего процесса ДВС и испытания кривошипно-шатунного механизма (КШМ), а также оценки механических потерь.

Изобретение относится к контролю технического состояния сложных энергетических объектов, например авиационных газотурбинных двигателей (ГТД), и может быть использовано для диагностики ГТД в процессе их эксплуатации в реальном времени, при техническом обслуживании и/или после ремонта.

Группа изобретений относится к компрессоростроению и установкам для испытаний компрессора, в частности, предназначена для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций, при использовании регулируемого привода двигателя.

Цех подготовки авиационных двигателей к транспортировке содержит участок (10) монтажа измерительных и испытательных средств на двигатель, средства (14) для перемещения двигателя в испытательное помещение (16) и возврата двигателя в цех, участок (18) демонтажа измерительных и испытательных средств, участок (20) эндоскопического контроля, участок (22) доводки и участок (24) транспортировки.

Изобретение относится к области авиации, в частности к системам диагностики технического состояния летательных аппаратов. Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета включает пьезоэлектрические датчики вибрации, которые установлены на корпусе, по меньшей мере, одного из агрегатов привода винтов вертолета и расположены так, что получают данные с полнотой, достаточной для диагностики технического состояния деталей, узлов, по меньшей мере, одного агрегата привода винтов работающего вертолета, и бортовой электронный блок.

Изобретение относится к устройствам для отбора проб отработавших газов двигателя, позволяющего производить отбор проб на движущемся транспортном средстве, и может быть использовано при контроле технического состояния транспортных средств и для оценки опасности воздействия транспортного средства на окружающую среду.

Изобретение может быть использовано при испытаниях малогабаритных многоцелевых двигателей (Д), работающих при знакопеременных нагрузках. Стенд содержит амортизирующую знакопеременную передачу (АЗП), соединяющую выходной вал испытываемого Д с нагрузочным устройством через присоединительные фланцы (ПФ) АЗП.

Изобретение может быть использовано при диагностировании двигателей внутреннего сгорания. Способ заключается в измерении расход масла через подшипник и определении степени износа коренных подшипников.

Способ предназначен для испытания, доводки, диагностики и эксплуатации турбореактивных реактивных двигателей, а конкретно для диагностики технического состояния ГТД по акустическим и газодинамическим параметрам потока.

Изобретение относится к области транспорта и может быть использовано в устройстве для диагностики неисправностей расходомера (11) воздуха в двигателе внутреннего сгорания.

Изобретение относится к испытательной технике и, в частности, к испытаниям камер сгорания и газогенераторов жидкостных ракетных двигателей (ЖРД) с целью оценки высокочастотной устойчивости процесса горения. Генератор содержит корпус с подсоединительным патрубком и форкамерой, в котором размещена втулка из диэлектрика, в которой размещены электроды. При этом один из электродов установлен по оси форкамеры и является общим, а остальные электроды расположены по окружности с одинаковым зазором между собой. Причем осевой электрод соединен с остальными электродами, размещенными по окружности, металлическими проволочками диаметром 0,02…0,5 мм. Другие концы электродов предназначены для подключения к источнику высокого напряжения, а концы электродов, размещенных внутри форкамеры, выполнены с утолщением, причем к форкамере подсоединен штуцер для подачи азота продувки. При размещении по окружности четного числа электродов на конце осевого электрода в радиальном направлении к электродам, расположенным по окружности, могут быть выполнены сквозные радиальные пересекающиеся каналы, в которых размещены металлические проволочки. При этом концы каждой из них соединены с соответствующей парой противолежащих электродов, расположенных по окружности, причем в торце осевого электрода выполнено глухое отверстие с резьбой, пересекающее сквозные радиальные каналы, в котором установлен винт, прижимающий металлические проволочки к внутренним кромкам сквозных каналов осевого электрода. Изобретение обеспечивает создание нескольких импульсов во время одного испытания камер сгорания и газогенераторов ЖРД на устойчивость при высокой стабильности величины импульса. 4 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для определения замеров параметров отработавших газов (ОГ) ДВС. Способ заключается в отборе газов в пробоотборник и последующем анализе материала пробы. Пробоотборник изолируют от окружающей среды и размещают в нем порцию дистиллированной воды, при этом формируют суспензию твердых частиц ОГ, для чего их выпускают в названную порцию воды. Формирование суспензии начинают после удаления из выхлопной трубы посторонних частиц пыли и сажи, осевших туда за время простоя ДВС. В процессе отбора пробы суспензию перемешивают и стерильным шприцем отбирают объем жидкости около 40 мл, который исследуют на лазерном анализаторе частиц для определения распределения в нем частиц по размерам и по форме. Проводят также вещественный анализ взвесей на световом микроскопе и электронном микроскопе с энергодисперсионным спектрометром для определения вещественного состава твердых частиц и распределения этих частиц по размерам и по форме. Технический результат заключается в выявлении содержания нанодисперсных и микродисперсных твердых частиц в ОГ. 3 ил.

Изобретение относится к авиации, в частности к способу определения настроечного значения температуры газа для выключения охлаждения турбины при испытаниях и эксплуатации газотурбинного двигателя. При реализации заявленного способа испытаний газотурбинного двигателя повышается точность подсчета температуры газа выключения охлаждения турбины за счет учета поправки на угол установки направляющего аппарата компрессора высокого давления, что обеспечит синхронное выключение охлаждения.

Изобретение относится к энергомашиностроению и представляет собой способ диагностики флаттера лопаток рабочего колеса в составе осевой турбомашины на заданном рабочем режиме. Изобретение основано на том, что увеличение длины лопатки при флаттере вследствие высоких амплитуд колебаний приводит не только к уменьшению радиального зазора, но и к касанию лопаток о внутреннюю поверхность корпуса турбомашины. Нанесение истираемого покрытия на внутренний корпус турбомашины и контроль характерных особенностей его износа позволит диагностировать наличие или отсутствие флаттера лопаток на данном режиме, а также определить диаметральную форму колебаний, по которой реализовался флаттер. Технический результат заключается в повышении надежности и снижении трудоемкости процесса диагностики флаттера рабочих лопаток турбомашин.1з.п.ф-лы, 2ил.

Изобретение относится к области транспорта и может быть использовано для оценки массы Ма свежего воздуха, поступающего внутрь камеры сгорания цилиндра двигателя. Технический результат - повышение точности оценки массы свежего воздуха, поступающего внутрь камеры сгорания цилиндра двигателя. Согласно изобретению в процессе цикла двигателя оценку (128) общей массы Mtot газа, содержащегося в камере сгорания, осуществляют в конце впуска свежего воздуха, оценку (120, 124) массы выхлопных газов, содержащихся в камере сгорания, - в конце выпуска выхлопных газов и оценку (128) массы Ма свежего воздуха осуществляют исходя из разности между оцененными общей массой Mtot и массой Mb выхлопных газов. 5 н. и 8 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для определения общего технического состояния их смазочной системы. Перед определением общего технического состояния смазочной системы двигателя внутреннего сгорания, очищают масляный фильтр. Двигатель прогревают, устанавливают номинальную частоту вращения. Фиксируют значение давления масла перед фильтром и по истечении времени межконтрольной наработки вновь фиксируют значение давления масла перед фильтром. По полученным данным находят скорость повышения давления, сравнивают вычисленное значение с допускаемой скоростью повышения давления. По результатам сравнения определяют общее техническое состояние смазочной системы двигателя. Технический результат заключается в уменьшении затрат времени на техническое обслуживание двигателя. 2 ил.

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний. Устройство содержит подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой. Кроме того, ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях. При этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания. Технический результат заключается в повышении точности измерения и эффективности испытаний сопла, а также снижении трудоемкости изготовления и эксплуатации устройства. 4 ил.

Изобретение относится к ракетной технике и может быть использовано при создании деталей из углерод-углеродного композиционного материала (УУКМ), работающих в условиях воздействия высокотемпературной окислительной среды на поверхности деталей ракетной техники. Установка для определения окислительной стойкости углерод-углеродного композиционного материала, в том числе с защитным покрытием, включающая камеру из огнеупорного материала для размещения образца испытуемого материала и сопло для подачи газового потока в камеру, выполненное в передней стенке установки, снабжена набором съемных передних стенок различной толщины, в которых сопло расположено под разными углами к продольной оси камеры установки, при этом камера установки размещена в металлическом корпусе с теплозащитным кожухом, причем, теплозащитный кожух и камера выполнены разъемными. Изобретение обеспечивает имитацию воздействия высокотемпературного газового потока на детали ракетной техники в условиях, приближенных к реальным, и определение окислительной стойкости УУКМ при воздействии высокотемпературного газового потока под разными углами и на различном расстоянии. 6 ил.

Устройство для диагностики технического состояния механизмов относится к измерительной технике и может быть использовано для диагностики технического состояния возвратно-поступательных механизмов и других механизмов циклического действия по их вибрационным характеристикам как в автомобильном, железнодорожном, авиационном, морском, речном и других видах транспорта, так и в различной механической технике. Достигаемый технический результат - повышение точности измерений и уменьшение времени, затрачиваемого на процесс диагностики технического состояния механизмов. Устройство содержит вибропреобразователь (1), фильтр (2), дискретизатор (3), трехвходовые умножители (4), анализатор (5) спектра, преобразователь (6) перемещений диагностируемого механизма, синхронизатор (7), 2n-канальный генератор (8) функций Уолша (где 2n - число функций Уолша, формируемых одновременно на его выходах), 2n-1-разрядный циклический регистр (9) сдвига, первый управляемый инвертор (10), второй управляемый инвертор (11), двухвходовый коммутатор (12) и элемент (13) односторонней проводимости. 1 табл., 8 ил.

Способ может применяться при эксплуатации ДВС с устройствами для записи индикаторных диаграмм. Для диагностирования поршневого уплотнения записывают индикаторную диаграмму в цилиндре на назначенном режиме работы двигателя. Запись выполняют при отключенной подаче топлива в диагностируемый цилиндр. На диаграмме измеряют давление в заданной точке на линии расширения. Измеренное значение используют для диагностирования. Технический результат заключается в существенном повышении точности диагноза. Повышение достигается за счет оптимального выбора места расположения точки замера. Оптимальным является выбор точки на ограниченном участке линии расширения. Границы участка - от 5 до 15 градусов поворота коленчатого вала от верхней мертвой точки. На данном участке давление в цилиндре в наибольшей степени реагирует на изменение технического состояния поршневого уплотнения. Технический результат заключается в повышении точности диагностирования дефекта. 1 з.п. ф-лы, 1 табл., 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания заключается в измерении углового перемещения коленчатого вала двигателя от момента открытия впускного клапана первого опорного цилиндра до момента положения вала, соответствующего верхней мертвой точке поршня опорного цилиндра. Измерение углового перемещения коленчатого вала осуществляют на работающем двигателе через измерение угла перемещения распределительного вала, числовые значения которого определяют с помощью электрического устройства и установленных датчика верхней мертвой точки и датчика положения клапана. Полученное удвоенное числовое значение измеренного угла, соответствующее углу перемещения коленчатого вала, сравнивают с требованиями технической документации и судят о состоянии газораспределительного механизма. Раскрыто устройство измерения углового перемещения распределительного вала. Технический результат заключается в повышении достоверности измерения угла фаз газораспределения. 2 н. и 1 з.п. ф-лы, 3 ил.

Наверх