Стенд для испытания сопла



Стенд для испытания сопла
Стенд для испытания сопла
Стенд для испытания сопла
Стенд для испытания сопла
Стенд для испытания сопла

 


Владельцы патента RU 2528467:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Дальневосточный федеральный университет" (ДВФУ) (RU)

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний. Устройство содержит подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой. Кроме того, ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях. При этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания. Технический результат заключается в повышении точности измерения и эффективности испытаний сопла, а также снижении трудоемкости изготовления и эксплуатации устройства. 4 ил.

 

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний для определения угла выхода потока и коэффициента скорости сопл, преимущественно плоских, которые широко применяют для двигателей в судостроении, авиации, космонавтике, в мобильных электростанциях и других областях техники.

Известна конструкция стенда для определения вектора тяги двигателя с кососрезанным соплом, содержащая держатель испытываемого двигателя в виде рамы-обоймы, которая выполнена с возможностью опирания на измерительные средства, определяющие параметры в двух направлениях, часть из которых располагается на основании с возможностью небольших перемещений в горизонтальной плоскости (см. патент РФ №2274764, МПК F02K 9/96, дата публикации 20.04.2006).

Недостатком конструкции этого стенда является ограниченная область применения, недостаточная эффективность измерений, которые проводят в двух направлениях, а также низкая точность из-за возможности наличия систематической погрешности в ходе испытаний.

Известна конструкция стенда для испытания прямоточных воздушно-реактивных двигателей, содержащая трубопровод, присоединенный к емкости для сборки рабочего тела, соединенной с испытываемым двигателем, который выполнен с возможностью опирания на силоизмерительные средства (см. патент РФ №2261425, МПК G01M 15/00, дата публикации 27.09.2005).

Недостатком конструкции этого стенда является ограниченная область применения, недостаточная эффективность измерений, которые проводят в одном направлении, а также низкая точность из-за возможности наличия систематической погрешности в ходе испытаний.

В качестве ближайшего аналога принята установка для исследования единичных малых сопел, содержащая трубопровод, присоединенный к емкости для сборки рабочего тела, которая выполнена с возможностью установки испытываемого сопла в двух плоскостях с помощью фланцевого соединения и возможностью опирания на силоизмерительные средства (см. Наталевич А.С., «Воздушные микротурбины», 2 изд., перераб. и доп. - М., Машиностроение, 1979, стр.92-93, 192 с., ил.).

Недостатком ближайшего аналога является недостаточная эффективность измерений, которые проводят в одном направлении, повышенная трудоемкость эксплуатации из-за необходимости использования весов и игольчатой подставки, а также низкая точность из-за отсутствия учета правильности (соосности) установки испытываемого сопла на емкости для сборки рабочего тела и возможности наличия систематической погрешности в ходе испытаний.

Задачей, на решение которой направлено предлагаемое техническое решение, является разработка конструкции стенда, позволяющего произвести необходимые измерения простым способом и с высокой точностью и эффективностью.

Технический результат, достигаемый при решении поставленной задачи, выражается в повышении точности измерения и эффективности испытаний сопла благодаря возможности измерения реактивной силы по трем взаимно перпендикулярным осям, расширение области применения за счет возможности установки сопла в восьми различных положениях в пространстве (четыре взаимно перпендикулярных в вертикальной плоскости и четыре - в горизонтальной), а также снижении трудоемкости изготовления и эксплуатации устройства.

Указанная задача решается тем, что в стенде для испытания сопла, содержащем подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, подводящий трубопровод снабжен упругой вставкой, кроме того ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях, при этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.

Признак «подводящий трубопровод снабжен упругой вставкой» позволяет обеспечить подвод рабочего тела к ресиверу и повысить эффективность измерений благодаря возможности передвижения ресивера по трем взаимно перпендикулярным направлениям.

Признак «ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях» позволяет повысить эффективность измерений и расширить область применения благодаря возможности установки испытываемого сопла в восьми различных положениях в пространстве (четыре взаимно перпендикулярных в вертикальной плоскости и четыре - в горизонтальной).

Признак «в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания» позволяет повысить эффективность измерений благодаря возможности измерения реактивной силы отдельно по трем взаимно перпендикулярным направлениям при ресивере, удерживаемом с помощью измерительных штанг датчиков силы.

На фиг.1 изображен вид стенда сбоку с установленным испытываемым соплом.

На фиг.2 изображен вид стенда справа с установленным испытываемым соплом.

На фиг.3 изображен продольный разрез испытываемого сопла.

На фиг.4 изображена схема разложения реактивной силы.

На чертежах показаны подводящий трубопровод 1 с упругой вставкой 2 в виде сильфона, закрепленный в пространстве с помощью опоры 3, ресивер 4, испытываемое сопло 5, съемные фланцевые накладки 6, измерительные средства 7 в виде однокомпонентных датчиков силы с измерительными штангами 8, заглушка 9.

Упругая вставка 2 трубопровода 1 обеспечивает подвод рабочего тела и подвижность ресивера 4 в трех взаимно перпендикулярных направлениях.

Ресивер 4 выполнен цилиндрической формы для снижения трудоемкости изготовления, снижения материалоемкости и более равномерного распределения сжатого воздуха при испытаниях.

Испытываемое сопло 5 выполнено преимущественно плоским.

Съемные фланцевые накладки 6 выполнены симметричными, причем внутренний край каждой из съемных фланцевых накладок 6 отогнут под прямым углом для обеспечения возможности крепления между ними испытываемого сопла 5. Расстояние между параллельными внутренними краями закрепленных съемных фланцевых накладок 6 соответствует размеру испытываемого сопла 5.

Один конец каждой из измерительных штанг 8 фиксируется на ресивере 4, а другой конец снабжен завальцованым шариком, обеспечивающим возможность передвижения по измерительным средствам 7, и как следствие, возможность передвижения ресивера 4 по трем взаимно перпендикулярным направлениям. Перемещения измерительных штанг 8 по измерительным средствам 7 незначительны и не оказывают существенное влияние при измерении реактивной силы.

Способ осуществляют следующим образом.

Предварительно устанавливают в пространстве подводящий трубопровод 1 с помощью опоры 3, который затем соединяют с ресивером 4, установленным с возможностью его удержания с помощью измерительных штанг 8, которые также обеспечивают возможность передвижения ресивера 4 по измерительным средствам 7. Испытываемое сопло 5 присоединяют к торцу ресивера 4 с помощью съемных фланцевых накладок 6 в начальном положении, показанном на фиг.1. Горловину отверстия, расположенного на боковой поверхности ресивера 4, закрывают с помощью заглушки 9.

К стенду от компрессорной установки (на чертежах не показана) подводят сжатый воздух, который проходит через трубопровод 1 с упругой вставкой 2 и корпус ресивера 4. В испытываемом сопле 5 сжатый воздух расширяется до атмосферного давления. Реактивная сила, возникающая при истечении воздуха через испытываемое сопло 5, через измерительные штанги 8 передается на измерительные средства 7, при этом ресивер 4 совершает микроперемещения, необходимые для работы измерительных средств 7. После проведения необходимых измерений подвод сжатого воздуха прекращают.

Далее меняют положение испытываемого сопла 5 путем поворота на 90 градусов относительно начального положения и заново закрепляют с помощью съемных фланцевых накладок 6 на торце ресивера 4. Затем возобновляют подачу сжатого воздуха и снимают показания измерительных средств 7 при новом положении испытываемого сопла 5. Аналогично проводят необходимые измерения при положениях испытываемого сопла 5, полученных путем поворота относительно начального положения на 180 и 270 градусов.

На втором этапе испытаний испытываемое сопло 5 вертикально закрепляют на боковой поверхности ресивера 4 с помощью съемных фланцевых накладок 6. При этом горловину отверстия, расположенного с торца ресивера 4, закрывают с помощью заглушки 9.

Начальное положение испытываемого сопла 5 в горизонтальной плоскости аналогично положению испытываемого сопла 5 в вертикальной плоскости, изображенному на фиг.1. Затем подают сжатый воздух и снимают показания измерительных средств 7. Аналогично проводят необходимые измерения при положениях испытываемого сопла 5, полученных путем поворота относительно начального положения на 90, 180 и 270 градусов соответственно.

На заключительном этапе проводят анализ полученных данных и определение расчетных характеристик.

Реактивную силу определяют по формуле:

, где

F - реактивная сила, Н;

- проекции реактивной силы, Н, соответственно на оси X, Y, Z.

Угол выхода потока определяют по формуле:

α = 90 arccos ( F F y | F | | F y | ) , где

α - угол выхода потока, град.

Коэффициент скорости сопла определяют по формуле:

ϕ = C 1 C 1 т е о р , где

С1 - выходная скорость потока, м/с, определяемая по формуле:

С 1 = | F | G , где

G - расход потока, кг/с;

С1 теор - теоретическая выходная скорость, определяемая по формуле:

C 1 т е о р = 2 k k 1 R T [ 1 ( P 2 P 1 ) k 1 k ] , где

k - адиабатный коэффициент воздуха;

R - газовая постоянная для воздуха, Дж/(кг·К);

Т - температура перед соплом, К;

P1 - давление перед соплом, Па;

P2 - давление за соплом, Па.

Таким образом, конструкция заявляемого стенда повышает точность и эффективность измерений благодаря возможности закрепления сопла в восьми различных положениях, при которых проводятся испытания, а также исключению систематической погрешности и вследствие этого учета неправильности закрепления сопла.

Стенд для испытания сопла, содержащий подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, отличающийся тем, что подводящий трубопровод снабжен упругой вставкой, кроме того ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях, при этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания.



 

Похожие патенты:

Изобретение может быть использовано для определения общего технического состояния их смазочной системы. Перед определением общего технического состояния смазочной системы двигателя внутреннего сгорания, очищают масляный фильтр.

Изобретение относится к области транспорта и может быть использовано для оценки массы Ма свежего воздуха, поступающего внутрь камеры сгорания цилиндра двигателя.

Изобретение относится к энергомашиностроению и представляет собой способ диагностики флаттера лопаток рабочего колеса в составе осевой турбомашины на заданном рабочем режиме.

Изобретение относится к авиации, в частности к способу определения настроечного значения температуры газа для выключения охлаждения турбины при испытаниях и эксплуатации газотурбинного двигателя.

Изобретение может быть использовано для определения замеров параметров отработавших газов (ОГ) ДВС. Способ заключается в отборе газов в пробоотборник и последующем анализе материала пробы.

Изобретение относится к испытательной технике и, в частности, к испытаниям камер сгорания и газогенераторов жидкостных ракетных двигателей (ЖРД) с целью оценки высокочастотной устойчивости процесса горения.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания заключается в измерении углового перемещения коленчатого вала двигателя от момента открытия впускного клапана первого опорного цилиндра до момента положения вала, соответствующего верхней мертвой точке поршня опорного цилиндра.

Универсальная безмоторная установка может быть использована для определения параметров рабочего процесса ДВС и испытания кривошипно-шатунного механизма (КШМ), а также оценки механических потерь.

Изобретение относится к контролю технического состояния сложных энергетических объектов, например авиационных газотурбинных двигателей (ГТД), и может быть использовано для диагностики ГТД в процессе их эксплуатации в реальном времени, при техническом обслуживании и/или после ремонта.

Группа изобретений относится к компрессоростроению и установкам для испытаний компрессора, в частности, предназначена для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций, при использовании регулируемого привода двигателя.

Изобретение относится к испытательной технике и может применяться, в частности, для испытания и исследования зубчатых передач и редукторов при их изготовлении или в процессе эксплуатации.

Изобретение относится к турбомашиностроению, в частности к способам определения долговечности дисков турбомашин путем моделирования в процессе стендовых испытаний эксплуатационных условий нагружения и поврежденности в критических зонах дисков турбомашин.

Изобретение относится к области измерения параметров механических колебаний и может быть использовано для бесконтактного измерения и непрерывного контроля амплитуды и частоты колебаний турбинных и компрессорных лопаток в эксплуатационных условиях.

Изобретение относится к области машиностроения, в частности к лабораторно-иснытательной технике, а именно к установкам для исследования и доводки вращающихся элементов конструкции машин, преимущественно, газотурбинных двигателей.

Изобретение относится к области измерения механических колебаний по величине сигнала отражения и может быть использовано для бесконтактного измерения и непрерывного контроля параметров колебаний турбинных и компрессорных лопаток в эксплуатационных условиях.

Изобретение относится к измерительной технике и может быть использовано для определения моментов сопротивления в шарнирных устройствах механических систем космических аппаратов при экстремальных температурах.

Изобретение относится к измерительной технике и может быть использовано для контроля шпиндельных узлов металлорежущих станков. .

Изобретение относится к области испытательной техники, в частности к пробежным машинам для испытания канатов на выносливость. .

Изобретение относится к испытательной технике, в частности к оборудованию для испытания рабочих органов землеройных машин. .

Изобретение относится к области испытаний технических систем и предназначено для диагностирования и прогнозирования технического состояния твердотельных конструкций технических систем (1).

Изобретение относится к ракетно-космической технике и может быть использовано в газогидравлических магистралях жидкостных ракетных двигателей. В способе установки геометрической оси камер жидкостного ракетного двигателя в номинальном положении, основанном на исключении влияния технологических отклонений при изготовлении агрегатов, деталей и сборочных единиц, а также усадки материала в сварных швах стыков газовых магистралей между турбонасосным агрегатом и головками камер на угловое отклонение геометрических осей камер от номинального положения, согласно изобретению измерение фактических параметров замыкающего компенсирующего устройства, его изготовление, подгонка и сварка выполняются на заключительной стадии сборки магистралей после выполнения всех сварных швов стыкуемых агрегатов деталей и сборочных единиц.
Наверх