Электрохимический водяной насос

Изобретение относится к насосной технике и может применяться при создании систем водоснабжения и силовых гидравлических установок, в том числе малогабаритных гидросистем высокого давления для космических аппаратов (КА). Электрохимический водяной насос включает твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды, газоотделитель водорода снабжен выходным штуцером для воды, а электролизные ячейки и топливные элементы соединены силовой электрической связью. Изобретение позволяет снизить МГХ ЭВН, уменьшить удельный расход энергии на перекачку воды, повысить производительность ЭВН. 1 ил.

 

Изобретение относится к насосной технике и может применяться при создании систем водоснабжения и силовых гидравлических установок, в том числе малогабаритных гидросистем высокого давления для космических аппаратов (КА).

В качестве аналога предлагаемого технического решения в принципе можно рассматривать любой из существующих типов водяных насосов (в частности вибрационный насос), недостатком которых является наличие в них подвижных элементов, снижающих их ресурс (в вибрационных насосах это мембрана). По принципу действия, однако, для аналога больше подходит электрохимический водородный компрессор (ЭВК), не имеющий подвижных деталей (US 6068673, 30.05.2000, МГЖ: B01J 7/00 (2006.01); C01B 3/38 (2006.01); C01B 3/50 (2006.01); Н01М8/06 (2006.01)). Он представляет собой обращенный топливный элемент (ТЭ), в котором под действием электрического напряжения идет перенос водорода через твердополимерную (ТП) мембрану из анодной полости в катодную, где создается повышенное давление водорода.

Недостатком ЭВК является его неспособность перекачивать воду, хотя ТП мембрана вместе с водородом способна пропускать также и воду, как это происходит в ТП электролизных ячейках (ЭЯ).

Более близким (как по принципу действия, так и по составу) к предлагаемому решению, является аккумулятор энергии с водяным (водородным) циклом (АЭВЦ), который представляет собой регенеративную электрохимическую систему для накопления и хранения электроэнергии на основе ТП ЭЯ и ТЭ (US20100055512A1, 2010-03-04, МПК: B64C 3/14 (2006.01), B64D 27/02 (2006.01), C25B 1/00 (2006.01)). Регенеративная электрохимическая система типа АЭВЦ (электрохимический водяной насос) содержит твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды.

Электроэнергия, поступающая в АЭВЦ, используется в ЭЯ для разложения воды током на водород и кислород, которые накапливаются в соответствующих блоках хранения (например, баллонах) и в нужный момент используются в качестве рабочих газов для ТЭ.

Недостатком прототипа является то, что он как водяной насос имеет крайне высокий удельный расход энергии на перекачку воды, поскольку одновременно идет разложение воды на электролизные газы. Энергия, затрачиваемая на перекачку воды через мембрану ЭЯ, примерно на два порядка больше величины, характерной для обычных насосов высокого давления. По этой причине ни высокое рабочее давление, ни отсутствие подвижных частей не могут служить аргументом для практического использования ТП ЭЯ в качестве электрохимического водяного насоса (ЭВН), по аналогии с ЭВК.

Кроме того, в АЭВЦ используются блоки для хранения электролизных газов (водорода и кислорода), которые при любом способе хранения (баллоны, интерметаллиды и пр.) имеют большие массо-габаритные характеристики (МГХ).

Задача данного технического решения - разработать принципиальную схему ЭВН высокого давления, не имеющего подвижных деталей, с минимальными МГХ и минимальным удельным расходом энергии на перекачку воды.

Техническим результатом предложения является:

- снижение МГХ ЭВН;

- уменьшение удельного расхода энергии на перекачку воды;

- повышение производительности ЭВН.

Технический результат достигается тем, что электрохимический водяной насос содержит твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды, газоотделитель водорода снабжен выходным штуцером для воды, а электролизные ячейки и топливные элементы соединены силовой электрической связью.

Схема предлагаемого ЭВН представлена на фиг.1. Здесь основной агрегат устройства - батарея твердополимерных ЭЯ (1) своими выходными магистралями по водороду (2) и по кислороду (3) соединены с соответствующими газоотделителями (4) и (5). Кислородный газоотделитель (5) своей выходной пневмомагистралью (11) подключен к соответствующей полости батареи ТЭ (13), а выходной гидромагистралью (7) - к резервуару сбора воды (РСВ) (8), который снабжен входным штуцером для воды (10), а выходной гидромагистралью (9) подсоединен к кислородной полости батареи ЭЯ (1). Водородный газоотделитель (4) снабжен выходным штуцером для воды (6), а выходной пневмомагистралью (12) подключен к соответствующей полости батареи ТЭ (13). Выходная гидромагистраль последней (14) соединена с РСВ (8).

Батареи ТЭ (13) и ЭЯ (1) связаны друг с другом силовой электролинией (15), возвращающей в ЭЯ (1) электроэнергию, затраченную там, на разложение воды.

Работает ЭВН следующим образом. Порция воды, предназначенная для перекачки через штуцер (10), заливается в РСВ (8), откуда поступает по магистрали (9) в кислородную полость батареи ЭЯ (1). Подача воды из РСВ (8) в ЭЯ (1) может осуществляться либо дополнительным насосом (на фиг.1 не показан), либо в ходе циркуляции воды в режиме «газ-лифт» по замкнутому контуру [ЭЯ (1) - магистраль (3) - газоотделитель кислорода (5) - магистраль (7) - РСВ (8) - магистраль (9) - ЭЯ (1)]. В обоих случаях реализуется анодная система водоснабжения ЭЯ. В процессе электролиза в ЭЯ (1) происходит частичное разложение воды на газы, а часть воды вместе с ионами водорода переходит из анодной (кислородной) полости ЭЯ в их катодную (водородную) полость, где образуется молекулярный водород. Водородо-водная смесь из катодной полости ЭЯ (1) по магистрали (2) поступает в газоотделитель водорода (4), где вода, перекачанная через мембрану ЭЯ (1), накапливается, а водород по пневмомагистрали (12) подается в ТЭ (13), где реагирует с кислородом, поступившим из газоотделителя кислорода (5) по пневмомагистрали (11). В результате электрохимической реакции в ТЭ (13) образуется вода, которая по гидромагистрали (14) перетекает в РСВ (8) и электроэнергия, которая по электролинии (15) передается в ЭЯ (1). Выдача воды происходит через штуцер (6).

Тем самым компенсируются основные энергозатраты на электролиз воды в ЭЯ (1).

Компенсация энергозатрат, однако, не является полной, поскольку существуют потери энергии на всех стадиях процесса (главным образом, это тепловые потери). Кроме того, величина «недокомпенсированной» энергии в первом приближении определяется разностью КПД ЭЯ (70÷85%) и ТЭ (50÷65%), то есть существенно зависит от эффективности каждого из этих агрегатов, и именно эта величина определяет удельные энергозатраты ЭВН на перекачку воды.

Суть данного предложения - использовать протонопроводящую мембрану не для переноса водорода (как в ЭВК), а для переноса воды. В ТП ЭЯ это происходит вместе с переносом через мембрану протонов Н*. В отличие от прототипа (ЭВК), где водород извлекается из газовой смеси, в ЭВН водород извлекается из воды после ее частичного разложения током. Протоны же, диффундируя через мембрану, «тащат» за собой по нескольку молекул воды, то есть в принципе такая мембрана больше проводит воды, чем водорода. Это, в частности, подтвердилось при испытаниях ТП электролизера в РКК «Энергия». Оказалось, что перенос воды через мембрану по расходу примерно в три раза больше, чем переработка воды в газы. При этом, как и в ЭВК, перенос может происходить с повышением давления до значительного уровня.

Высокие энергозатраты на транспортировку воды через мембрану ЭЯ почти полностью компенсируются возвратом в систему (в виде электричества) химической энергии, выделяющейся при обратной реакции синтеза воды (H2+O2→H2O). Для этого, как и в АЭВЦ, используются ТЭ, которые генерируют электроэнергию и воду для работы ЭЯ. Таким образом, ЭВН - это по сути АЭВЦ без блоков хранения водорода и кислорода, с разомкнутым циклом по воде, но с прямой электрической (силовой) связью между ЭЯ и ТЭ.

Отсутствие баллонов в составе ЭВН позволяет кардинально снизить его МГХ, например, выполнять его в виде плоской конструкции с большой площадью мембраны и соответственно большой производительностью либо в виде компактного моноблока с высоким рабочим давлением.

Кроме того, в качестве ЭВН можно использовать стандартный АЭВЦ, если не задействовать его блоки хранения газов, а выходное напряжение ЭХГ использовать для питания электролизера. Таким образом, после небольшой доработки схемы АЭВЦ при необходимости сможет выполнять роль насоса воды высокого давления.

Компенсация же основных энергозатрат ЭЯ за счет работы ТЭ позволяет на порядок снизить удельные энергозатраты на перекачку воды через мембрану ЭЯ и приблизить эту характеристику ЭВН к аналогичному показателю, характерному для обычных механических насосов высокого давления (~102÷103 Вт·ч/л воды). При этом давление воды на выходе ЭВН (так же, как и в ЭВК) может достигать сотен атмосфер.

Перечисленные обстоятельства придают целесообразность практической разработке ЭВН особенно в перспективных космических системах.

Электрохимический водяной насос, включающий твердополимерные электролизные ячейки и топливные элементы, гидравлически связанные друг с другом через резервуар сбора воды, который имеет входной штуцер для воды, газоотделители водорода и кислорода, гидравлически связанные с соответствующими полостями электролизных ячеек, а пневматически - с соответствующими полостями топливных элементов, при этом газоотделитель кислорода гидравлически сообщается с резервуаром сбора воды, отличающийся тем, что газоотделитель водорода снабжен выходным штуцером для воды, а электролизные ячейки и топливные элементы соединены силовой электрической связью.



 

Похожие патенты:

Изобретение относится к прикладной химии, а именно к способу изготовления газогенерирующего элемента для низкотемпературного твердотопливного газогенератора. Способ включает приготовление раствора связующего в промежуточном растворителе, подготовку компонентов, смешение массы, приготовление из массы гранул размером 1-1,6 мм, формование с виброуплотнением навески приготовленных гранул в технологической оснастке или корпусе газогенератора, отверждение элемента в две стадии с вакуумированием на второй стадии и выпрессовку элемента.

Изобретение относится к области термохимической переработки влажных органических субстратов и к области получения газообразного топлива. Установка для переработки влажных органических субстратов в газообразные энергоносители состоит из последовательно расположенных механического обезвоживающего устройства (7), газогенератора (1), мокрого скруббера (10) и энергогенерирующей установки (13).

Изобретение относится к области химического машиностроения и может быть использовано в химической, нефтехимической и энергетической промышленностях. Конвертор включает реактор, форсуночную головку для ввода дизельного топлива и кислорода с системой поджига, установленные в верхней части корпуса реактора, систему водяного охлаждения.

Изобретение может быть использовано для систем подъема затонувших объектов, в средствах дистанционного экстренного перекрытия нефте- и газопроводов, в средствах выброса и распыления специальных жидкостей при нейтрализации аварийных выделений газов и веществ на производствах, приведения в действие различных пневматических устройств, для средств пожаротушения.

Изобретение относится к устройствам, в которых происходит сгорание твердого топлива для получения чистого энергетического газа. Газогенератор содержит полый корпус, внутри которого размещены твердотопливный заряд, воспламенитель и фильтр-охладитель, выполненный из газопроницаемого крупнозернистого дисперсного порошка с размером частиц от 0,13 до 0,5 мм.

Изобретение относится к области теплотехники, в частности газогенераторным установкам сухой перегонки органики. Газогенераторная установка содержит систему подачи твердого топлива и систему отвода золы, камеру газификации, колосниковую решетку, фурму с воздуховодом, газоотводный патрубок с газоотводящей системой, систему автоматической подачи твердого органического топлива.

Изобретение относится к аварийным надувным средствам спасения пилота и пассажира при посадке летательного аппарата. .

Изобретение относится к энергетике и может быть использовано в установках для получения газа из твердого топлива с последующим сжиганием в топках энергетических установок.

Изобретение относится к средствам генерации газа для создания рабочего давления, например, для наддува средств спасания, используемых в системах вытеснения, перемещения, отделения, разделения и т.д.

Изобретение относится к области пиротехники и предназначено для функционирования в качестве источника генерируемого при горении пиротехнического заряда газа, который используется для приведения в действие через заданные промежутки времени двух и более исполнительных механизмов.

Изобретение относится к устройству переработки газового углеводородного сырья для получения синтез-газа. Устройство содержит узел подвода исходных компонентов - окислителя и углеводородного газа, узел охладителя, смеситель образования реакционной смеси, камеру горения в виде цилиндрического канала, корпус которой имеет охлаждающий тракт, дополнительные стенки-перегородки с охлаждающим внутренним проходным трактом, связанным с охлаждающим трактом корпуса камеры. Узел подвода исходных компонентов имеет емкость для смешения воздуха с кислородом и водяным паром, смеситель образования реакционной смеси размещен в узле подвода исходных компонентов и соединен с камерой горения через теплообменник, связанный с узлом вывода целевого продукта, а узел охлаждения состоит из компрессора и линии подвода исходного углеводородного газа к охлаждающему тракту. Обеспечивается повышение качества целевого продукта при одновременном снижении физических параметров генератора. 2 ил.

Изобретение относится к области газохимии, а именно к установке для получения синтез-газа для производства углеводородов. Установка включает магистраль подачи углеводородного сырья, магистраль подачи остаточного газа с установки синтеза углеводородов из синтез-газа, соединенные с блоком адиабатического предриформинга, трубопровод для подачи кислородосодержащего газа, соединенный с блоком автотермического риформинга, связанного с блоком адиабатического предриформинга, и трубопровод для выхода полученной парогазовой смеси, соединенный с выходом блока автотермического риформинга. Установка также включает первый контур стабилизации состава углеводородного сырья, соединенный с магистралью подачи углеводородного сырья и содержащий емкость для хранения жидких углеводородов, и второй контур стабилизации состава газа, связанный с блоком адиабатического предриформинга. Результатом является обеспечение возможности получения синтез-газа с требуемым стехиометрическим соотношением СО/Н2 из природного газа при нестабильном составе подающейся на вход установки смеси углеводородов. 7 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области энергетики и предназначено для производства водорода и кислорода из водяного пара методом термической диссоциации и может быть использовано в сельском хозяйстве, коммунально-бытовой отрасли для работы двигателей внутреннего сгорания и газотурбинных установок. Термодиссоционный генератор водорода и кислорода содержит парогенератор, вращающийся коллектор пара с отверстиями для выпуска пара, плазмохимические реакторы для термической диссоциации водяного пара и получения водорода и кислорода, подключенные к источнику питания и сообщающиеся с одной стороны с отверстиями в коллекторе пара и с другой стороны с расширяющимися соплами и цилиндрами волновых компрессоров. При этом плазмохимические реакторы либо состоят из корпуса, в котором установлен электрод-катод и который имеет рубашку, сообщающуюся с охлаждаемым соплом-анодом, при этом передняя поверхность корпуса выполнена в виде диска с отверстиями для впуска пара, либо плазмохимические реакторы выполнены в виде блока корпусов реакторов, сообщающихся с блоком охлаждаемых сопел-анодов, в корпусах расположены электроды-катоды, при этом на блоке плазмохимических реакторов расположен клапанный механизм для впуска пара. Плазмохимические реакторы, расширяющиеся сопла и цилиндры волновых компрессоров имеют рубашки для циркуляции охлаждающей жидкости. Изобретение обеспечивает снижение стоимости готовой продукции. 6 ил.

Изобретение относится к подаче тепловой энергии и может быть использовано в химической промышленности и газификации. Способ подачи тепловой энергии в систему термообработки (104) сырья включает: газификацию сухого сырья в первом реакторе (106) потоком газифицирующего газа (FGG) с получением первого газового потока (PFG); окисление во втором реакторе (108) с получением второго газового потока (DFG); активацию в третьем реакторе носителей кислорода с получением избытка тепловой энергии; подачу части тепловой энергии указанного второго газового потока (DFG) и/или избыточного тепла с активации носителей кислорода в систему (104) термообработки сырья; и повышение температуры потока газифицирующего газа (FGG) по меньшей мере одной частью избыточного тепла с активации носителей кислорода для повышения температуры указанного потока газифицирующего газа (FGG) до температуры газификации. Изобретение позволяет снизить энергопотребление, негативное влияние на окружающую среду, а также исключить непрерывное внешнее снабжение. 4 н. и 14 з.п. ф-лы, 2 ил.

Изобретение относится к системе выработки водорода и способу управляемой выработки водорода. Способ заключается в реакции металлического реактива, отобранного среди щелочных металлов, щелочноземельных металлов, сплавов и смесей, состоящих из щелочных металлов, щелочноземельных металлов, сплавов, состоящих, как минимум, из одного щелочного металла, и как минимум, одного щелочноземельного металла, с водой для получения водорода и остаточного продукта реакции в виде гидроксида металла, отобранного среди щелочных гидроксидов и щелочноземельных гидроксидов, при этом осуществляют сжижение металлического реактива путем нагревания в вакууме, подачу жидкого металлического реактива в гомогенный реактор выдавливанием при помощи средств подачи и одновременную подачу воды для поддержания стехиометрического соотношения воды в соответствии с количеством жидкого металлического реактива, транспортировку водорода и остаточного продукта из реактора в средства разделения, разделение водорода и остаточного продукта реакции, транспортировку отделенного водорода в приемник водорода, транспортировку остаточного продукта реакции в приемник гидроксида металла и предотвращение попадания кислорода в средства подачи металлического реактива, систему подачи воды, реактор, разделители и приемник водорода путем выборочного применения вакуума. 2 н. и 20 з.п. ф-лы, 5 ил., 4 табл.

Изобретение относится к области получения водорода или синтез-газа при переработке различных водородсодержащих топлив посредством парциального окисления и может быть использовано для переработки различных углеводородных топлив и сероводорода. Способ получения синтез-газа и/или водорода посредством неполного окисления горючего, в том числе: метана, пропана, бутана, жидких углеводородов, сероводорода, твердых топлив, в том числе биомассы, твердых углеводородов, угля, а также смесей, содержащих вышеперечисленные компоненты, в трубчатом реакторе с обращаемым потоком, включает: разогрев до высокой температуры по крайней мере части камеры трубчатого реактора, заполненной твердым пористым материалом; подачу в трубчатый реактор двух реагентов - горючего и кислородсодержащего газа в недостаточном для полного окисления горючего количестве; проведение реакции горючего и кислородсодержащего газа в слое твердого пористого материала; установление в трубчатом реакторе газового потока от одного конца реактора до другого конца посредством подачи газообразного реагента с одного конца реактора и вывода газообразных продуктов реакции в виде синтез-газа с противоположного конца; измерение температуры в реакторе; периодическое изменение направления газового потока в реакторе; при этом реагенты подают в реактор раздельно: один из реагентов, газообразный реагент -А-, подают с одного конца реактора, а второй реагент -В- подают в среднюю часть реактора, и проводят в средней части реактора смешение реагента В с газообразным реагентом А, подогретым за счет теплообмена с твердым пористым материалом. Также предложен реактор, позволяющий реализовать процесс конверсии. Изобретение позволяет обеспечить высокую энергетическую эффективность конверсии водородсодержащего сырья в синтез-газ и/или водород. 2 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к области химического машиностроения, а именно, к установкам для получения водорода риформингом жидкого углеводородного сырья, может быть использовано в энергетической установке подводной лодки. Конвертор паровой конверсии CO с охлаждением включает корпус. Конвертор снабжен устройством для подачи парогазовой смеси, устройством вывода продуктов реакции, электронагревателем, теплоизоляцией и катализатором паровой конверсии CO. Теплоизоляция размещена поверх нагревателя. Катализатор паровой конверсии CO состоит из верхнего и нижнего слоя, которые разделены слоем инертной насадки, а также охлаждающим устройством. Охлаждающее устройство выполнено в виде внутреннего кольцевого трубчатого коллектора с отверстиями для выпуска воды и наружного коллектора. Достигается обеспечение непрерывности процесса получения водорода без использования дополнительных веществ на борту подводной лодки. 2 ил.

Изобретение относится к области ракетной техники, а более конкретно к области регулирования твердотопливных газогенерирующих систем для подводного применения. Твердотопливный газогенератор для подводного использования содержит установленную на опоре цилиндрическую шашку унитарного твердого топлива, на верхнем торце которой надет локализатор зоны горения в виде перевернутого термостойкого стакана с электрическим нагревателем, и средство управления. Локализатор зоны горения выполнен разъемным в виде шарнирной пары с горизонтальной шарнирной осью на боковой поверхности с возможностью пространственного поворота электронагревателя относительно термостойкого стакана, в котором предусмотрена перфорация днища. На противоположной стороне от оси шарнира к электронагревателю прикреплен кронштейн, на котором установлен исполнительный механизм средства управления, выполненный в виде электромотора с лопастным движителем. Изобретение позволяет регулировать темп газообразования, включая прерывание горения и повторное зажигание, без использования ограничивающей длину шашки арматуры. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области комплексной переработки твердого топлива на основе биоресурсов и может быть использовано при комплексной переработке пищевых продуктов. Предложена газогенераторная утилизационная установка, имеющая в своем составе газогенератор, работающая на топливных элементах из лузги подсолнечника, и топливные брикеты из лузги подсолнечника. Данное конструктивное решение направлено на повышение кпд энергетической установки. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области химии. Поглотитель водорода размещают в замкнутом объеме с очищаемой кислородсодержащей или кислородобедненной газовой средой. Обеспечивают окисление содержащегося в смеси водорода на палладиевом катализаторе 4. Образующиеся пары воды проникают через мембрану 5 в область размещения источника кислорода 6. В результате проводимой реакции гидролиза в области 6 получают кислород. Изобретение позволяет повысить эффективность извлечения водорода из газообразной смеси в замкнутых объемах за счет восполнения потерь кислорода, снизить влажность газовой среды за счет поглощения воды источником кислорода. 6 з.п. ф-лы, 2 ил., 1 пр.
Наверх