Способ получения гетероаннулярных 1,1'-бис-(диметилалкоксисилил)ферроценов

Изобретение относится к способам получения симметричных дизамещенных 1,1′-бис-(триорганосилил)ферроценов. Предложен способ получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)-ферроценов взаимодействием безводного хлористого железа и диметилалкоксисилилциклопентадиенов в среде органического растворителя, в котором депротонирующим агентом реакции конденсации хлористого железа с силилпроизводными циклопентадиена являются натрийпроизводные низших спиртов, такие как метилат, этилат или изопропилат натрия. Технический результат - предложенный способ экономичен и позволяет получать 1,1′-бис-(диметилалкоксисилил)-ферроцены с высоким выходом. 4 пр.

 

Предлагаемое изобретение относится к способам получения симметричных дизамещенных 1,1′-бис-(триорганосилил)ферроценов, в частности к способу получения гетероаннулярных бис-(диметилалкоксисилил)ферроценов, формулы

где R=углеводородный радикал типа CnH2n+1. Такие ферроцены находят свое применение в качестве добавок в различных композициях, ингибиторов термоокислительной полимерной деструкции, а также сырья в кремнийорганическом синтезе.

Известны два общих способа получения симметричных дизамещенных 1,1′-бис-(диметилалкоксисилил)ферроценов: диметаллированием незамещенного ферроцена с последующей обработкой металлопроизводного алкилалкоксигалогенсиланами либо монометаллированием соответствующих циклопентадиенилсиланов с последующим взаимодействием промежуточно образующихся кремнийсодержащих циклопентадиенидов металлов с безводным хлористым железом.

Первый из указанных методов трудно осуществим на практике вследствие необходимости диметаллирования ферроцена с применением супероснований и не может обеспечить высокие выходы целевых продуктов.

Известен способ получения симметричных 1,1′-бис-(диметилалкоксисилил)ферроценов металлированием силилциклопентадиенов бутиллитием с последующей обработкой промежуточных литийпроизводных силилциклопентадиена безводным хлористым железом (пат. США №3060215, МПK C07F 17/00, 1962 г.).

Недостатками данного способа являются использование чрезвычайно пожароопасного бутиллития, низкий выход целевого продукта из-за побочного десилилирования кремнезамещенного циклопентадиена.

Известен способ получения симметричных дизамещенных силилферроценов, содержащих алкокси- или ароксигруппу у атомов кремния, заключающийся в использовании циклопентадиенилсилильных производных, в котором металлирование соответствующего силилциклопентадиена осуществляют щелочным металлом в среде органического растворителя и обрабатывают металлопроизводным хлористым железом (Кабанов Б.К. и др. Синтез некоторых функциональных гетероаннулярных дизамещенных органосилилферроценов. Журнал Общей Химии. 1972, Т.42, Вып.8, С.1749-1752).

Недостатком известного способа является низкий выход целевых продуктов, например, применительно к 1,1′-бис-(октоксисилил)ферроцену не превышающий 16%.

Наиболее близким к предлагаемому способу и принятым нами в качестве прототипа является способ получения гетероаннулярных дизамещенных бис-(триорганосилил)-ферроценов, в их числе 1,1′-бис-(октоксисилил) ферроцена, взаимодействием органосилилциклопентадиенов с металлическим натрием с последующей обработкой полученного промежуточного металлоорганического соединения хлористым железом в среде органического растворителя и выделением целевого продукта, в котором с целью уменьшения образования побочных продуктов и увеличения чистоты целевого продукта процесс ведут в присутствии катализатора, в качестве которого применяют органический амин (А.с. СССР №280478, МПК CO7F 15/03, МПК CO7F 07/02, 1973 г.).

К существенным недостаткам известного способа можно отнести:

- низкий выход целевых 1,1′-бис-(диметилалкоксисилил)ферроценов;

- образование побочных продуктов, таких как моно- и трисилилзамещенные силилферроцены;

- большое количество трудно утилизируемых отходов;

- пожароопасность процесса;

- высокие энерго- и трудозатраты.

Задача предлагаемого изобретения - разработать способ получения 1,1′-бис-(диметилалкоксисилил)ферроценов с высоким выходом целевых продуктов и устранение отмеченных недостатков.

Поставленная задача решена тем, что разработан способ получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)ферроценов взаимодействием соответствующих диметилалкоксисилилциклопентадиенов с хлористым железом, в котором в качестве депротонирующего реагента в реакции конденсации используют натрийпроизводные низших спиртов, такие как метилат, этилат или изопропилат натрия.

Подробное описание способа получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)ферроценов проиллюстрировано следующими примерами.

Пример 1

К раствору 35,1 г (0,65 моль) метилата натрия в 90 мл метанола в интервале температур 20-35°C прикапывают раствор 99,45 г (0,65 моль) диметилметоксисилилциклопентадиена в 100 мл толуола, реакционную смесь перемешивают и охлаждают до 5-10°C. При этой температуре в реакционную массу вводят 41,27 г (0,323 моль) хлористого железа. После перемешивания в течение 6 час при 25-30°C смесь фильтруют от осадка и разгонкой фильтрата в вакууме получают 94,2 г целевого продукта - 1,1′-бис-(диметилметоксисилил)ферроцена, т. кип. 122-124°C/ 0,2 мм рт.ст., плотность при 20°C составляла 1,12 г/см3. Выход 80% от теоретического.

Найдено %: C 53,2; H 7,11. C16H26Fe1O2Si2.

Вычислено, %: C 53,38; H 7,18.

Пример 2

К суспензии 44,3 г (0,65 моль) порошкового этилата натрия в 150 мл толуола прикапывают раствор 150 г (0,65 моль) диметил(2-этилгекс-1-илокси)силилциклопентадиена в 150 мл толуола в интервале температур 20-35°C, перемешивают 0,5 час и охлаждают смесь до 5-10°C. При этой температуре в реакционную массу вводят 41,27 г (0,323 моль) хлористого железа. После перемешивания в течение 6 час при 25-30°C смесь фильтруют от осадка и разгонкой фильтрата в вакууме получают 140 г целевого продукта - 1,1′-бис-[диметил(2-этилгекс-1-илокси)силил]ферроцена.

Выход 77,4% от теоретического, т. кип.180-200°C/ 0,3-0,5 мм рт.ст., плотность при 20°C составляла 1,036 г/см3, показатель преломления n20D=1,4955.

Найдено %: C 64,58; H 9,6; Fe 9,93. C30H54Fe1O2Si2.

Вычислено, %: C 64,51; H 9,68; Fe 10,03.

Пример 3

К свежеприготовленному раствору 44,3 г (0,65 моль) этилата натрия в смеси 20 мл этанола и 150 мл толуола прикапывают раствор 108,55 г (0,65 моль) диметилэтоксисилилциклопентадиена в 100 мл толуола в интервале температур 20-35°C, перемешивают 0,5 час и охлаждают смесь до 5-10°C. При этой температуре в реакционную массу вводят 41,27 г (0,323 моль) хлористого железа. После перемешивания в течение 6 час при 25-30°C смесь фильтруют от осадка и разгонкой фильтрата в вакууме получают 166,8 г целевого продукта - 1,1′-бис-(диметилэтоксисилил)ферроцена.

Выход 86% от теоретического, т. кип.110-112°C/0,1 мм рт.ст., плотность при 20°C составляла 1,13 г/см3, показатель преломления n20D=1,5262.

Найдено, %: C 55,35; H 7,67. C18H30Fe1O2Si2.

Вычислено, %: C 55,38; H 7,69.

Пример 4

К раствору 53,3 г (0,65 моль) изопропилата натрия в 400 мл изопропанола в интервале температур 20-25°C прикапывают 150 г (0,65 моль) диметил(2-этилгекс-1-илокси)силилциклопентадиена, перемешивают 30 мин и охлаждают смесь до 5-10°C. При этой температуре в реакционную массу вводят 41,27 г (0,323 моль) хлористого железа. После перемешивания в течение 5 час при 40°C упаривают в вакууме 250 мл спирта, фильтруют смесь от осадка и разгонкой фильтрата в вакууме получают 154 г целевого продукта - 1,1′-бис-[диметил(2-этилгекс-1 -илокси)силил]ферроцена.

Выход 85% от теоретического. Масс-спектр (m/z): 558 (M+.). C30H54Fe1O2Si2. Вычислено: молекулярная масса 558,7596.

Способ получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)ферроценов взаимодействием безводного хлористого железа и диметилалкоксисилилциклопентадиенов в среде органического растворителя, отличающийся тем, что в качестве депротонирующего агента реакции конденсации хлористого железа с силилпроизводными циклопентадиена используют натрийпроизводные низших спиртов, такие как метилат, этилат или изопропилат натрия.



 

Похожие патенты:

Изобретение относится к способу получения новых соединений-диад (I) с двумя разными, не сопряженными друг с другом, хромофорными фрагментами, содержащими азогруппы и остатки ферроцена, и их использованию для тушения флуоресценции флуорофоров. где Fc - ферроценил; R1 - Н или Fc; R2 - H или орто- или пара-гидрокси-; R3 - орто- или мета-, или пара-нитро-, или орто- или мета-, или пара-нитрофенилазо-, или пара-N,N-диметиламино-, или пара-карбокси-; L - группа пара-карбамоилвинилиденацетофенона или пара-карбоксамидовинилиденацетофенона, или пара-N-(2-карбамоилэтил)-карбоксамидовинилиденацетофенона, или пара-(4-[метиламино]бутокси)-винилиденацетофенона, или N,N-ди[4{1-(пара-винилиденацетофениламино)-метил-1,2,3-триазолил}бутил]аминогруппа.

Изобретение относится к способам получения гетероаннулярных производных ферроцена. Предложен способ получения 1,1'-бис(диметилалкоксисилил)ферроценов взаимодействием гетероаннулярного 1,1'-дилитийферроцена с диметилалкоксихлорсиланами в среде инертных растворителей.

Изобретение относится к полимерам на основе поли(ферроценил)силана, использующимся в фотонных полупроводниковых матрицах. .

Изобретение относится к области синтеза солей платиновых металлов, в частности солей палладия, а именно пропионата палладия. .

Изобретение относится к соединениям формул I или I', , ,в которых радикалы R1 представляют собой атом водорода, a R'1 представляет собой С1-С4-алкил; X1 и Х2 каждый, независимо друг от друга, представляет собой втор-фосфиновую группу, где вторичные фосфиновые группы X1 и Х 2 содержат углеводородные радикалы, которые включают от 1 до 22 атомов углерода и могут быть незамещенными или замещенными, и/или содержать гетероатомы, выбранные из группы, включающей О, S и N(С1-С4-алкил); R2 представляет собой водород; Т представляет собой С-связанный С3 -С20-гетероарилен, в котором гетероарильные группы, из которых получают гетероарилен, это пиррол, N-метилпиррол, фуран, тиофен, индол, N-метилиндол, бензофуран, бензотиофен, пиридин, пиримидин и хинолин; v представляет собой 0; группа X1 в гетероцикле гетероарилена связана в орто-положение по отношению к связи Т-С*; * обозначает смесь рацемических или энантиомерно чистых диастереомеров или чистые рацемические или энантиомерно чистые диастереомеры.

Изобретение относится к активному по отношению к нейрорецепторам N-[(4-фенил-1-пиперазинил)алкил]-замещенному гетероаренкарбоксамиду общей формулы (I) и к структурно аналогичным 2-ферроцениловым соединениям общей формулы (II) в которых R - водород, С1-6 -алкил, галоген;R1, R 2 и R3 независимо выбраны из водорода, гидрокси, С1-6алкила, C 1-6алкилокси, галогена, трифторметила и циано;Х может представлять собой S, О, NH или Те.

Изобретение относится к новому производному ферроцена 1-(1,1,1,3,3,3-гексафтор-2-ферроценилпроп-2-ил)-имидазолу формулы , проявляющему противоопухолевую активность. Также предложен способ его получения (варианты). Изобретение позволяет получить новое производное ферроцена, которое может быть использовано в медицине для химиотерапии онкологических заболеваний. 3 н. и 1 з.п. ф-лы, 1 ил., 2 табл., 3 пр.

Изобретение относится к способу получения (S)-2-метокси-3-{4[2-(5-метил-2-фенилоксазол-4-ил)этокси]бензо[b]тиофен-7-ил}пропионовой кислоты формулы (I) или ее соли, в котором соединение формулы (II) или его соль гидрируют в присутствии катализатора, включающего иридий, в котором катализатор включает иридий и соединение формулы (III), в котором R1 обозначает водород, изопропил, фенил или бензил и в котором R2 обозначает фенил, 3,5-диметилфенил или 3,5-ди-трет-бутилфенил. Также изобретение относится к применению комплекса катализатора, содержащего иридий и соединение формулы (III)для получения соединения формулы (I). Технический результат - получение соединения формулы (I) с высокой степенью превращения и энантиомерной чистотой. 2 н. и 4 з.п. ф-лы, 4 табл., 21 пр.

Изобретение относится к созданию магнитных нанокомпозитов и может быть использовано в радиоэлектронике, фотонике и наномедицине. Магнитный нанокомпозит имеет структуру «ядро-оболочка-матрица», где ядром являются наночастицы железа с подавляющим преобладанием железа в нульвалентном состоянии Fe0 (74,5%), и его оксидов 25,5%, оболочкой, покрывающей наночастицы, является феррит, а матрицей - пироуглерод в состоянии в sp2-гибридизации. Общее содержание железа Fe0 в полученном магнитном нанокомпозите материале составляет 31,01-38,25%, намагниченность насыщения составляет 3-59 Гс·см3/г. Предложен также способ получения магнитного нанокомпозита. Технический результат - термическая устойчивость магнитного нанокомпозита - 1000°С в инертной атмосфере и 700°С на воздухе, он нерастворим в воде и органических растворителях, обеспечивает супермагнитные свойства, электропроводен. 2 н. п. ф-лы, 2 табл., 6 ил., 9 пр.

Изобретение относится к области биотехнологии, конкретно к комплексу гексамера конъюгата непептидильного полимера и инсулина с ионами трехвалентного кобальта, и может быть использовано в медицине. Изобретение позволяет получить стабильную гексамерную форму инсулина, связанного с непептидильным полимером, обладающую увеличенным временем жизни и сохраняющую функцию регулирования уровня глюкозы в крови. Полученный комплекс может быть использован в составе фармацевтической композиции при лечении диабета. 5 н. и 10 з.п. ф–лы, 4 ил., 2 табл., 7 пр.
Наверх