Способ стабилизации механических характеристик изделий из твердых сплавов

Изобретение относится к металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием. Твердосплавное изделие облучают быстрыми электронами при флюенсах, меньших 1·1012 эл/см2, и проводят стабилизирующий отжиг в интервале температур от 200 до 350 °С. Обеспечивается стабилизация механических характеристик. 5 ил.

 

Изобретение относится к области металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием.

Наиболее близким к заявляемому изобретению является способ стабилизации электрических характеристик полупроводниковых приборов после радиационной обработки посредством стабилизирующего отжига [1]. Сущность этого способа состоит в облучении полупроводниковых приборов большими дозами ионизирующего излучения с последующим отжигом радиационных дефектов таким образом, чтобы оставшаяся их часть обеспечивала придание приборам требуемых свойств. К недостаткам способа следует отнести большую длительность процесса облучения и необходимость использования относительно высоких температур отжига.

Предлагаемое изобретение направлено на упрощение способа и применение его к иному классу задач: стабилизации механических характеристик твердосплавных изделий, облученных сравнительно малыми дозами ионизирующей радиации.

Указанный результат достигается тем, что облучение твердосплавных изделий быстрыми электронами ведут флюенсами, меньшими 1012 эл./см2, а стабилизирующий отжиг проводят в интервале температур от 200 до 350 градусов Цельсия.

Отличительными признаками заявляемого изобретения являются:

- использование флюенсов быстрых электронов, меньших 1012 эл/см2,

- интервал температур стабилизирующего отжига от 200 до 350 градусов Цельсия.

Верхний предел флюенсов используемых в изобретении быстрых электронов определен нами экспериментально при исследовании дозовой зависимости микротвердости облученных образцов твердого сплава ВК8. Интервал температур стабилизирующего отжига определен нами экспериментально в процессе исследований изохронного и изотермического отжигов и последующего старения облученных образцов твердого сплава ВК6.

Сущность заявленного изобретения поясняется нижеследующим описанием.

В качестве метода исследования механических характеристик твердых сплавов использовали измерение микротвердости [2]. Микротвердость является интегральной характеристикой целого ряда механических свойств: предела упругости, модуля упругости, пластичности, прочности и др. [3]. Микротвердость по Виккерсу Hv определяется выражением

H v = 1854 P d 2 , ( 1 )

где P - нагрузка, d - диагональ отпечатка, оставляемого на поверхности исследуемого материала алмазной пирамидкой микротвердомера.

Если Р выражено в Г, a d - в микронах, то размерность Hv - кГ/мм2. В микротвердомере ПМТ-3, которым пользовались при измерениях, для получения значений d в микронах разность отсчетов по лимбу прибора Δ необходимо умножить на 0,3. Отсюда получаем удобную расчетную формулу

H v ( к Г / м м 2 ) = 206 Р ( Г ) Δ 2 , ( 2 )

которой пользовались при определении Hv.

Поскольку в формулах (1) и (2) в знаменателе стоит квадрат d или Δ, при вычислении Hv относительная погрешность удваивается по сравнению с относительной погрешностью определения d или Δ. Поэтому в дальнейшем на фиг.1-5 приведены значения deff=Δ.

В ходе исследования дозовой зависимости облученных быстрыми электронами образцов твердого сплава ВК8 обнаружено измерениями на микротвердомере ПМТ-3, что флюенс Ф=1·1011 эл/см2 обеспечивает максимальное увеличение микротвердости облученных образцов, тогда как при переходе к флюенсу Ф=1·1012 эл/см2 наблюдается резкое падение значений микротвердости (см. табл.1). Поэтому при исследовании стабилизирующего отжига выбрали единое значение флюенса быстрых электронов, равное 1·1011 эл/см2.

Результаты исследований старения образцов твердого сплава ВК6 после стабилизирующих отжигов представлены на фиг.1-5. На них зависимости d ¯ e f f как функции от времени старения изображены сплошными толстыми линиями темно-синего цвета. Тонкими линиями малинового цвета изображены значения d ¯ e f f + σ , где σ - среднее квадратическое отклонение, тонкими линиями красного цвета - значения d ¯ e f f σ . Штриховыми линиями темно-синего цвета, параллельными оси абсцисс, обозначены интервалы значений d ¯ e f f σ , d ¯ e f f + σ после облучения быстрыми электронами до отжигов.

На фиг.1 приведен график d ¯ e f f от tстар для образца №XII-6, подвергнутого термообработке при Tотж=200°C. Большинство экспериментальных точек d ¯ e f f лежит в пределах погрешности измерений d ¯ e f f после электронного облучения, отмеченных пунктирными линиями, параллельными оси абсцисс. Лишь некоторые точки d ¯ e f f (при tстар=50,65 и 140 дн.) лежат ниже полосы погрешностей, т.е. здесь микротвердость значимо выше, чем после облучения. Таким образом, можно сделать вывод, что изотермический отжиг при 200°C стабилизирует по крайней мере на полгода микротвердость на облученной электронами поверхности образца.

На фиг.2 приведен график d ¯ e f f от tстар для образца №XII-5, старение которого было исследовано после последней точки изохронного отжига, равной 280°C. Все экспериментальные точки (кроме одной d ¯ e f f = 27,0 ± 0,7 при tстар=67 дн.) лежат внутри полосы погрешностей d ¯ e f f о б л .

Итак, отжиги как при 200°С, так и при 280°С приводят к требуемым результатам: либо к сохранению значений микротвердости, созданных облучением, либо к увеличению этих значений.

На фиг.3 приведен график d ¯ e f f от tстар для образца №XII-9, старение которого исследовано после изотермического отжига в вакууме при температуре 350°C. Почти все экспериментальные точки лежат внутри полосы погрешностей d ¯ e f f о б л .

На фиг.4 приведен график d ¯ e f f от tстар для образца №XII-7, старение которого исследовано после изотермического отжига в вакууме при 400°C. На графике вначале наблюдается уменьшение d ¯ e f f (т.е. увеличение Hv), но начиная с tстар=39 дн. происходит существенное увеличение d ¯ e f f , причем оно выходит за пределы полосы погрешностей d ¯ e f f о б л .

На фиг.5 приведен график d ¯ e f f от tстар для образца №XII-8, старение которого исследовано после изотермического отжига в вакууме при 500°C. Ход d ¯ e f f (tстар) подобен ходу d ¯ e f f для Т=400°C, но, по-видимому, вследствие больших значений погрешностей, чем на фиг.4, на фиг.5 значения d ¯ e f f , как правило, лежат внутри полосы погрешностей d ¯ e f f о б л .

Итак, можно сделать вывод, что отжиг в интервале температур 200°C-350°C приводит к стабилизации значений микротвердости после электронного облучения, а следовательно, и механических характеристик твердых сплавов.

Источники информации

1. Радиационные методы в твердотельной электронике / Вавилов B.C., Горин В.М., Далинин М.С., Кив А.Е., Муров Ю.Л., Шаховцов В.И. // М.: Радио и связь, 1990. - 184 с.

2. Глазов В.М., Вигдорович В.Н. Микротвердость металлов. М.: Металлургия, 1969. - 248 с.

3. Современная кристаллография. М.: Наука, 1981. - Т.4. Физические свойства кристаллов. Гл.2. Урусовская А.А. Механические свойства кристаллов. - С.47-152.

Способ обработки твердосплавных изделий, включающий облучение твердосплавного изделия и стабилизирующий отжиг радиационных дефектов, отличающийся тем, что облучение осуществляют быстрыми электронами при флюенсах, меньших 1·1012 эл/см2, а стабилизирующий отжиг проводят в интервале температур от 200 до 350 °С.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к технологии обработки материалов, и может быть использовано в технологических процессах упрочняющей обработки аморфных металлических сплавов различного назначения.

Изобретение относится к области литейного производства. .
Изобретение относится к области получения нанокристаллических материалов, в частности к получению нанокристаллических поверхностных слоев на изделиях из металлических материалов, и может быть использовано для обработки лопаток газовых и паровых турбин.
Изобретение относится к металлургии и может быть использовано для обработки двухфазных сплавов на основе оксидов. .

Изобретение относится к области металлургии, преимущественно к способам радиационной модификации листового проката из алюминиевых сплавов, и предназначено для устранения нагартовки (наклепа), снятия внутренних напряжений и улучшения структуры в процессе его получения.
Изобретение относится к области литейного производства и может быть использовано при приготовлении лигатур алюминий - тугоплавкие металлы для выплавки литейных алюминиевых сплавов и получении из них точных отливок.

Изобретение относится к области металлургии, а именно к способам обработки поверхностей токопроводящих материалов. .

Изобретение относится к области металлургии, а именно к термоакустической обработке изделий или заготовок из двухфазных титановых сплавов. .

Изобретение относится к области металлургии, в частности к способам радиационной модификации изделий из карбидосталей. .

Изобретение относится к области металлургии и может быть использовано при приготовлении лигатур алюминий - тугоплавкие металлы для выплавки литейных алюминиевых сплавов и получения из них точных отливок.

Изобретение относится к обработке металлокерамических материалов резанием, в частности к формированию поверхностного слоя пористых металлокерамических спеченных материалов, которые могут быть использованы при производстве деталей из антифрикционных материалов, которые применяются в качестве самосмазывающихся подшипников скольжения для установки в спидометрах, распределителях зажигания, стартерах, стеклоочистителях, стеклоподъемниках автомобилей и тракторов, глубинных насосах, бытовой технике.

Изобретение относится к области машиностроения, в частности к обработке лазером при изготовлении и ремонте различных машин и механизмов. Для повышения физико-механических свойств инструментальных и конструкционных материалов осуществляют лазерную обработку изделий с использованием лазера импульсного действия при полезной энергии импульса 60-500 Дж, плотности мощности импульса 1,2·1010-4,3·1011 Вт/м2, длине волны 1,064·10-6 м, продолжительности импульса 0,8·10-3 с, диаметре луча 1,2·10-3-2,5·10-3 м и расстоянии от места облучения до упрочняемой поверхности 12-30 мм.
Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в газотурбинных двигателях (ГТД) для изготовления тяжелонагруженных деталей, работающих при повышенных температурах.

Изобретение относится к порошковой металлургии, в частности к получению износостойкого антифрикционного самосмазывающегося сплава с большим содержанием олова. Распыленные порошки состава Al-40Sn прессуют в брикет и спекают в инертной атмосфере при температуре 590-615°C в течение 90-30 минут.

Изобретение относится к порошковой металлургии, в частности к получению деталей из низколегированных порошковых материалов на основе железа с повышенными физико-механическими и эксплуатационными свойствами.

Изобретение относится к порошковой металлургии, в частности к получению изделий из жаропрочных никелевых сплавов. .
Изобретение относится к порошковой металлургии, в частности термической обработке спеченных изделий с открытой пористостью в электролите. .

Изобретение относится к области термической обработки режущего инструмента. .

Изобретение относится к области металлургии, в частности к изделиям из карбидсодержаших твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием. Способ получения режущего инструмента из карбидсодержащих сплавов вольфрамовой (ВК) и титано-вольфрамовой (ТК) групп включает спекание карбидсодержащих сплавов при температуре 1400-1650°C и охлаждение. После спекания производят вакуумный отжиг с нагревом до температуры 1050°C-1250°C и выдержкой 1 час, а последующее охлаждение осуществляют вместе с печью в течение 4 часов. Повышается стойкость карбидсодержащих сплавов. 8 ил., 5 табл.

Изобретение относится к металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием. Твердосплавное изделие облучают быстрыми электронами при флюенсах, меньших 1·1012 элсм2, и проводят стабилизирующий отжиг в интервале температур от 200 до 350 °С. Обеспечивается стабилизация механических характеристик. 5 ил.

Наверх