Способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность

Изобретение относится к газонефтедобывающей промышленности, в частности к исследованиям газонасыщенных пластов. Способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность включает спуск на колонне бурильных труб или НКТ в скважину компоновки испытательного оборудования в виде испытателя пластов с пакером и геофизическими датчиками в заданный интервал исследования газонасыщенного пласта. Изолируют пакером интервал исследований скважины выше газонасыщенного пласта. Создают последовательные режимы притока и восстановления давления и осуществляют последующую интерпретацию полученных данных. При этом в процессе спуска в колонну бурильных труб или НКТ испытательного оборудования дополнительно заливают расчетное количество как минимум двухкомпонентной вязкоупругой смеси с заданными параметрами вязкости и упругости, изготовленной без сшивателя на основе полиакриламида и цеолита или глинопорошка, образующее выше компоновки испытательного оборудования вязкоупругую пробку. Пробка обеспечивает создание депрессии величиной не более 10% - 20% от ожидаемого пластового давления. Далее гидродинамические исследования проводят согласно регламенту испытания пластов на трубах. Техническим результатом является повышение точности и эффективности исследований. 1 з.п. ф-лы.

 

Изобретение относится к газонефтедобывающей промышленности и может быть использовано при исследовании скважин с помощью испытательного оборудования на трубах, оснащенного пакером.

Из истории вопроса. Как известно, задача гидродинамических исследований скважин заключается в фиксировании параметров статического давления перед пуском скважины, вызове притока, отслеживании процесса стабилизации давления и дебита, а также параметров скважины после стабилизации давления, дебита и температуры и процесса восстановления после закрытия скважины.

На основании анализа и обработки информации по дебиту скважины и характера изменения давления и температуры в период восстановления давления, зарегистрированных соответствующими геофизическими датчиками, расчетным путем определяются фильтрационно-емкостные и динамические свойства коллектора, характеристики качества вскрытия пласта и состояния призабойной зоны скважины.

На достоверность результатов интерпретации кривой восстановления давления (далее КВД) помимо точности используемых измерительных приборов (манометров, термометров и т.п.), большое влияние оказывают условия нестационарного притока газа из пласта в ствол скважины через ее призабойную зону. Стандартная технология исследования пласта с помощью испытателя пластов на трубах подразумевает регистрацию КВД при закрытии скважины на забое при помощи глубинных клапанов. Это позволяет исключить влияние столба газожидкостной смеси в трубах на начальный участок КВД и повысить точность определения значения гидропроводности пласта.

Как правило, в качестве буферной жидкости над испытателем пластов на трубах применяется буровой раствор, на котором вскрывался продуктивный пласт. Буферная жидкость регулирует передаваемую депрессию на пласт, но без специальной обработки соответствующими химикатами она легко пропускает газ. Пропуск газа в процессе испытания приводит к снижению плотности буферной жидкости и вносит значительные погрешности при подсчете объема поступившей продукции, что, в свою очередь, влияет на интерпретацию и точность определения параметров пласта.

При этом химические составы для обработки буферной жидкости дорогостоящи и не безопасны в случае аварийных ситуаций на скважине с точки зрения пожаробезопасности и экологичности. Выпуск газа на дневную поверхность создает аварийную ситуацию на скважине и, как следствие, приводит к нарушению режима работ и к увеличению эксплуатационных затрат.

Авторам известны способы предупреждения миграции газа по заколонному пространству газонефтяных скважин или межколонных газопроявлений, согласно которым производят крепление обсадных колонн цементированием с подъемом цементного раствора выше кровли продуктивного пласта на заданную высоту и установку над ним состава с вязкоупругими свойствами (патент РА №2235858, Е21В 33/14, 2002 г.), а над составом с вязкоупругими свойствами дополнительно размещают тампонажный состав с утяжелителем со сроком схватывания большим, чем у цементного раствора и с регулируемым сроком жизни (патент РФ №2312973, Е21В 33/14, 2007 г.). Наличие над цементной пробкой смеси с вязкоупругими свойствами (далее - ВУС) с более длительными сроками схватывания по сравнению с цементным раствором обеспечивает превышение гидростатического давления над пластовым, предотвращая тем самым миграцию газа по цементному раствору в процессе схватывания последнего. Одновременно ВУС играет роль пакера в затрубном пространстве, предупреждая миграцию газа в вышележащие интервалы.

Известные способы решают задачу качественного цементирования газонефтяных скважин с высоким газовым фактором за счет предупреждения миграции газа из пласта во время ожидания схватывания цемента, а также увеличение срока безаварийной эксплуатации скважин. В известных способах предусматривается применение безглинистого вязкоупругого состава с регулируемым сроком жизни. Срок жизни безглинистого вязкоупругого состава определяется временем его деструкции, после которого происходит выпадение утяжелителя, что приводит к образованию непроницаемой пробки. Это препятствует проведению испытания скважины, так как в случае аварийной ситуации время нахождения испытательного оборудования может превысить время жизни ВУС, и образовавшаяся непроницаемая пробка будет препятствовать циркуляции бурового раствора.

Наличие над ВУС тампонажного раствора создает гидростатическое давление, превышающее давления газа в продуктивном пласте и препятствующее миграции газа, что неприменимо для случая испытания скважин, когда для начала движения газожидкостной смеси необходимо снизить гидростатическое давление ниже пластового давления, то есть передать депрессионный импульс вглубь пласта.

Известен способ обработки призабойной зоны скважины (патент РФ №2034978, Е21В 33/138, 1995 г.), подразумевающий последовательную закачку в пласт порций кремнийогранического тампонажного материала и освоение скважины с депрессией в пределах 20-40% от гидростатического давления. Задачей известного способа является увеличение эффективности изоляции водопритока.

Задачей настоящего изобретения является повышение точности и эффективности измерений гидродинамических параметров газонасыщенных пластов в процессе исследования скважин пластоиспытательным оборудованием без выпуска газа на поверхность и снижение аварийности работ на скважинах.

Поставленная задача решается следующим образом.

В соответствии со способом гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность, включающем спуск на колонне бурильных труб или НКТ в скважину компоновки испытательного оборудования в виде испытателя пластов с пакером и геофизическими датчиками в заданный интервал исследования газонасыщенного пласта, изоляцию интервала исследований скважины выше газонасыщенного пласта, создание последовательных режимов притока и восстановления давления и последующую интерпретацию полученных данных, согласно изобретению, в процессе спуска в колонну бурильных труб или НКТ испытательного оборудования дополнительно заливают расчетное количество как минимум двухкомпонентной вязкоупругой смеси с заданными параметрами вязкости и упругости, изготовленной без сшивателя на основе полиакриламида и цеолита или глинопорошка, образующей выше компоновки испытательного оборудования вязкоупругую пробку, обеспечивающую создание депрессии величиной не более 10%-20% от ожидаемого пластового давления, и далее гидродинамические исследования проводят согласно регламенту испытания пластов на трубах.

Вязкоупругая смесь может быть также изготовлена на основе обратного водно-эмульсионного состава, при этом эмульсию образуют путем смешивания расчетного количества водно-солевого раствора, углеводородной жидкости и эмульгатора.

Преимущество предложенного решения поставленной задачи по сравнению с известными способами гидродинамических исследований газонасыщенных пластов заключается в том, что наличие в трубе вязкоупругой пробки

- обеспечивает создание депрессии, необходимой и достаточной для проведения качественных испытаний газонасыщенного пласта в открытом стволе;

- предотвращает миграцию газа через буферную жидкость по трубе, обеспечивая сохранение постоянного значения плотности буферной жидкости в процессе испытания скважины, тем самым повышает эффективность и точность измеряемых параметров;

- предотвращает прорыв и выброс газа через трубное пространство на поверхность во время режима притока, исключая аварийную ситуацию на буровой площадке.

- вязкоупругая пробка формируется непосредственно в трубе без химического воздействия на пласт:

- предложенный состав ВУС без сшивателя и малый объем, необходимый для проведения гидродинамических исследований, обеспечивают экологическую безопасность его использования при реализации заявленного Способа гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность. Это достигается тем, что вязкоупругая пробка, образованная предложенным составом ВУС, не содержащим сшивателей (химических агентов), недолговечна и легко разрушается в процессе подъема труб и извлечения компоновки испытательного оборудования.

Испытание газонасыщенных пластов без выпуска газа на поверхность является более безопасным с точки зрения экологии и предотвращения аварийных ситуаций на скважине, снижает материальные затраты на монтаж дополнительного устьевого оборудования (сепаратора и т.д.), не требует участия при проведении работ военизированной противофонтанной службы.

Таким образом, совокупность отличительных признаков изобретения обеспечивает новый технический результат, а именно - повышение эффективности и точности измерений гидродинамических параметров газонасыщенных пластов в процессе исследования скважин пластоиспытательным оборудованием без выпуска газа на поверхность и снижение аварийности работ на скважинах.

Реализация предложенного изобретения проста на практике, не требует специального дорогостоящего оборудования и материалов, снижает затраты на предупреждение и ликвидации аварийных ситуаций, вызываемых выбросами газа или фонтанированием на скважинах.

На практике предложенный способ гидродинамических параметров газонасыщенных пластов без выпуска газа на поверхность реализуется следующим образом.

В ходе подготовки к скважинным испытаниям непосредственно на буровой площадке готовят рассчитанное количество ВУС с заданными значениями плотности и вязкости. (На практике применялась смесь цеолита NaA:AlCl3 в соотношении 1:5, растворенная в воде, плотностью 1300 кг/м3 и вязкостью 14,25 сСт). Далее на колонне бурильных труб (или насосно-компрессорных труб) в скважину в интервал исследования спускают компоновку испытательного оборудования, состоящего из фильтра, пакер-якоря, ясса, испытателя пластов, циркуляционного клапана и геофизических датчиков, расположенных ниже и выше испытателя пластов. Непосредственно в процессе спуска компоновки испытательного оборудования в трубы заливают расчетное количество буферной жидкости и ВУС. Благодаря смеси буферной жидкости и ВУС, а также значениям плотности и вязкости ВУС, в трубе выше испытательного оборудования образуется вязкоупругая пробка, обеспечивающая создание депрессии, величиной 10%-20% от значения ожидаемого пластового давления. Данное значение депрессии подбирается соотношением объемов буферной жидкости и ВУС.

Спущенную до интервала исследований компоновку фиксируют в скважине пакером (пакер-якорем), осуществляя разобщение подпакерной зоны от остального ствола скважины. Затем открывают приемный клапан испытателя пластов, сообщая подпакерную зону с внутренней полостью колонны труб. В момент открытия приемного клапана на пласт передается импульс депрессии, в результате которого начинается приток газа из пласта, величина которого зависит от характеристик исследуемого пласта. При этом вязкоупругая пробка ВУС препятствует прохождению газа через буферную жидкость, благодаря чему плотность буферной жидкости остается постоянной, и геофизические датчики регистрируют реальное изменение давления, вызванное притоком газа. Тем самым повышается достоверность определения дебита газа, что в конечном счете повышает точность определения таких гидродинамических параметров, как гидропроводность и продуктивность пласта.

По окончании исследований компоновку испытательного оборудования извлекают из скважины. Поскольку вязкоупругая пробка ВУС не содержит сшивателя, она легко разрушается в процессе подъема труб и разборки компоновки и не требует применения специальной технологии утилизации.

Таким образом, предложенный способ обеспечивает высокую точность и эффективность гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность с помощью испытательного оборудования с пакером (пакер-якорем).

При этом наличие вязкоупругой пробки ВУС препятствует аварийному выбросу газа на поверхность, обеспечивая тем самым безопасность работ на скважине и повышая экономичность по обеспечению на буровой площадке соблюдений требований по охране окружающей среды.

1. Способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность, включающий спуск на колонне бурильных труб или НКТ в скважину компоновки испытательного оборудования в виде испытателя пластов с пакером и геофизическими датчиками в заданный интервал исследования газонасыщенного пласта, изоляцию пакером интервала исследований скважины выше газонасыщенного пласта, создание последовательных режимов притока и восстановления давления и последующую интерпретацию полученных данных, отличающийся тем, что в процессе спуска в колонну бурильных труб или НКТ испытательного оборудования дополнительно заливают расчетное количество как минимум двухкомпонентной вязкоупругой смеси с заданными параметрами вязкости и упругости, изготовленной без сшивателя на основе полиакриламида и цеолита или глинопорошка, образующее выше компоновки испытательного оборудования вязкоупругую пробку, обеспечивающую создание депрессии величиной не более 10% - 20% от ожидаемого пластового давления, и далее гидродинамические исследования проводят согласно регламенту испытания пластов на трубах.

2. Способ по п.1, отличающийся тем, что вязкоупругую смесь изготавливают на основе обратного водно-эмульсионного состава, при этом эмульсию образуют путем смешивания расчетного количества водно-солевого раствора, углеводородной жидкости и эмульгатора.



 

Похожие патенты:

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при изучении возможного взаимодействия в недрах земли пластовых вод и жидких производственных отходов при закачивании последних в глубокозалегающие водоносные пласты.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов.

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных низкопроницаемых месторождений. Техническим результатом является определение местоположения застойных и слабодренируемых нефтенасыщенных участков нефтяных низкопроницаемых залежей.

Изобретение относится к способу и устройству для повышения добычи в месторождении, содержащем породу, которая включает в себя по меньшей мере один раскрываемый путем размельчения породы минерал ценного материала и по меньшей мере один другой минерал.

Изобретение относится к нефтяной промышленности и может найти применение при разработке продуктивного пласта и определении параметров продуктивного коллектора.

Изобретение относится к нефтяной промышленности, а именно к способам контроля за разработкой нефтяных месторождений. Техническим результатом является повышение эффективности способа контроля за разработкой нефтяных месторождений за счет более полного и формализованного учета параметров, характеризующих протекающие в пористой среде процессы.

Изобретение относится к нефтяной промышленности и может найти применение при определении нефтенасыщенных пластов в разрезе скважины. Техническим результатом является повышение точности определения нефтенасыщенного пласта в разрезе скважины.

Изобретение относится к нефтяной промышленности, а именно к исследованию геомеханический свойств пластов. Техническим результатом являются повышение точности определения и результативности стимуляции хрупких зон коллекторов, а также повышение экономичности исследования вновь бурящихся скважин.

Изобретение относится к области нефтяной промышленности, а именно к разработке нефтяных залежей, и может использоваться при проведении геолого-технических мероприятий по увеличению добычи нефти.

Изобретение относится к области отбора проб жидкости и может быть использовано на нефтегазодобывающих комплексах, системах, транспортирующих нефть и газ, нефтегазоперерабатывающих заводах и других предприятиях, на которых существует необходимость отбора проб из трубопроводов и технологических аппаратов.

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом предлагаемого изобретения является уточнение даты изменения коэффициентов фильтрационного сопротивления призабойной зоны за счет учета основных факторов, характеризующих степень обводнения призабойной зоны пласта.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации подземных хранилищ газа (ПХГ).

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды.
Изобретение относится к нефтяной промышленности и может найти применение при определении обводненности продукции нефтедобывающей скважины. Технический результат направлен на повышение точности определения обводненности продукции скважины.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для изоляции водопритоков в открытых стволах многозабойных горизонтальных скважин.

Изобретение относится к нефтяной промышленности и может быть использовано при гидродинамических исследованиях многозабойных скважин. Предложен способ исследования многозабойной горизонтальной скважины, содержащий этапы, на которых осуществляют спуск в скважину глубинного прибора, проведение гидродинамических исследований и извлечение геофизического прибора из многозабойной горизонтальной скважины.

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является обеспечение определения остаточного содержания газа в жидкости после дегазации продукции группы скважин в газосепараторе перед дальнейшей откачкой в нефтепровод.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин. Технический результат направлен на повышение точности и качества измерения дебита скважин.

Изобретение относится к нефтяной промышленности и может найти применение при определении заколонных перетоков скважины. Техническим результатом является определение заколонных перетоков при потоке жидкости за скважиной сверху вниз.

Изобретение относится к гидрологии, бурению и эксплуатации скважин и может быть использовано при проведении геофизических исследований технического состояния скважин.
Изобретение относится к нефтяной промышленности и может найти применение при исследовании скважины. В предложенном изобретении решается задача повышения достоверности обнаружения перетоков вверх за эксплуатационной колонной и вертикальных движений флюидов в заколонном пространстве в скважинах с перфорированными двумя и более пластами. Согласно способу скважину оборудуют колонной насосно-компрессорных труб с пакером, устанавливают пакер между двумя пластами на 3 м и ниже от подошвы верхнего интервала перфорации. Останавливают скважину для выравнивания температурного поля, проводят запись гамма-каротажа и термометрии по колонне насосно-компрессорных труб для регистрации кривой фонового распределения температуры по глубине скважины. Прокачивают возмущающий объем воды по колонне насосно-компрессорных труб в нижний пласт, одновременно перемещают прибор для регистрации расхода жидкости по межтрубному пространству от глубины посадки пакера и на расстояние не менее 50 м выше кровли верхнего пласта с регистрацией показаний термометра и расходомера. Выполняют повторную запись термометрии скважины и регистрацию кривой распределения температуры по глубине скважины, анализируют данные и выносят заключение о техническом состоянии скважины. 1 з.п. ф-лы.
Наверх