Сопловой блок ракетного двигателя твердого топлива


 


Владельцы патента RU 2527228:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ) (RU)

Изобретение относится к области ракетных двигателей твердого топлива со стабилизацией тяги в условиях различных начальных температур окружающей среды и разброса параметров топлива. Сопловой блок ракетного двигателя твердого топлива содержит центральное тело и подвижное сопло, установленное в телескопической направляющей. Подвижное сопло жестко соединено с поршнем, расположенным в закрепленном на корпусе цилиндре и разделяющим цилиндр на переднюю и заднюю по ходу движения ракеты рабочие полости. Подвижное сопло и цилиндр соединены механическими пружинами. Рабочие полости соединены с камерой горения двигателя и сообщены с окружающей средой. Канал, соединяющий рабочие полости с камерой сгорания, выполнен в горловине сопла и имеет дроссельные отверстия. С окружающей средой рабочие полости сообщены через дроссели переменного сечения, причем каждый из дросселей переменного сечения передней и задней рабочих полостей выполнен в виде щели на стенке цилиндра и частично перекрыт поршнем. Изобретение позволяет уменьшить массогабаритные показатели соплового блока. 1 ил.

 

Изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива (РДТТ), и может быть использовано для автоматической стабилизации тяги в условиях различных начальных температур и разброса параметров топлива, например для уменьшения рассеяния попаданий по дальности неуправляемых ракет и уменьшения рассеяния попаданий ручных гранатометов.

Известен сопловой блок ракетного двигателя твердого топлива, содержащий центральное тело и подвижное сопло, установленное в телескопической направляющей и соединенное жестко с поршнем, расположенным в закрепленном на корпусе цилиндре и разделяющем цилиндр на переднюю по ходу движения ракеты и заднюю рабочие полости, соединенные с камерой горения двигателя каналом, выполненным в горловине сопла с дроссельными отверстиями. Центральное тело закреплено на тонкостенной обжимной трубке, связанной с подвижным торцом топливной шашки посредством рычага, который перемещает это тело пропорционально начальной температуре твердого топлива в положение, фиксируемое при запуске двигателя.

Рабочие полости цилиндра, разделенные поршнем с выполненным в нем дроссельным каналом, образуют газовый демпфер. Полости демпфера соединены с закритической частью сопла через выпускные дроссельные отверстия, соединенные каналом, проходящим в горловине сопла в его закритическую часть. Подвижное сопло и цилиндр соединены механическими пружинами. Подпружиненное относительно цилиндра сверхзвуковое сопло работает как предохранительный клапан, поддерживая давление в камере горения пропорционально предварительному поджатию пружин, т.е. обратно пропорционально начальной температуре топлива tH [патент РФ 2151317, МПК7 F02K 9/36, 9/97, 20.06.2000].

Это устройство позволяет обеспечить устойчивую работу стабилизатора тяги с разомкнутым управлением по начальной температуре твердого топлива и замкнутым управлением по давлению в камере горения и ускорению ракеты.

Недостатком конструкции данного аналога является значительная жесткость стальных механических пружин, имеющих большие габариты и массу.

Прототипом предлагаемого изобретения является известный сопловой блок ракетного двигателя твердого топлива, содержащий центральное тело и подвижное сопло, установленное в телескопической направляющей и соединенное жестко с поршнем, расположенным в закрепленном на корпусе цилиндре и разделяющем цилиндр на переднюю по ходу движения ракеты и заднюю рабочие полости, соединенные с камерой горения двигателя каналом, выполненным в горловине сопла с дроссельными отверстиями, и сообщенные с окружающей средой через дроссели переменного сечения, из которых дроссель переменного сечения передней рабочей полости выполнен в виде щели на стенке цилиндра и частично перекрыт поршнем. Дроссель переменного сечения задней рабочей полости является регулируемым выпускным отверстием сбросового клапана, обеспечивающего постоянное настроечное давление в этой полости [патент РФ 2191280, МПК7 F02K 9/36, 9/97, 20.06.2002].

Разделенные поршнем передняя рабочая полость с дросселем переменного сечения и задняя рабочая полость со сбросовым клапаном образуют одностороннюю газовую пружину, позволяющую уменьшить жесткость механических пружин, имеющихся в аналоге.

Недостатком конструкции прототипа с односторонней газовой пружиной являются большие габариты поршня и цилиндра соплового блока, обусловленные малым перепадом давлений в рабочих полостях вследствие снижения давления в задней рабочей полости сбросовым клапаном.

Технической задачей настоящего изобретения является уменьшение массогабаритных показателей соплового блока двигателя за счет применения в стабилизаторе тяги двухсторонней газовой пружины.

Поставленная задача решается тем, что в сопловом блоке ракетного двигателя твердого топлива, содержащем центральное тело и подвижное сопло, установленное в телескопической направляющей и соединенное жестко с поршнем, расположенным в закрепленном на корпусе цилиндре и разделяющим цилиндр на переднюю по ходу движения ракеты и заднюю рабочие полости, соединенные с камерой горения двигателя каналом, выполненным в горловине сопла с дроссельными отверстиями, и сообщенные с окружающей средой через дроссели переменного сечения, из которых дроссель переменного сечения передней рабочей полости выполнен в виде щели на стенке цилиндра и частично перекрыт поршнем, подвижное сопло и цилиндр соединены механическими пружинами, а дроссель переменного сечения задней рабочей полости также выполнен в виде щели на стенке цилиндра и частично перекрыт поршнем.

На чертеже приведен схематический продольный половинный разрез соплового блока ракетного двигателя твердого топлива.

Сопловой блок содержит центральное тело 1 и подвижное сопло 2, установленное в телескопической направляющей 3 и соединенное жестко с поршнем 4, расположенным в закрепленном на корпусе 5 цилиндре 6 и разделяющим цилиндр на переднюю 7 по ходу движения ракеты и заднюю 8 рабочие полости, соединенные с камерой горения 9 двигателя каналом 10, выполненным в горловине сопла 2 с дроссельными отверстиями 11, 12, и сообщенные с окружающей средой через дроссели переменного сечения 13 и 14, из которых дроссель переменного сечения 13 передней рабочей полости 7 выполнен в виде щели на стенке цилиндра 6 и частично перекрыт поршнем 4. Подвижное сопло 2 и цилиндр 6 соединены механическими пружинами 16, а дроссель переменного сечения 14 задней рабочей полости 8 также выполнен в виде щели на стенке цилиндра 6 и частично перекрыт поршнем 4. Передняя и задняя рабочие полости 7 и 8 цилиндра 6 с дросселями переменного сечения 13 и 14, выполненными в виде щелей 15 и 17, частично перекрытых поршнем, образуют двухстороннюю газовую пружину, позволяющую создавать больший перепад давления в рабочих полостях по сравнению с односторонней газовой пружиной.

Предлагаемое устройство работает следующим образом.

При изменении температуры окружающей среды в процессе хранения и транспортировки в соответствии с патентами аналога и прототипа центральное тело 1, соединенное с рычагом (не показан), перемещающимся пропорционально изменению температуры твердого топлива, также перемещается вместе с прижатым к нему механическими пружинами 16 соплом 2 пропорционально изменению температуры относительно корпуса 5. Чем выше температура топлива, тем больше смещаются центральное тело 1 и сопло 2 вперед влево, уменьшая предварительное поджатие растянутых механических пружин 16 и увеличивая в последующем рабочем состоянии площадь критического сечения сопла. При запуске двигателя повышаются давления в камере горения 9, глухой передней рабочей полости 7 и проточной задней полости 8, под действием которых фиксируется положение центрального тела 1 с обжимной трубкой, а подвижное сопло 2 с поршнем 4, растягивая механические пружины 16, смещаются до упора назад, максимально открывая критическое сечение сопла, уменьшая пик давления в камере 9 от сгорания воспламенителя и закрывая выпускной дроссель переменного сечения 14 задней рабочей полости 8 и открывая дроссель переменного сечения 13 передней рабочей полости 7. В результате повышения давления в задней рабочей полости и уменьшения давления в передней рабочей полости 7 подвижное сопло 2 с поршнем 4 перемещаются в смещенное назад относительно оси симметрии щелей 15 и 17 положение, при котором в установившемся состоянии сила механических пружин 16 и сила перепада давлений на поршень уравновешиваются противоположно направленной результирующей силой давления на подвижное сопло 2. При этом в камере горения ракетного двигателя устанавливается давление, соответствующее начальной температуре твердого топлива. Данное состояние благодаря отрицательной обратной связи по перемещению является устойчивым, поскольку при случайном отклонении поршня 4 с соплом 2 относительно щелей 15 и 17, например, вперед они возвращаются в прежнее положение равновесия, так как при таком отклонении происходит уменьшение силы растягивания пружины и силы перепада давлений в рабочих полостях 7 и 8 за счет изменения площадей дросселей переменного сечения 13 и 14, а также одновременное увеличение возвращающей результирующей силы давления на сопло 2 за счет увеличения давления в камере горения 9, вызванного уменьшением площади проходного сечения сопла 2.

Следует отметить, что на смещенное назад относительно оси симметрии щелей 15, 17 положение равновесия поршня 4 с соплом 2 влияет сила инерции, обусловленная действием ускорения ракеты. Предложенное устройство, как и прототип с аналогом, является регулятором этого ускорения. В частности, при увеличении ускорения ракеты поршень 4 с соплом 2 смещаются относительно положения равновесия назад, увеличивая площадь критического сечения сопла 2 и уменьшая давления в камере горения 9, скорость горения топлива, тягу ракетного двигателя и ускорение ракеты, обеспечивая возврат поршня с соплом в прежнее положение.

Таким образом, в предложенном устройстве имеет место одинаковый характер изменения силы механических пружин 16 и силы перепада давлений на поршень 4 со стороны двух рабочих полостей 7 и 8, которые образуют вместе с ним двухстороннюю газовую пружину, позволяющую по сравнению с прототипом уменьшить площадь поршня за счет увеличения перепада давлений в рабочих полостях посредством исключения сброса газа из задней рабочей полости, а по сравнению с аналогом - значительно уменьшить жесткость, габариты и массу механических пружин, отведя им, в частности, вспомогательную функцию прижатия сопла к центральному телу до запуска двигателя со значительно меньшей, чем у аналога, силой предварительного поджатия.

Сопловой блок ракетного двигателя твердого топлива, содержащий центральное тело и подвижное сопло, установленное в телескопической направляющей и соединенное жестко с поршнем, расположенным в закрепленном на корпусе цилиндре и разделяющим цилиндр на переднюю по ходу движения ракеты и заднюю рабочие полости, соединенные с камерой горения двигателя каналом, выполненным в горловине сопла с дроссельными отверстиями, и сообщенные с окружающей средой через дроссели переменного сечения, из которых дроссель переменного сечения передней рабочей полости выполнен в виде щели на стенке цилиндра и частично перекрыт поршнем, отличающийся тем, что подвижное сопло и цилиндр соединены механическими пружинами, а дроссель переменного сечения задней рабочей полости также выполнен в виде щели на стенке цилиндра и частично перекрыт поршнем.



 

Похожие патенты:

Изобретение относится к ракетной технике и предназначено для использования в ракетных двигателях твердого топлива реактивных снарядов систем залпового огня. Герметизирующее-пусковое устройство ракетного двигателя содержит тарель, форсажную трубку, узел крепления и опору.

Изобретение относится к области ракетной техники и может быть использовано при разработке и изготовлении сопел камер сгорания жидкостных ракетных двигателей (ЖРД).

Изобретение относится к ракетной технике, в частности к ракетным двигателям с регулированием степени расширения сопла в полете. При работе двигателя в режиме первой ступени степень расширения продуктов сгорания компонентов топлива ограничивают диаметром подвижной внутренней цилиндрической оболочки с торцевой поверхностью, предпочтительно, профилированной, являющейся составной частью профиля сопла, которую размещают в неподвижной оболочке сопла, предпочтительно, в средней ее части, таким образом, что торцевая поверхность подвижной оболочки представляет собой часть профиля неподвижной оболочки.

Изобретение относится к области ракетной техники. Сопло камеры жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока.

Изобретение относится к ракетно-космической технике и может быть использовано для охлаждения сверхзвуковой части сопла жидкостных ракетных двигателей. Задачей предлагаемого изобретения является создание работоспособного на переходных и стационарных режимах работы устройства охлаждения сверхзвуковой части сопла с низким уровнем давления охладителя (Рохл<<Рк), что должно обеспечить возможность создания высокоэкономичных ЖРД с повышенным давлением в камере, с одновременным упрощением изготовления сопел и повышением их надежности.

Изобретение относится к ракетной технике и может быть использовано при проектировании ракетных двигателей твердого топлива, их систем управления и стабилизации. Управляющий ракетный двигатель содержит корпус и расположенные с возможностью осевого перемещения газоходы, имеющие сопло на одном конце и упор с торцом на другом.

Изобретение относится к ракетной технике и может быть использовано при разработке заглушек сопел ракетных двигателей, время работы которых составляет десять и менее секунд.

Изобретение относится к ракетной технике и может быть использовано при создании сопла переменной степени расширения в твердотопливном двигателе. Сопло переменной степени расширения содержит частично утопленную стационарную часть раструба, складываемую часть раструба, а также стабилизатор раскладывания панелей.

При создании сопла двигательной установки создают внешний поток газов из первичных сопел многокамерной двигательной установки с центральным телом на первой ступени ракеты-носителя и внутренний поток газов из первичных сопел жидкостных ракетных двигателей, выполненных по закрытой схеме с дожиганием газогенераторного газа, многокамерной двигательной установки второй ступени ракеты-носителя с единым тарельчатым соплом.

Изобретение относится к твердотопливным и гибридным ракетным двигателям. Ракетный двигатель содержит корпус и реактивное сопло.

Изобретение относится к ракетной технике. Ракетный двигатель с раздвижным диффузором содержит сопло истечения газов, исходящих из камеры сгорания, причем сопло имеет продольную ось (ZZ') и содержит первую часть, определяющую критическое сечение сопла и первую неподвижную секцию (12) диффузора, по меньшей мере одну вторую выдвижную секцию (16) диффузора, сечение которой больше сечения первой неподвижной секции (12) диффузора, и механизм (18) выдвижения второй выдвижной секции (16) диффузора, расположенный снаружи от первой и второй секций (12, 16) диффузора. Экран (102) тепловой защиты встроен между механизмом (18) выдвижения и первой неподвижной секцией (12) диффузора. Экран (102) тепловой защиты содержит выпуклую стенку (104) на стороне, обращенной к первой неподвижной секции (12) диффузора. Изобретение обеспечивает повышение надежности ракетного двигателя с раздвижным диффузором путем снижения влияния теплового излучения от диффузора во время работы ракетного двигателя. 9 з.п. ф-лы, 6 ил.

Изобретение относится к области ракетной техники. В сверхзвуковой части осесимметричного сопла ракетного двигателя установлена вставка, которая имеет длину, выходной диаметр и степень расширения, меньшие, чем соответствующие геометрические параметры стенки сверхзвуковой части сопла. Вставка занимает два установочных положения - примыкает к стенке сверхзвуковой части сопла при полете в плотных слоях атмосферы и размещается вне области аэродинамической интерференции с задней кромкой стенки при полете в разреженной атмосфере. В положении, предназначенном для полета в разреженной атмосфере, передняя кромка вставки примыкает к поверхности, которая ограничивает возмущения, достигающие стенки, и касательная к образующей которой, проходящая через кромку выходного сечения сопла, направлена под углом к касательной к образующей стенки в выходном сечении, где М - местное число Маха около стенки в выходном сечении сопла. Технический результат - увеличение тяги сопла при заданных габаритах. 4 ил.

Изобретение относится к средствам создания тяги и может быть использовано в реактивных двигателях (РД). Двигательное устройство содержит корпус, конусообразную камеру сгорания, выхлопную трубу, два пружинных клапана между выхлопной трубой и камерой сгорания, блок управления с гидравлическими выходами. Изобретение позволяет увеличить надежность работы РД без уменьшения скорости. 1 ил.

Изобретение относится к ракетной технике, а именно к способу изготовления сопла жидкостного ракетного двигателя оживальной формы. Сопло состоит из нескольких автономных трапецеидальных секторов оживальной формы, соединенных в осевом направлении. Формообразование оживального профиля пакета внутренней и наружной стенок каждого сектора выполняют взрывом, на наружной поверхности внутренней стенки каждого сектора фрезерованием выполняют пазы переменной ширины с образованием ребер каналов охлаждения, каждую внутреннюю стенку сектора оживального профиля накрывают отформованной тонкостенной наружной стенкой и соединяют их, после чего проводят гидропневмоиспытания секторов, затем их торцы подвергают механической обработке и секторы сваривают продольными профильными швами в готовое сопло с последующим неразрушающим контролем сварных швов и гидропневмоиспытанием секторов. Изготовить сопло жидкостного ракетного двигателя можно по другому варианту из нескольких плоских трапецеидальных секторов. При этом фрезерование пазов в каждом секторе и их соединение выполняют в плоском виде. Формообразование оживального профиля сопла выполняют штамповкой взрывом или разжимными пуансонами. Соединение наружной и внутренней стенок осуществляют пайкой или лазерной сваркой. Количество секторов определяют шириной листа заготовки и диаметром сопла. Сварку секторов между собой выполняют лазерной или электронно-лучевой сваркой. Изобретение обеспечивает получение прочной и надежной конструкции крупногабаритного сопла оживальной формы независимо от габаритов, изготовление которой не требует уникального оборудования и значительных капитальных вложений. 2 н. и 7 з.п. ф-лы, 10 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в конструкции жидкостного ракетного двигателя (ЖРД) с турбонасосной системой подачи топлива, выполненного по схеме без дожигания с радиационно-охлаждаемым насадком сопла камеры. ЖРД включает турбонасосный агрегат (ТНА) 1, газогенератор 2, выхлопной тракт турбины ТНА 3, камеру сгорания 4 с радиационно-охлаждаемым насадком сопла 5 и коллектором 6 на сопле камеры сгорания 4, сообщенным с выхлопным трактом 3, при этом вокруг радиационно-охлаждаемого насадка 5 выполнен кожух 7, коллектор 6 расположен в зоне стыка радиационно-охлаждаемого насадка 7 и регенеративно-охлаждаемой части сопла камеры 4 и сообщен с входом в кольцевую полость, образованную кожухом 7 и стенкой радиационно-охлаждаемого насадка 7, выход которой сообщен с расположенным вокруг радиационно-охлаждаемого насадка 7 кольцевым сверхзвуковым соплом 8. При этом в качестве материала кожуха 7 может быть использована плотная термостойкая ткань. Изобретение обеспечивает повышение надежности двигателя и увеличение удельного импульса. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области ракетной твердотопливной техники и может быть использовано в конструкциях поворотных сопл из композиционных материалов. Корпус раструба поворотного сопла из композиционных материалов содержит оболочку в виде усеченного конуса с двумя присоединительными фланцами у большого и малого оснований, а также силовой шпангоут с закладными деталями для взаимодействия с механизмами поворота сопла. Оболочка в зоне установки шпангоута выполнена с кольцевым поясом с торцовой поверхностью, фиксирующей положение шпангоута в осевом направлении, и объединена со шпангоутом в неразъемную конструкцию с образованием кольцевого пространства между наружной поверхностью пояса и внутренней поверхностью шпангоута. В кольцевое пространство встроены закладные детали, взаимодействующие с механизмами поворота сопла. Боковая поверхность шпангоута со стороны большого основания оболочки выполнена с усиленным кольцевым ребром, образованным перегибом ткани вокруг введенного в его конструкцию жесткого диска из материала, совместимого с материалом шпангоута, и оформлена как фланец для встраивания корпуса в систему составных частей сопла. Изобретение позволяет повысить надежность раструба поворотного сопла, а также снизить его массу и трудоемкость изготовления. 1 з.п. ф-лы, 3 ил.

Изобретение относится к ракетной технике и предназначено для использования в ракетных двигателях твердого топлива реактивных снарядов систем залпового огня. Сопло ракетного двигателя содержит корпус, дозвуковую и сверхзвуковую части сопла, а также герметизирующее-пусковое устройство с форсажной трубкой и опорой. В форсажной трубке перпендикулярно ее оси на расстоянии от выходного сечения установлен на жестких установочных элементах плоский турбулизатор. Продольные оси установочных элементов расположены в плоскостях, проходящих через ось форсажной трубки. Плоский турбулизатор выполнен с одним или несколькими отверстиями, а на его передней торцевой поверхности закреплена накладка из материала с низкой температурой абляции. Изобретение позволяет снизить разброс внутрибаллистических параметров ракетного двигателя твердого топлива в период выхода на режим. 2 з.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя содержит раструб и складной насадок, образованный лепестками, кинематически связанными с раструбом механизмом раздвижки, обеспечивающим перевод лепестков из сложенного положения в рабочее. Образующая лепестка в сложенном положении, проведенная через плоскость его симметрии, параллельна образующей раструба, проведенной через эту же плоскость. Другое изобретение группы относится к механизму раздвижки указанного выше сопла ракетного двигателя, содержащему элементы кинематической связи лепестков с раструбом сопла, образующие пантографы, связывающие соседние лепестки друг с другом. Каждый пантограф содержит продольную балку, связанную с каждым из двух соседних лепестков двумя шарнирно закрепленными планками, а каждый лепесток связан с раструбом направляющими элементами. Группа изобретений позволяет упростить конструкцию сопла и механизма его раздвижки, уменьшить массу конструкции и повысить ее надежность. 2 н. и 1 з.п. ф-лы, 11 ил.

Изобретение относится к области ракетостроения, а именно к способам повышения тяги ракетного двигателя, и может быть использовано для увеличения тяги ракетных и авиационных двигателей. Способ увеличения тяги сверхзвукового сопла ракетного двигателя включает вдув внешней среды во внутреннюю полость сопла через систему отверстий и взаимодействие его с рабочим телом. Вдув внешней среды во внутреннюю полость сопла осуществляют в режиме перерасширения при давлении ра<рн, а выдув рабочего тела из внутренней полости сопла вовне в донную область в режиме недорасширения при давлении ра>рн через концевую часть сопла, выполненную из высокотемпературного газопроницаемого материала с открытой пористостью. В качестве высокопористого проницаемого ячеистого материала используют углерод-углеродный композиционный материал, либо керамический композиционный материал, либо жаропрочный металлический сплав, либо волокнистый и канально-трубчатый материал. Изобретение позволяет повысить средний по траектории полета удельный импульс ракетного двигателя, а также обеспечить равномерность вдува и выдува рабочего тела и регулирование высотных характеристик ракетного сопла в режиме перерасширения при давлении ра<рн и недорасширения при давлении ра>рн. 4 з.п. ф-лы, 8 ил.
Изобретение относится к ракетной технике и может быть использовано при создании сопел ракетных двигателей, в частности при разработке конструкции сопел жидкостных ракетных двигателей, имеющих радиационно охлаждаемый сопловой насадок. Сопло ракетного двигателя имеет контур в форме аксиально сдвоенного колокола с изломом контурной линии между двумя колокольными формами. Излом контура сопла ракетного двигателя выполнен в виде дуги окружности, начало и конец которой определяется точками ее касания контуров первой и второй колокольных форм. Контур второй колокольной формы спрофилирован по кривой второго порядка с углом наклона к оси симметрии ракетного сопла в точке конца излома контура ракетного сопла, большим, чем увеличенный на 8° угол наклона контура первой колокольной формы к оси симметрии ракетного сопла в точке начала излома контура. Изобретение позволяет снизить температуру стенки концевой части сопла ракетного двигателя при минимальном снижении эффективного удельного импульса тяги. 1 ил.
Наверх