Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей и устройство для его осуществления



Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей и устройство для его осуществления
Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей и устройство для его осуществления
Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей и устройство для его осуществления
Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей и устройство для его осуществления
Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей и устройство для его осуществления
Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей и устройство для его осуществления

 


Владельцы патента RU 2530678:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" (RU)

Изобретение относится к области машиностроения, в частности к финишной обработке деталей. Осуществляют вращение детали и воздействие на ее поверхность устройством для ультразвуковой финишной обработки с деформирующим элементом. Устройство для ультразвуковой финишной обработки с деформирующим элементом передвигают вдоль детали, задают ему ультразвуковые колебания и осуществляют многократную ударную обработку деформирующим элементом с ультразвуковой частотой порядка 20 кГц и амплитудой 5-40 мкм. При этом осуществляют частичное погружение деформирующего элемента и детали в ванну с керосином для охлаждения обрабатываемой поверхности детали, обеспечивающего получение на ней градиентных субмикро- и нанокристаллических структур. В результате обеспечивается высокая прочность и твердость поверхности детали. 4 н.п. ф-лы, 6 ил., 1 пр.

 

Изобретение относится к области машиностроения, в частности к финишной обработке с использованием энергии ультразвуковых колебаний.

Наиболее близким по технической сущности к изобретению по п.1 является способ ультразвуковой финишной обработки (патент РФ №2393076, B24B 39/04, B06B 1/00, опубл. 27.06.2010, Бюл. №18), включающий вращение детали и воздействие на ее поверхность устройством с деформирующим элементом, которое передвигают вдоль детали и задают ему ультразвуковые колебания.

Наиболее близким по технической сущности к изобретению по п.2 является устройство для ультразвуковой упрочняюще-чистовой обработки поверхностей (патент РФ №2124430, B24B 39/00, B24B 1/04, опубл. 10.01.1999), включающее установленный в корпусе магнитострикционный преобразователь, соединенный с концентратором, на торцевой части которого закреплен деформирующий элемент и преобразователь колебаний.

Недостатком известных способа и устройства является выделение значительного тепла, повышающего температуру обрабатываемого материала в очаге деформации до 800-1000°C т.е. в зоне контакта деформирующего элемента (индентора) и обрабатываемой поверхности, и, как следствие, эволюции наноструктуры, сопровождаемое ухудшением физических, химических и механических свойств.

Технический результат предлагаемого решения заключается в обеспечении условий теплообмена с окружающей средой, при которых температура обрабатываемой поверхности металла не превосходила бы порога термической стабильности нано- и субмикроструктур, при этом достигалась бы высокая прочность и твердость.

Технический результат по п.1 и п.2 достигается за счет того, что осуществляют вращение детали и воздействие на ее поверхность устройством для ультразвуковой финишной обработки с деформирующим элементом, которое передвигают вдоль детали, задают ему ультразвуковые колебания и осуществляют многократную ударную обработку деформирующим элементом. При этом ударную обработку деформирующим элементом осуществляют с ультазвуковой частотой порядка 20 кГц и амплитудой 5-40 мкм, в то же время осуществляют либо частичное погружение деформирующего элемента и детали в ванну с керосином для охлаждения обрабатываемой поверхности детали, обеспечивающего получение на ней градиентных субмикро- и нанокристаллических структур, либо охлаждение обрабатываемой поверхности для получения на ней указанных структур с помощью теплопроводной насадки выполненной из алюминия с теплоотдающим ребрением, способствующим увеличению площади теплооотдачи обрабатываемого инструмента, при этом для уменьшения термического контактного сопротивления между теплопроводной насадкой и обрабатываемой поверхностью применяют высокотеплопроводные смазки. В противном случае, если контактное сопротивление велико, то оно может свести на нет эффективность теплоотвода.

Технический результат по п.3 и п.4, для устройства, содержащего магнитострикционный или пьезострикционный преобразователь, соединенный с концентратором-волноводом, на торцевой части которого закреплен деформирующий элемент (индентор) достигается тем, что оно дополнительно снабжено или жидкостной системой охлаждения в виде ванны с керосином, выполненной с возможностью частичного погружения в нее деформирующего элемента и детали или теплопроводной насадкой с теплоотдающим ребрением, выполненной из алюминия, которые предназначены для охлаждения обрабатываемой поверхности детали, обеспечивающего получение на ней градиентных субмикро- и нанокристаллических структур.

Изобретение поясняется следующими чертежами и фотографиями:

- фиг.1 - внешний вид установки для ультразвуковой импульсной упрочняющей обработки внешней поверхности тел вращения на токарном станке;

- фиг.2 - внешний вид установки для ультразвуковой импульсной упрочняющей обработки поверхности плоских деталей на фрезерном станке.

- фиг.3 - теплопроводная насадка из алюминия для отвода тепла от места контакта деталь-индентор при УЗО.

- фиг.4 - структура поверхностного слоя ст 45 после обработки УЗО с жидкостным охлаждением.

- фиг.5 - структура поверхностного слоя ст 45 после обработки УЗО с охлаждением СОЖ.

- фиг.6 - зависимость микротвердости стали ст 45 от статической нагрузки и вида охлаждения.

Устройство содержит концентратор-волновод, магнитострикционный или пьезострикционный преобразователь, станок, приспособление, фиксирующее преобразователь на суппорте станка, деформирующий элемент, а также или жидкостную систему охлаждения или теплопроводную насадку.

Принцип работы следующий. Ток поступает на обмотку преобразователя от электронного генератора и превращается в энергию механических (ультразвуковых) колебаний той же частоты. Высокочастотный электрический ток, проходя по обмотке, создает переменное магнитное поле, под воздействием которого колеблется преобразователь, к преобразователю крепят специальный концентратор-волновод, к торцу волновода присоединяют инструмент - индентор. Инструмент вместе со всей колебательной системой прижимают с усилием к поверхности вращающегося обрабатываемого материала. Осуществляется многократная обработка деформирующего элемента с ультразвуковой частотой порядка 20 кГц, с амплитудой 5-40 мкм. Поверхность детали пластически деформируется и упрочняется (фиг.1). При этом для охлаждения зоны деформации используется жидкостная система охлаждения обрабатываемой поверхности и рабочего инструмента, т.е. производится частичное их погружение в ванну, например, с керосином, в результате съем теплоты осуществляется в процессе кипения на охлаждаемой поверхности, а движение теплоносителя осуществляется за счет разности плотностей. Вместо жидкостной системы охлаждения возможно использование теплопроводной насадки, сделанной из алюминия (фиг.2), при этом для уменьшения термического контактного сопротивления между металлической насадкой и обрабатываемой поверхностью использовали высокотеплопроводные смазки.

Заявленное изобретение поверхностной упрочняющей ультразвуковой обработки (УЗО) массивных деталей из закаленных конструкционных и инструментальных сталей позволяет получать высокую твердость и прочность за счет создания нанокристаллических структур с размером зерна 5-10 нм на глубине 15-20 мкм от поверхности и субмикрокристаллической структуры на глубине 250-300 мкм от поверхности.

Пример осуществления.

Проведено экспериментальное исследование влияния охлаждения при УЗО на свойства ст 45. Обработка экспериментальных плоских образцов производилась на универсальном фрезерном станке, на суппорте которого фиксировался ультразвуковой инструмент. В процессе эксперимента при неизменных амплитуде колебаний, линейной скорости, величине подачи и диаметре сферы рабочего инструмента менялись статическая нагрузка и вид охлаждения (естественное воздушное, естественное жидкостное, комбинированное). Из фиг.4 видно, что при использовании жидкостного охлаждения получается более высокодиспергированная структура, чем при применении СОЖ (фиг.5). Применение в технологической схеме УЗО жидкостного охлаждения позволяет увеличить слой тонкой нанокристаллической структуры на деталях любых размеров и любой геометрии до 20-25 мкм. При этом микротвердость растет тем значительнее, чем эффективнее способ охлаждения (фиг.6).

1. Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей, включающий вращение детали и воздействие на ее поверхность устройством для ультразвуковой финишной обработки с деформирующим элементом, которое передвигают вдоль детали, задают ему ультразвуковые колебания и осуществляют многократную ударную обработку деформирующим элементом, отличающийся тем, что ударную обработку деформирующим элементом осуществляют с ультразвуковой частотой порядка 20 кГц и амплитудой 5-40 мкм, при этом осуществляют охлаждение обрабатываемой поверхности детали, обеспечивающее получение на ней градиентных субмикро- и нанокристаллических структур путем частичного погружения деформирующего элемента и детали в ванну с керосином.

2. Способ ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей, включающий вращение детали и воздействие на ее поверхность устройством для ультразвуковой финишной обработки с деформирующим элементом, которое передвигают вдоль детали, задают ему ультразвуковые колебания и осуществляют многократную ударную обработку деформирующим элементом, отличающийся тем, что ударную обработку деформирующим элементом осуществляют с ультразвуковой частотой порядка 20 кГц и амплитудой 5-40 мкм, при этом осуществляют охлаждение обрабатываемой поверхности детали, обеспечивающее получение на ней градиентных субмикро- и нанокристаллических структур, путем отвода тепла с помощью теплопроводной насадки с теплоотдающим ребрением, выполненной из алюминия, причем между обрабатываемой поверхностью и теплопроводной насадкой используют высокотеплопроводную смазку.

3. Устройство для ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей способом по п.1, содержащее пьезострикционный преобразователь, соединенный с концентратором-волноводом, на торцевой части которого закреплен деформирующий элемент, и жидкостную систему охлаждения в виде ванны с керосином, выполненную с возможностью частичного погружения в нее деформирующего элемента и обрабатываемой детали.

4. Устройство для ультразвуковой финишной обработки деталей из конструкционных и инструментальных сталей способом по п.2, содержащее магнитострикционный или пьезострикционный преобразователь, соединенный с концентратором-волноводом, на торцевой части которого закреплен деформирующий элемент, и теплопроводную насадку с теплоотдающим ребрением, выполненную из алюминия.



 

Похожие патенты:

Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц, обладающего газочувствительным термоэлектрическим эффектом, т.е.

Изобретение может быть использовано при изготовлении носителей катализаторов, сорбентов, электрохимических конденсаторов и литий-ионных аккумуляторов. Взаимодействуют при 700-900 °C соль кальция, например, тартрат кальция или тартрат кальция, допированный переходным металлом, являющаяся предшественником темплата, и жидкие или газообразные углеродсодержащие соединения или их смеси в качестве источника углерода.

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм2 получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как алюминий, титан, цирконий, нанодисперсных порошков кремния или боридов алюминия, взятых в количестве 10-35 мас.

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-Al2O3. Способ синтеза полых наночастиц γ-Al2O3 реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала, включающий откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом и распыление композитного электрода, выполненого в виде графитового стержня с полостью, в которой установлена алюминиевая проволока при весовом соотношении C:Al 15:1, а на второй - отжиг синтезированного материала, в кислородсодержащей среде при атмосферном давлении и температуре 400-950°C в течение одного часа.

Изобретение относится к биотехнологии. Заявлен иммуноадъювант, представляющий собой наночастицы гидроксиапатита с адсорбированным синтетическим пептидом - лигандом CXCR 1 и 2 рецепторов.

Изобретение относится к области обработки давлением и может быть использовано для получения нанокристаллических заготовок металлов и сплавов с улучшенными физико-механическими свойствами.

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер.

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч.

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором.

Изобретение относится к способу получения насыщенных карбоновых кислот, в частности к новому способу гидрирования непредельных карбоновых кислот, и позволяет получать насыщенные карбоновые кислоты, которые находят применение в качестве полупродуктов в органическом синтезе.

Изобретение относится к поверхностному пластическому деформированию деталей с помощью обкатных роликов. Ролик содержит два деформирующих элемента с профильным радиусом 0,5…5 мм, расположенных относительно друг друга со смещением в радиальном направлении на величину 0,01…0,1 мм как к оси ролика, так и от нее.

Изобретение относится к поверхностному пластическому деформированию деталей с помощью обкатных роликов. Ролик содержит деформирующий элемент, имеющий радиус постоянной величины, равный 1…10 мм, и цилиндрическую часть, расположенную со смещением в радиальном направлении относительно вершины деформирующего элемента на величину Δ=0,01…0,5 мм.

Изобретение относится к машиностроению и может быть использовано для обработки металлов поверхностным пластическим деформированием нежестких длинномерных деталей.

Изобретение относится к ролику накатного инструмента. Ролик расположен в корпусе на болте между головкой болта и крышкой с возможностью свободного вращения.

Изобретение относится к области машиностроения, а именно к поверхностному упрочнению изготовленных из ферромагнитных материалов зубчатых колес. Осуществляют монтаж одного зубчатого колеса на валу, а другого - на оси.

Изобретение относится к устройствам обкатывания крупных резьб и архимедовых червяков. Устройство содержит игольчатые ролики, опертые на две промежуточные самоустанавливающиеся тороконические шайбы.

Изобретение относится к области деревообрабатывающей промышленности, в частности к устройствам для нанесения покрытия на профиль. Машина для нанесения покрытия на профиль содержит конвейерный тракт для профиля и множество держателей, расположенных вдоль конвейерного тракта.

Изобретение относится к технологии машиностроения, а именно к формообразованию наружных резьб пластическим деформированием. Сообщают вращательное движение заготовке и осевую подачу резьбонакатной головке.

Способ относится к комбинированной обработке точением и поверхностным пластическим деформированием цилиндрической поверхности вращающейся заготовки. Для повышения производительности формирования в поверхностном слое заготовки остаточных сжимающих напряжений обработку ведут токарным резцом и размещенным с отставанием относительно вершины резца в направлении движения продольной подачи шаровидным деформирующим элементом более высокой твердости по сравнению с твердостью материала обрабатываемой заготовки, установленным в акустическом концентраторе, через осевой канал которого подводят СОЖ.

Изобретение относится к поверхностному пластическому деформированию цилиндрических деталей. Сообщают ролику движение подачи вдоль оси обрабатываемой детали.

Изобретение относится к области машиностроения, в частности к металлообработке, и может быть использовано при изготовлении металлических изделий с повышенной износостойкостью поверхности. Для повышения эффективности и надежности работы устройство включает ультразвуковой генератор, предназначенный для преобразования физических характеристик переменного тока - частоты, соединенный с магнитострикционным преобразователем, в котором происходит преобразование электромагнитных колебаний в ультразвуковые, на котором жестко смонтирован концентратор, выполненный из металла в виде усеченного конуса и предназначенный для изменения амплитуды ультразвуковых колебаний. На коническом концентраторе установлена и жестко закреплена рабочая камера, снабженная крышкой, заполненная дробью и легирующим веществом. Рабочая камера выполнена в виде металлической чаши, имеющей форму овала в горизонтальном сечении. В верхней части рабочей камеры выполнены диаметрально расположенные отверстия, в которых размещены подшипники скольжения для закрепления и вращения обрабатываемой детали внутри рабочей камеры. Отверстия в рабочей камере выполнены на расстоянии от низа рабочей камеры, определяемом расчетным путем. Вращение обрабатываемой детали осуществляется от электродвигателя. 1 з.п. ф-лы, 3 ил., 1 табл.
Наверх