Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов



Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов
Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов
Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов
Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов

 


Владельцы патента RU 2531039:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Изобретение относится к технической физике, а именно к анализу материалов, в частности к определению физико-химических параметров многокомпонентных металлических расплавов методом геометрии «большой капли», т.е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли образца многокомпонентного расплава посредством фотометрической объемометрии. Способ заключается в том, что нагревают образцы до плавления, при отклонениях силуэта от эллипсовидности нагрев останавливают. Затем воздействуют на каплю механическими колебаниями и продолжают нагрев, пока не будут устранены отклонения силуэта от эллипсовидности. Далее нагрев образца останавливают и прекращают воздействие механическими колебаниями. При этом колебания имеют звуковую частоту, например, кратную частоте сети. Кроме того, воздействуют механическими колебаниями на регулируемый шток. Кроме того, воздействуют колебаниями от электромеханического генератора. В устройство введены источник механических колебаний, средство для передачи механических колебаний, одним концом закрепленное на источнике механических колебаний, а другим концом соединенное с регулируемым штоком посредством регулируемого элемента. При этом в качестве источника колебаний используют силовой трансформатор, а средство для передачи колебаний соединено перпендикулярно штоку. Кроме того, средство для передачи механических колебаний выполнено в виде металлического штока. Кроме того, регулируемый элемент выполнен в виде струбцины. Техническим результатом является обеспечение возможности удаления пленки с поверхности расплавленного образца, получение и сохранение необходимой формы образца для последующего определения плотности и поверхностного натяжения многокомпонентных металлических расплавов. 2 н. и 12 з.п. ф-лы, 4 ил.

 

Изобретение относится к технической физике, а именно к анализу материалов, в частности к определению физико-химических параметров многокомпонентных металлических расплавов методом геометрии «большой капли», т.е. путем измерения плотности неподвижно лежащей на подложке эллипсовидной капли образца многокомпонентного расплава посредством фотометрической объемометрии. Изобретение может быть использовано в лабораторных исследованиях, на предприятиях металлургической промышленности, при выполнении лабораторных работ в вузах.

Известен способ и устройство для определения плотности и поверхностного натяжения образца - капли расплава с известной массой, равной 10-40 граммов («большой капли»), лежащей на подложке, размещенной на конце штока в высокотемпературной зоне электропечи, заполненной инертным газом, на основе фотометрической объемометрии. Его осуществляют путем измерения параметров эллипсоида капли, его контура (силуэта) и дальнейшего вычисления объема капли (см. Филиппов С.И. и др. «Физико-химические методы исследования металлургических процессов». Металлургия, M. 1968 г., стр.266÷271, рис.114, 116 - аналог). При этом наличие гелиевой атмосферы внутри электропечи с давлением, равным атмосферному, предохраняющей образец как от загрязнения газами воздуха, так и от вскипания расплава, горизонтальная установка подложки, на которой помещают каплю в зоне нагрева печи, чистая поверхность образца расплавленной капли, эллиптическая форма силуэта, его симметрия, и строгая окружность в основании капли являются необходимыми условиями применения метода «большой капли».

Легированные многокомпонентные высокотемпературные сплавы, содержащие различные сложные соединения и включения, в том числе газы - например, кислород, при нагреве и расплавлении образца покрываются пленками различной толщины. Эти пленки могут существенно менять форму капли расплава, вплоть до превращения капли в сплющенную блинообразую фигуру с углублением в верхней части. Подобная форма образца становится не пригодной для измерений.

Известно использование дуговых вакуумных электропечей при выплавке многокомпонентных сплавов, при этом вакуум предохраняет металл от загрязнения газами воздуха и обеспечивает его дополнительную очистку от летучих примесей и газов - см. Б.Б. Кистяковский и др. «Производство цветных металлов», Металлургия, 1984, с.69-70. Недостатком данного способа является необходимость вакуума для очистки от летучих примесей и газов в металле, что может вызвать вскипание образца при расплавлении, его расплескивание и нарушение как требуемой для измерений формы, так и уменьшение массы образца, а это в конечном итоге не обеспечивает требуемой достоверности и точности измерений.

Известен способ очистки поверхности образца с использованием механических колебаний, в частности ультразвуковых, при этом образец полностью погружается в моющий раствор, в который вводятся ультразвуковые колебания, которые в несколько раз ускоряют процесс очистки, например, обезжиривания - см. «Ультразвук. Маленькая энциклопедия», изд. Советская энциклопедия, М., 1979, с.242-247 - аналог. Недостатками данного способа являются, во первых, невозможность его использования при высоких, до +2000°C температурах и, во вторых, необходимость использования контактной жидкости, обеспечивающей контакт источника ультразвука с образцом, в частности, моющей среды, которая представляет собой химически активную жидкость и может вступать в какие-то реакции с исследуемым образцом, изменяя при этом его свойства.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ определения плотности высокотемпературных многокомпонентных металлических расплавов с использованием капельного образца расплава известной массы, лежащего на подложке, закрепленной на одном из концов регулируемого штока в высокотемпературной зоне электропечи горизонтального типа, питающейся от силового трансформатора электропитания, при котором осуществляют регулировку подложки и регулируемого штока с использованием узла изменения положения подложки, на подложку загружают образец, включают измерительную установку, которая осуществляет нагрев и плавление образца, фотоспособом наблюдают, посредством компьютера и расположенного вне электропечи фотоприемника, изображение, включающее эллипсовидный силуэт капли образца расплава, по которому определяют объем, плотность и поверхностное натяжение капли - см. пат. РФ №2459194 - прототип.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является устройство для определения плотности высокотемпературных многокомпонентных металлических расплавов содержащее капельный образец расплава известной массы, лежащего на подложке, закрепленной на одном из концов регулируемого штока в высокотемпературной зоне электропечи горизонтального типа, силовой трансформатор электропитания, узел изменения положения подложки, компьютер, фотоприемник - см. пат. РФ №2459194.

Недостатком этих способа и устройства является то, что при нагреве образца, в частности многокомпонентного, в том числе с момента расплавления, из него происходит выделение различных сложных соединений и включений, в том числе газов. Вследствие этого на поверхности расплавленного образца может образоваться эластичная пленка, которая не позволит обеспечить получение и сохранение эллипсовидной формы силуэта изучаемого образца, а также его симметрию и строгую окружность в основании капли для последующего определения его плотности и поверхностного натяжения. Поэтому не обеспечены необходимые условиями применения метода «большой капли», в том числе обеспечение симметрии эллипсоида расплава и физические условия для применения формул расчета этого эллипсоида, определения параметров силуэта, объема и следовательно, не обеспечены достоверность и точность измерения плотности и поверхностного натяжения капли металлического расплава, в частности, многокомпонентного.

Задачей изобретения является обеспечение возможности удаления пленки с поверхности расплавленного образца, что обеспечивает получение и сохранение требуемой формы этого образца для последующего определения плотности и поверхностного натяжения многокомпонентных металлических расплавов и в конечном итоге, повышение достоверности и точности измерения плотности и поверхностного натяжения изучаемого образца многокомпонентного металлического расплава.

Для решения поставленной задачи предлагаются способ и устройство для определения плотности и поверхностного натяжения высокотемпературных металлических расплавов.

Способ определения плотности и поверхностного натяжения многокомпонентных металлических расплавов с использованием капельного образца расплава известной массы, лежащего на подложке, закрепленной на одном из концов регулируемого штока в высокотемпературной зоне электропечи горизонтального типа, питающейся от силового трансформатора электропитания, при котором осуществляют регулировку подложки и горизонтального регулируемого штока с использованием узла изменения положения подложки, на подложку загружают образец, включают измерительную установку, которая осуществляет нагрев и плавление образца, фотоспособом наблюдают, посредством компьютера и расположенного вне электропечи фотоприемника, изображение, в том числе, эллипсовидный силуэт капли образца расплава, по которому определяют объем, плотность и поверхностное натяжение капли, отличающийся тем, что в начале эксперимента осуществляют нагрев образца вплоть до его плавления, при наблюдаемых отклонениях силуэта капли образца расплава от эллипсовидности нагрев останавливают, начинают воздействие на каплю образца расплава механическими колебаниями, при этом продолжают нагрев образца до тех пор, пока не будут устранены наблюдаемые отклонения силуэта капли образца расплава от эллипсовидности, после этого нагрев образца снова останавливают, прекращают воздействие на каплю образца расплава механическими колебаниями, после чего продолжают последующие операции способа.

Кроме того, осуществляют воздействие механическими колебаниями, имеющими частоту, находящуюся в звуковом диапазоне, например, кратную частоте силовой электрической сети.

Кроме того, осуществляют воздействие механическими колебаниями, направленными перпендикулярно электропечи горизонтального типа.

Кроме того, осуществляют воздействие механическими колебаниями на горизонтальный регулируемый шток.

Кроме того, осуществляют воздействие механическими колебаниями на узел изменения положения подложки.

Кроме того, осуществляют воздействие механическими колебаниями от силового трансформатора электропитания.

Кроме того, осуществляют воздействие механическими колебаниями от электромеханического генератора этих колебаний, например соленоида.

Устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов, содержащее капельный образец расплава известной массы, лежащего на подложке, закрепленной на одном из концов горизонтального регулируемого штока в высокотемпературной зоне электропечи горизонтального типа, силовой трансформатор электропитания, узел изменения положения подложки, компьютер, фотоприемник, отличающееся тем, что в него введены источник механических колебаний, средство для передачи механических колебаний, одним концом закрепленное на источнике механических колебаний, а другим концом соединенное с горизонтальным регулируемым штоком посредством регулируемого элемента.

Кроме того, в качестве источника механических колебаний используют силовой трансформатор электропитания.

Кроме того, в качестве источника механических колебаний используют электромеханический генератор этих колебаний, например соленоид.

Кроме того, средство для передачи механических колебаний размещено перпендикулярно горизонтальному регулируемому штоку.

Кроме того, частота механических колебаний находится в звуковом диапазоне, например, равна частоте силовой электрической сети.

Кроме того, средство для передачи механических колебаний выполнено в виде металлического штока.

Кроме того, регулируемый элемент выполнен в виде струбцины. Технические решения, содержащие вышеуказанные совокупности ограничительных и отличительных признаков, обеспечивают достижение технического результата - осуществление возможности удаления пленки с поверхности расплавленного образца, что обеспечивает получение и сохранение требуемой формы этого образца для последующего определения плотности и поверхностного натяжения многокомпонентных металлических расплавов, и в конечном итоге, повышение достоверности и точности измерения плотности и поверхностного натяжения изучаемого образца многокомпонентного металлического расплава.

Такие технические решения не выявлены в известном уровне техники, что при достижении вышеописанного технического результата позволяет считать предложенные технические решения имеющими изобретательский уровень. Предлагаемое изобретение поясняется чертежами:

фиг.1 - блок-схема устройства для реализации способа;

фиг.2 - динамика изображений образца трубной стали на подложке без использования механических колебаний с начала его плавления tпл до срыва эксперимента:

от tпл=+1500°C до t=+1550°C;

фиг.3 - влияние механических колебаний на динамику изображений образца трубной стали на подложке от tпл=+1510°C до завершения экспериментов t=+1750°C;

фиг.4 - образцы после экспериментов с использованием механических колебаний и без них.

Способ осуществляют посредством устройства для его реализации - см. фиг.1, которое содержит: источник механических колебаний 1, преимущественно звуковой частоты, средство для передачи механических колебаний 2, фотоприемник 3, соосный с высокотемпературной зоной электропечи 4 горизонтального типа, коаксиальный цилиндрический электронагреватель 5, капельный образец расплава фиксированной массы 6, расположенный на срезе цилиндрической подложки 7, закрепленной на одном из концов горизонтального регулируемого штока 8, другой конец которого через вакуумный уплотнительный узел 9 соединен с узлом изменения положения подложки 10, регулируемый элемент 11, компьютер 12, на дисплей 13 которого выводят изображение капельного образца расплава фиксированной массы 6 и подложки 7.

В качестве источника механических колебаний 1 используют, например, силовой трансформатор электропитания (на схеме не показано), закрепленный на станине измерительного комплекса. Средство для передачи механических колебаний 2 выполнено например, в виде стального штока длиной, например, 250-300 мм и диаметром 3-10 мм, жестко закрепленного, например, винтовым соединением, одним из концов на источнике механических колебаний 1, и расположено преимущественно перпендикулярно горизонтальному регулируемому штоку 8. Фотоприемник 3 выполнен в виде телекамеры, например, 3372Р Sanyo, коаксиальный цилиндрический электронагреватель 5 выполнен из молибдена. Подложка 7 выполнена в виде цилиндра из высокотемпературной керамики, например, бериллиевой. Регулируемый шток 8 диаметром 10 мм выполнен из молибдена, вакуумный уплотнительный узел 9 сделан из вакуумной резины и соединен с узлом изменения положения подложки 10, выполненным в виде исполнительного устройства с шаговыми двигателями, описанного в прототипе, регулируемый элемент 11 выполнен в виде струбцины, закрепленной на средстве для передачи механических колебаний 2 и охватывающей регулируемым зажимом часть регулируемого штока 8 между уплотнительным узлом 9 и узлом изменения положения подложки 10.

Определение плотности и поверхностного натяжения многокомпонентных металлических расплавов, в частности многокомпонентных, на предлагаемой установке осуществляется следующим образом: подготавливают изучаемый образец фиксированной массы 6, равной 10÷40 граммов, который укладывают на срезе цилиндрической подложки 7. Горизонтальный регулируемый шток 8 вводят в коаксиальный цилиндрический электронагреватель 5 и регулируют его положение, в частности, горизонтальность подложки 7, так чтобы посредством фото приемника 3, соосного с высокотемпературной зоной электропечи 4 горизонтального типа, наблюдать на дисплее 13 компьютера 12 изучаемый образец 6 на подложке 7. Электропечь 4 закрывают, из нее откачивают воздух и закачивают гелий. Регулируемый элемент 11 одевают на регулируемый шток 8, но не закрепляют на нем. Кроме того, как вариант, регулируемый элемент 11 может быть соединен не с регулируемым штоком 8, а узлом изменения положения подложки 10. Включают электропечь и начинают эксперимент, при этом наблюдают на дисплее 13 все стадии эксперимента. Увеличивают нагрев и в случае появления искаженного, неэллиптического или «блинообразного» изображения изучаемого образца 6, или явной пленки на нем, нагрев останавливают на данной температуре, регулируемый элемент 11, например струбцину, жестко фиксируют посредством зажима и винтового соединения на регулируемом штоке 8. После этого снова продолжают нагрев. Механические колебания (вибрация) от источника механических колебаний 1, например силового трансформатора электропитания или, как вариант, электромеханического генератора этих колебаний, например, соленоида, с частотой, кратной частоте питающей сети, через средство для передачи механических колебаний 2, например, стальной шток и регулируемый элемент 11 передаются на горизонтальный регулируемый шток 8, подложку 7 и образец расплава 6. Уровень колебаний можно регулировать, если необходимо, путем размещения дополнительной упругой прокладки между горизонтальноым регулируемым штоком 8 и регулируемым элементом 11.

Например, последовательность изображений образца 6 трубной стали 10Г2ФБЮ, лежащего на подложке 7, при возрастающей температуре нагрева от tпл=+1500°C до t=+1550°C (срыв эксперимента) без осуществления наличия механических колебаний, приведена на фиг.2, причем видна неравномерная пленка окислов на образце. Очевидна непригодность использования этих изображений для последующих операций способа. Осуществление механических колебаний в эксперименте проиллюстрировано на фиг.3, причем вначале заметна пленка окислов, в частности на левом краю изображения, и асимметрия расположения капли образца 6 на подложке 7. По последнему кадру изображений на фиг.3, уже после отключения механических колебаний, осуществляют измерения силуэта капли образца 6. На эллипсоидных силуэтах образца 6 фиг.3 видны колебания 14 силуэта, обусловленные включенными механическими колебаниями с частотой, кратной частоте силовой сети. Сравнительный постэкспериментальный вид образцов 6, полученных с использованием 15 предлагаемого изобретения и без его использования 16 приведен на фиг.4.

Анализ изображений образцов расплава 6, приведенных на фиг.2-4, подтверждает целесообразность использования предлагаемого изобретения для обеспечения симметричного эллипсоида расплава и обоснованного последующего применения формул расчета для этого эллипсоида, определения параметров силуэта, объема и, в конечном итоге, плотности и поверхностного натяжения образца исследуемого расплава.

Отличительные признаки предложенного технического решения обеспечивают возможность увеличения качества изображений: эллиптичности и симметрии как силуэта, так и сечения наблюдаемой капли многокомпонентного металлического расплава, а в конечном итоге, увеличение объективности, достоверности и точности определения плотности и поверхностного натяжения многокомпонентных металлических расплавов методом геометрии «большой капли».

1. Способ определения плотности и поверхностного натяжения многокомпонентных металлических расплавов с использованием капельного образца расплава известной массы, лежащего на подложке, закрепленной на одном из концов регулируемого штока в высокотемпературной зоне электропечи горизонтального типа, питающейся от силового трансформатора электропитания, при котором осуществляют регулировку подложки и горизонтального регулируемого штока с использованием узла изменения положения подложки, на подложку загружают образец, включают измерительную установку, которая осуществляет нагрев и плавление образца, фотоспособом наблюдают, посредством компьютера и расположенного вне электропечи фотоприемника, изображение, включающее эллипсовидный силуэт капли образца расплава, по которому определяют объем, плотность и поверхностное натяжение капли, отличающийся тем, что в начале эксперимента осуществляют нагрев образца вплоть до его плавления, при наблюдаемых отклонениях силуэта капли образца расплава от эллипсовидности нагрев останавливают, начинают воздействие на каплю образца расплава механическими колебаниями, после чего продолжают нагрев образца до тех пор, пока не будут устранены наблюдаемые отклонения силуэта капли образца расплава от эллипсовидности, после этого нагрев образца снова останавливают, прекращают воздействие на каплю образца расплава механическими колебаниями, после чего продолжают последующие операции способа.

2. Способ по п.1, отличающийся тем, что осуществляют воздействие механическими колебаниями, имеющими частоту, находящуюся в звуковом диапазоне, например, кратную частоте силовой электрической сети.

3. Способ по п.1, отличающийся тем, что осуществляют воздействие механическими колебаниями, направленными перпендикулярно электропечи горизонтального типа.

4. Способ по п.1, отличающийся тем, что осуществляют воздействие механическими колебаниями на горизонтальный регулируемый шток.

5. Способ по п.1, отличающийся тем, что осуществляют воздействие механическими колебаниями на узел изменения положения подложки.

6. Способ по п.1, отличающийся тем, что осуществляют воздействие механическими колебаниями от силового трансформатора электропитания.

7. Способ по п.1, отличающийся тем, что осуществляют воздействие механическими колебаниями от электромеханического генератора этих колебаний, например соленоида.

8. Устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов, содержащее капельный образец расплава известной массы, лежащего на подложке, закрепленной на одном из концов горизонтального регулируемого штока в высокотемпературной зоне электропечи горизонтального типа, силовой трансформатор электропитания, узел изменения положения подложки, компьютер, фотоприемник, отличающееся тем, что в него введены источник механических колебаний, средство для передачи механических колебаний, одним концом закрепленное на источнике механических колебаний, а другим концом соединенное с регулируемым штоком посредством регулируемого элемента.

9. Устройство по п.8, отличающееся тем, что в качестве источника механических колебаний используют силовой трансформатор электропитания.

10. Устройство по п.8, отличающееся тем, что в качестве источника механических колебаний используют электромеханический генератор этих колебаний, например соленоид.

11. Устройство по п.8, отличающееся тем, что средство для передачи механических колебаний размещено перпендикулярно горизонтальному регулируемому штоку.

12. Устройство по п.8, отличающееся тем, что частота механических колебаний находится в звуковом диапазоне, например, равна частоте силовой электрической сети.

13. Устройство по п.8, отличающееся тем, что средство для передачи механических колебаний выполнено в виде металлического штока.

14. Устройство по п.8, отличающееся тем, что регулируемый элемент выполнен в виде струбцины.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси перед закачкой в пласт.

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца расплава посредством фотоэлектронной объемометрии.

Изобретение относится к приборам для исследования температурных и концентрационных зависимостей поверхностных свойств металлических расплавов с участием компонентов с высокой упругостью пара и может найти широкое применение в научно-исследовательской практике по физике, физической химии, материаловедении, металлургии легкоплавких металлов, заводских лабораториях и т.д.

Изобретение относится к медицине, а именно к пульмонологии, и может быть использовано для оценки состояния легочного сурфактанта. Для этого собирают компоненты легочного сурфактанта путем барботации выдыхаемого воздуха через слой изотонического физиологического раствора, расположенного в стеклянной бюретке и лотке барьерной системы Ленгмюра.

Изобретение относится к области поверхностных явлений в технологии вязкотекучих жидкостей и может использоваться в измерительной технике для прецизионного определения коэффициента поверхностного натяжения различных жидкостей, в том числе высокотемпературных расплавов, и измерения угла смачивания.

Изобретение относится к области технических измерений, в частности к способам определения коэффициента поверхностного натяжения жидкости, и может быть использовано при изучении процессов проникновения жидкостей в поры и их вытеснения из пор, что, в свою очередь, играет важную роль при интенсификации процессов пропитки, фильтрации, сушки и т.д.

Изобретение относится к способу и устройству для измерения поверхностного натяжения жидкостей по принципу максимального давления пузырька. .

Изобретение относится к области измерительной техники, в частности к пневматическим способам контроля поверхностного натяжения и плотности жидкости, и может найти применение в различных отраслях промышленности, таких как нефтяная, химическая, микробиологическая, пищевая и др.

Изобретение относится к области физики материального взаимодействия, конкретно к способу определения физических характеристик φв - угла внутреннего трения и удельного сцепления - св воды с жидкокристаллической структурой. По зависимости h п л = σ п л / γ в = α / γ в , где σпл - величина поверхностного натяжения верхнего слоя пленки воды при температуре T°C и нормальном атмосферном давлении pатм.ср=1,033 кг/см2 окружающей среды, α - опытный справочный коэффициент, определяют толщину поверхностной пленки воды, удельное сцепление воды определяют как св=τ=γв·hпл=27,446 Па при hпл=27,978·10-4 м, а угол φв внутреннего трения воды определяют из зависимости tgφв=1-[св/(γв·H)] на заданной глубине H. Техническим результатом является создание способа определения физических характеристик угла внутреннего трения и удельного сцепления воды с жидкокристаллической структурой. 1 табл., 1 ил.

Изобретение относится к области исследования поверхностных явлений и предназначено для надежного определения коэффициента поверхностного натяжения жидкостей σ21. Под этим коэффициентом понимается поверхностное натяжение жидкости (2) на границе с ее паром (1) или другим газом. Способ определения коэффициента поверхностного натяжения жидкости методом «растекания» включает определение толщины равновесного слоя растекшейся жидкости. Также способ включает определение сил гидростатического давления и определение силы поверхностного натяжения на границе между жидкостью и твердой подложкой - силы межфазного натяжения. При этом дополнительно выполняют определение коэффициента межфазного натяжения между конкретной подложкой и исследуемой жидкостью. После чего определяют коэффициент поверхностного натяжения жидкости посредством использования уравнений по формулам: для случая полного смачивания , для случая полного несмачивания , где ρ - плотность исследуемой жидкости; g - ускорение свободного падения; h - толщина равновесного слоя растекшейся жидкости; σ32 - коэффициент межфазного натяжения в системе «материал подложки - исследуемая жидкость»; σ21 - коэффициент поверхностного натяжения исследуемой жидкости. Техническим результатом является получение достоверных значений коэффициента поверхностного натяжения основных жидкостей.

Изобретение относится к области поверхностных явлений и предназначено для достоверного определения коэффициента поверхностного натяжения жидкостей σ21, под коэффициентом σ21 понимается поверхностное натяжение жидкости (2) на границе с ее паром (1) или другим газом. Способ определения коэффициента поверхностного натяжения жидкостей включает измерение величины превышения равновесного уровня жидкости в капилляре над уровнем жидкости в широком сосуде при подъеме и при истечении. При этом измерение уровней превышения равновесного уровня жидкости в капилляре над уровнем жидкости в широком сосуде при подъеме и при истечении производят несколько раз, не извлекая полностью капилляр из жидкости. Далее выполняют определение коэффициента поверхностного натяжения жидкости по формуле: где h1 - среднее превышение равновесного уровня жидкости в капилляре при ее подъеме; h2 - среднее превышение равновесного уровня жидкости в капилляре при ее истечении; ρ - плотность жидкости; r - радиус капилляра; r0 - «радиус капиллярности» системы «материал капилляра - жидкость». Техническим результатом является достоверное определение коэффициента поверхностного натяжения жидкости σ21 капиллярным методом.

Изобретение относится к области аналитической техники, а именно к способам и средствам измерений межфазного натяжения жидких сред. Для этого формируют вспучивания на межфазной поверхности жидкость-газ или жидкость-жидкость воздействием ультразвукового радиационного давления, и определяя максимальную высоту вспучивания, судят о величине поверхностного или межфазного натяжения. Техническим результатом является обеспечение возможности сравнительных измерений поверхностного и межфазного натяжения жидкостей. 1 ил.

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов методом геометрии контура «большой лежащей капли», т.е. путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца расплава посредством фотоэлектронной объемометрии. Изобретение предназначено преимущественно для изучения легкоплавких сплавов с температурой плавления tпл меньше 700К÷1000К, не обеспечивающих свечения образца, например оловянно-свинцовых припоев. Способ отличается тем, что на штоке размещают отражатель, который располагают со стороны подложки с изучаемым образцом, противоположной фотоприемнику, преимущественно перпендикулярно горизонтальной оси штока; излучателем освещают образец, располагаемый на подложке, и отражатель, регулировкой излучателя добиваются равномерной максимальной контрастности контура образца на фоне отражателя. Устройство содержит подложку с образцом, которые находятся на штоке, расположенном в горизонтальной электропечи, фотоприемник с объективом, соединенный с компьютером, отличающееся тем, что в него введен отражатель, размещенный на штоке и выполненный в виде неплоской или плоской пластины из тугоплавкого металла, например молибдена. Технические решения обеспечивают, в частности, в температурном диапазоне до 700К÷1000К постоянную, равномерную и контрастную подсветку всего контура изучаемого образца с одновременным освещением передней полусферы поверхности изучаемого образца. Техническим результатом является расширение функциональных возможностей, повышение уровня объективности, стабильности и достоверности определения поверхностного натяжения и/или плотности металлических расплавов. 2 н. и 3 з.п. ф-лы, 6 ил.

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических сплавов методом геометрии «большой капли», т. е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли образца сплава посредством фотометрической объемометрии. Способ основан на фотометрии капли расплавленного образца металлического сплава, находящегося на подложке, при нагреве и последующем охлаждении этой капли, при котором на подложку загружают образец металлического сплава. Затем подложку с образцом помещают в горизонтальную электропечь, нагревают, плавят и охлаждают данный образец, с начала плавления образца при температуре tпл0, при каждой из температур ti вплоть до заданной максимальной температуры tmax. Далее сигналы фотоприемника Ufi фиксируют в компьютере в виде i - изображений капли расплава, по силуэтам этих изображений вычисляют термозависимости плотности di(ti) и/или поверхностного натяжения σi(ti) капли образца металлического сплава. Причем в процессе охлаждения определяют разности модулей плотности di(ti) и/или поверхностного натяжения σi(ti) для каждой из температур ti термозависимостей при нагреве и охлаждении образца. Далее суммируют эти разности, при величине суммы Σ(Δi), превышающей погрешность δi на заданную величину, вырабатывают сигнал тревоги о загрязнении образца, результаты эксперимента аннулируют и осуществляют эксперимент с новым образцом металлического сплава. Устройство содержит фотоприемник, соединенный с компьютером. При этом в устройство дополнительно введены блоки сигнализации, синхронизации, вычитания, суммирования, компаратор и регулятор порога срабатывания компаратора. Первый и второй входы блока вычитания соединены с первым портом компьютера, вход блока синхронизации соединен со вторым портом компьютера. Выход блока синхронизации соединен с третьим входом блока вычитания и первым входом блока суммирования, второй вход которого соединен с выходом блока вычитания, выход блока суммирования соединен с одним из входов компаратора, другой вход компаратора соединен с выходом регулятора порога срабатывания компаратора, а выход компаратора соединен с блоком сигнализации. Техническим результатом является обеспечение возможности оперативной количественной индикации загрязнений образца металлического сплава при его изучении и снижения квалификационных требований к персоналу. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к области технических измерений, в частности к способам определения поверхностного натяжения на границе органической и водной фаз гербицидных эмульсий. Способ определения поверхностного натяжения на границе раздела фаз жидкость-жидкость включает счет капель, вытекающих из сталагмометра. Причем счет капель органической фазы осуществляют при ее вытекании из сталагмометра отдельно в воду и отдельно в эмульсию, а поверхностное натяжение на границе водной и органической фаз - межфазное натяжение σж-ж (мН/м), рассчитывают по формуле: σж-ж=(σв-σорг.ф)·nв/nэм·ρорг.ф /ρв, где σв - поверхностное натяжение воды на границе с воздухом, равное 72,5 мН/м при 20°С; σорг.ф - поверхностное натяжение органической фазы на границе с воздухом, мН/м; nв - количество капель органической фазы, вытекающей в воду; nэм - количество капель органической фазы, вытекающей в эмульсию; ρорг.ф/ρв - отношение плотности органической фазы к плотности воды. Техническим результатом является повышение точности измерений. 2 з.п. ф-лы, 12 пр., 1 табл.

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических сплавов методом геометрии «большой капли», т.е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли образца сплава посредством фотометрической объемометрии. Способ заключается в том, что с момента начала плавления в сигнале фотоприемника каждого i-изображения определяют значение дисперсии σi и сравнивают с предварительно устанавливаемым пороговым значением, равным пороговому при температуре плавления tпл0. При этом в случае отклонения от порогового значения дисперсии на заданную величину сигнализируют об изменении неоднородности, например яркости, у изображений и наличии загрязнений образца. После чего уменьшают градиент температуры посредством регулировки мощности электропечи, при уменьшении неоднородности в течение заданного времени продолжают эксперимент, а при сохранении неоднородности его прекращают. Устройство содержит блоки сигнализации и определения дисперсии, компаратор, регулятор порога компаратора. При этом вход блока определения дисперсии подключен к выходу фотоприемника, его выход соединен с компьютером и одним из входов компаратора, другой вход компаратора соединен с выходом регулятора порога компаратора, а выход компаратора соединен с блоком сигнализации. Техническим результатом является оперативная оценка загрязнений образца, уменьшение субъективности решения о продолжении или прекращении экспериментов, расширение функциональных возможностей способа, обеспечение снижения квалификационных требований к экспериментатору. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к области физико-химического анализа материалов, более конкретно к установлению зависимости поверхностного натяжения двухкомпонентной наночастицы сферической формы, находящейся в собственной двухкомпонентной матрице в зависимости от радиуса наночастицы и состава матрицы и наночастицы. Способ определения поверхностного натяжения двухкомпонентной наночастицы, находящейся в матрице, заключается в том, что сплав, содержащий наноразмерные частицы, находящиеся в равновесии с матрицей, подвергают количественному анализу, определяют состав наночастицы и матрицы, а также средний радиус наночастицы. Техническим результатом является расширение интервала размера малых частиц определения поверхностного натяжения до нанометрового диапазона (единицы и десятки нанометров), находящихся в непосредственном контакте с материнской матрицей. 1 табл.
Наверх