Способ промысловой регенерации триэтиленгликоля


 


Владельцы патента RU 2531584:

Общество с ограниченной ответственностью "Газпром добыча Ноябрьск" (RU)

Настоящее изобретение относится к способу промысловой регенерации триэтиленгликоля (ТЭГ) выпариванием воды из основного объема влагосодержащего ТЭГ и удалением попутно накопленных этим ТЭГом примесей и воды из остального, специально изъятого из процесса осушки газа объема ТЭГ, экстрагированием примесей дополнительно добавленной водой при интенсивном перемешивании этой смеси с последующим отстаиванием, сливом отстоявшегося из смеси ТЭГ, фильтрованием и регулируемым дозированным возвращением этого, слитого после отстаивания, ТЭГ в основной объем, подаваемый на выпаривание воды. При этом перед стадией экстрагирования примесей в специально изъятый из оборота объем ТЭГ вводят не менее чем полуторакратный объем смеси воды и циклогексанона в объемном соотношении их, как два к одному соответственно. Способ позволяет эффективно и экономично отделять примеси при отстаивании регенерируемого ТЭГ с получением практически обезвоженного абсорбента для его возврата в процесс осушки природного газа. 1 ил., 1 табл.

 

Изобретение относится к технологии восстановления абсорбирующих свойств триэтиленгликоля (ТЭГ), как влагопоглотителя, после многократной рециркуляции его в системе осушки природного газа перед подачей последнего в магистральный трубопровод, то есть к технологии очистки практически потерявшего свойства абсорбента вследствие длительного использования его в промысловых условиях газодобывающей отрасли.

Современный уровень технологии восстановления абсорбирующих свойств гликолей, как влагопоглотителей, при осушке природного газа отражен в целом ряде научно-технических публикаций: Осушка природных газов. И.В. Жданова, А.Л. Халиф - Изд. 2-е, М., Химия, 1984 - 192 с.; Очистка гликолей от механических примесей и углеводородов. О.П. Андреев, Р.В. Корытников, Д.А. Яхонтов, Т.М. Фарахов - М.: ООО «Газпром экспо», 2010 - 158 с.; Влияние изменения основных свойств и характеристик гликоля в процессе осушки газа на эффективность работы оборудования УКПГ сеноманской залежи. А.Н. Дудов, Н.И. Дубина, В.А. Ставицкий, Ю.Н. Ефимов, В.Ф. Гузов - Проблемы освоения месторождений Уренгойского комплекса, М., 1998, с.88-99; Комплексная очистка диэтиленгликоля на абсорбционных установках осушки газа месторождения Медвежье. К.М. Давлетов - Повышение эффективности освоения газовых месторождений Крайнего Севера, М., Наука, 1997, с.354-362; Создание установок регенерации гликоля с комплексом оборудования для очистки растворов от солей, тяжелых углеводородов, механических примесей и пути совершенствования массообменного оборудования. Г.К. Зиберт - Проблемы добычи и обустройства газовых и газоконденсатных месторождений на поздней стадии их разработки. М., 1997, с.160-165; Методы очистки гликолей от тяжелых углеводородов и продуктов деструкции. Э.С. Ключева, Н.П. Жила - М., ВНИИЭгазпром, 1990 - 40 с.; Осушка газа: оптимизация работы действующих установок. Часть 1. Определение требований к качеству гликоля и скорости его циркуляции. Д.Л. Крамер, У.Р. Кук - Нефть, газ, нефтехимия за рубежом, 1981, №1, с.21-24; Осушка газа: оптимизация работы действующих установок. Часть 2. Влияние эксплуатационных переменных показателей на эффективность осушки газа. Д.Л. Крамер, У.Р. Кук - Нефть, газ, нефтехимия за рубежом, 1981, №2, с.16-21, причем основным приемом генерации ТЭГ является выпаривание и отгонка воды. Однако в условиях газового промысла ТЭГ требует не только влагоудаления, но и очистки от накопившихся в нем разнообразных примесей как в жидком, так и в твердом состоянии. Такая очистка ТЭГ, как абсорбента-осушителя, тем более необходима из-за негативной особенности его селективно поглощать и накапливать ароматические углеводороды, существенно снижающие его влагопоглотительные свойства.

Для комплексного восстановления свойств предельно загрязнившегося примесями и влагой ТЭГ в настоящее время применяют кроме добавления воды значительное число веществ-добавок (реагентов, реактивов, присадок, ПАВ и т.п.) в определенных дозировках, как, например, изооктан по патенту [EP 0211659 A2, B01D 53/26, опубл. 25.02.87] или петролейный эфир фракции 70…100°C по патенту [RU 2409407 C1, B01D 3/36, опубл. 20.01.2011] или поверхностно-активную добавку состава Ni(CnH2n)2 по патенту [RU 2259861 C1, B01D 53/28, опубл. 10.09.2005] или алифатических спиртов в смеси с изопропилбензолом по патенту [RU 2394633 C2, B01D 53/26, опубл. 20.07.2010] с последующим гравитационным расслоением и разделением различных по плотности отстоявшихся слоев регенерируемого ТЭГ. Однако они не удаляют большую часть примесей углеводородного состава.

Наиболее близким техническим решением-способом восстановления свойств загрязненного при осушке природного газа ТЭГ в промысловых условиях является способ по патенту [RU 2446002 C1, B01D 53/26, опубл. 27.03.2012], сущность которого заключена в добавлении в ТЭГ, идущего с абсорбера, дополнительного количества воды, активном перемешивании смеси, нагреве и отстое до разделения ее на три характерных по составу фракции. То есть, в отстойнике смесь расслаивается на верхнюю легкую с ароматическими углеводородами фракцию, на среднюю, состоящую практически из ТЭГ с водой, и на нижнюю тяжелую фракцию, содержащую в основном тонкодисперсную суспензию твердых нафтеноароматических углеводородов с примесью асфальтенов и просто мехпримеси, выносимые из продуктивного пласта, а также продукты коррозии технологического оборудования. Средний, так называемый «осветленный» слой, состоящий из ТЭГ с повышенным содержанием воды, отбирают из отстойника, пропускают через фильтр и путем подмешивания к основному объему ТЭГ с абсорбера подают на выпарную колонну для отгонки воды, а верхний и нижний слои из отстойника периодически удаляют на утилизацию.

К недостаткам способа-прототипа следует отнести неэкономичное ведение процесса (дополнительный нагрев и длительный отстой), сложность контроля двух границ раздела трех слоев в отстойнике при отборе среднего слоя на регенерацию ТЭГ, а также низкое качество очистки ТЭГ от загрязнителей, влияющих на осушающую способность ТЭГ.

Требуемый технический результат (иначе - задача и цель заявляемого изобретения) заключается в обеспечении более высоких показателей восстановления осушающих свойств ТЭГ в сравнении с прототипом при большей экономичности процесса в целом.

Заявляемое изобретение решает поставленную задачу промысловой регенерации ТЭГ в соответствии с тем, что в способе-прототипе выпариванием воды из основного объема влагосодержащего ТЭГ и удалением попутно накопленных этим ТЭГ примесей и воды из остального, специально изъятого из процесса осушки газа объема ТЭГ, экстрагированием примесей дополнительно добавленной водой при интенсивном перемешивании этой смеси с последующим отстаиванием, сливом отстоявшегося из смеси ТЭГ, фильтрованием и регулируемым дозированным возвращением этого, слитого после отстаивания, ТЭГ в основной объем, подаваемый на выпаривание воды, перед стадией экстрагирования примесей в специально изъятый из оборота объем ТЭГ вводят не менее чем полуторакратный объем смеси воды и циклогексанона в объемном соотношении их, как два к одному соответственно.

Проведенный поиск в патентной документации и в научно-технической литературе показал, что приведенная совокупность существенных признаков в ней не обнаружена. Таким образом, приведенная совокупность признаков обеспечивает соответствие критериям патентоспособности, а именно: новизна, изобретательский кровень, промышленная применимость, а также обеспечивает получение технического результата, выражающегося в уменьшении энергопотребности, качестве очистки (регенерации) ТЭГ при реализации.

Данное техническое решение иллюстрируется чертежом, на котором приведена принципиальная технологическая схема промысловой регенерации загрязненного ТЭГ, где позициями 1 и 2 показаны блок абсорбции и блок регенерации ТЭГ установки комплексной подготовки газа (УКПГ). Позициями 3 и 4 показаны отстойный аппарат и выпарной аппарат соответственно блока очистки ТЭГ. Поток сырого газа 101 поступает в блок абсорбции 1. Поток сухого газа 102 из блока абсорбции 1 направляется в газопровод. Поток насыщенного ТЭГ (НТЭГ) 202 из блока абсорбции 1 подается в блок регенерации ТЭГ 2, где из НТЭГ отпаривается вода (поток 203). Поток регенерированного ТЭГ (РТЭГ) 201 возвращается в блок абсорбции 1.

Способ реализуют следующим образом. Из потока НТЭГ 202 или РТЭГ 201 отбирается поток 301 ТЭГ с загрязнителями и подается на блок очистки ТЭГ. В поток 301 дозируются вода (поток 302) и циклогексанон (поток 303) при очистке первой порции ТЭГ. При очистке последующих порций ТЭГ в поток 301 подается возвратная азеотропная смесь вода - циклогексанон (поток 306), потоками 302 и 303 производится подпитка недостающих количеств воды и циклогексанона для выполнения следующего соотношения: 1 объем триэтиленгликоля с загрязнителями; 1 объем воды; 0,5 объема циклогексанона. Наличие в разбавленном водой ТЭГе циклогексанона позволяет в отстойном аппарате получить 2 фазы: верхнюю, состоящую в основном из загрязнителей, которая удаляется на утилизацию (поток 304); нижнюю, состоящую из ТЭГ, воды и циклогексанона, которая направляется потоком 305 в выпарной аппарат, где из смеси при температуре 97÷107°C отгоняется азеотропная смесь вода - циклогексанон (поток 306), направляемая в поток очищаемого ТЭГ 301. Очищенный ТЭГ потоком 307 подается в поток НТЭГ 202 или РТЭГ 201.

В таблице 1 приведен баланс очистки ТЭГ разбавлением водой в присутствии циклогесанона (конкретный пример).

Таблица 1
Поток НТЭГ РТЭГ
вход на очистку, м3 выход с очистки, м3 вход на очистку, м3 выход с чистки, м3
ТЭГ + загрязнители 5 5
Загрязнители 1,2 1,1
ТЭГ очищенный 5 4,9
Вода 5 4,8 5 4,6
Циклогексанон 2,5 1,5 2,5 1,9

При наличии циклогексанона в разбавленном водой ТЭГ достигается:

- сокращение времени отстоя при очистке ТЭГ;

- упрощение контроля за технологическим процессом (в отстойном аппарате образуется 2 фазы, а не 3, как в прототипе);

- улучшение качества очистки ТЭГ от загрязнителей, включая углеводороды, осмолы, продукты термодеструкции ТЭГ.

Кроме того, в технологический процесс регенерации ТЭГ направляется очищенный от загрязнителей ТЭГ с минимальным содержанием воды, что не вызовет увеличения нагрузки на выпарную колонну блока регенерации ТЭГ и не потребует увеличения количества технологического оборудования блока регенерации ТЭГ или количества блоков.

Таким образом, предлагаемое изобретение обеспечивает получение требуемого технического результата доступными техническими средствами без применения сложного специализированного оборудования при использовании незначительного количества такого вещества-добавки, как широко применяемый и недорогой циклогексанон по ГОСТ 24619-81 (ранее СТ СЭВ 1681-79) и подлежит защите охранным документом (патентом) РФ.

Способ промысловой регенерации триэтиленгликоля выпариванием воды из основного объема влагосодержащего ТЭГ и удалением попутно накопленных этим ТЭГом примесей и воды из остального, специально изъятого из процесса осушки газа объема ТЭГ, экстрагированием примесей дополнительно добавленной водой при интенсивном перемешивании этой смеси с последующим отстаиванием, сливом отстоявшегося из смеси ТЭГ, фильтрованием и регулируемым дозированным возвращением этого, слитого после отстаивания, ТЭГ в основной объем, подаваемый на выпаривание воды, отличающийся тем, что перед стадией экстрагирования примесей в специально изъятый из оборота объем ТЭГ вводят не менее чем полуторакратный объем смеси воды и циклогексанона в объемном соотношении их, как два к одному соответственно.



 

Похожие патенты:

Способ получения глицериновых алкильных эфиров, содержащих ди- и/или триалкильные эфиры, посредством этерификации глицерина линейными, разветвленными или циклическими олефиновыми углеводородами, имеющими от 2 до 10 атомов углерода, и/или соответствующими альдегидами, кетонами и спиртами, в присутствии гомогенного кислотного катализатора, где олефиновый углеводород, имеющий от 2 до 10 атомов углерода, и/или соответствующие альдегиды, кетоны и спирты и глицерин применяют в мольном отношении в диапазоне от 0,1:1 до 10:1, включающий: стадию проведения реакции, на которой первый период реакции протекает в многофазовой системе, включающей полярную глицериновую фазу, состоящую преимущественно из глицерина и гомогенного кислотного катализатора, и неполярную углеводородную фазу, состоящую преимущественно из олефиновых углеводородов, имеющих от 2 до 10 атомов углерода, и/или соответствующих альдегидов, кетонов и спиртов, и в которой второй период реакции протекает в одной реакционной фазе, в которой проходит реакция этерификации, и образование олигомеров олефина затруднено; и стадию для нейтрализации кислотного катализатора и отделения образовавшейся соли.

Изобретение относится к усовершенствованному способу выделения диэтиленгликоля и триэтиленгликоля, которые широко используются в процессах получения полиуретанов и смол, для осушки природного газа, в качестве пластификаторов и компонентов антифризов, вакуумной ректификацией из смеси этиленгликолей, обработанной щелочным алкоголятом полиалкиленгликоля или простого полиэфира на основе оксида алкилена.

Изобретение относится к способу выделения алкил-глицериновых эфиров, обладающих высоким биологическим действием, из морских жиров. .
Изобретение относится к технологии органического синтеза, а именно к технологии получения пентаэритрита и дипентаэритрита, используемых в лакокрасочной и других отраслях химической промышленности.

Изобретение относится к новым соединениям: первичному спирту разветвленного эфира: и к способу его получения, в которой R1 представляет водород или углеводородный радикал, имеющий от 1 до 3 углеродных атомов, R2 представляет алкильный радикал, имеющий от 1 до 7 углеродных атомов, x представляет число от 3 до 16, где общее число углеродных атомов в спирте составляет от 9 до 24; к сульфату алкилового эфира: XOSO 3М и к способу его получения, в которой М представляет водород или катион, и Х представлен формулой в которой R1 представляет водород или углеводородный радикал, имеющий от 1 до 3 углеродных атомов, R2 представляет алкильный радикал, имеющий от 1 до 7 углеродных атомов, x представляет число от 3 до 16, где общее число углеродных атомов в сульфате алкилового эфира составляет от 9 до 24; к алкоксисульфату спирта: в которой R1 представляет водород или углеводородный радикал, имеющий от 1 до 3 углеродных атомов, R2 представляет алкильный радикал, имеющий от 1 до 7 углеродных атомов, x представляет число от 3 до 16, А представляет алкиленовый радикал, имеющий число атомов углерода в интервале от 2 до 4, у представляет число от 1 до 9, где общее число углеродных атомов в алкоксисульфате спирта, исключая А, составляет от 9 до 24, и М представляет водород или катион; и к алкоксилату разветвленного алканола: в которой R1 представляет водород или углеводородный радикал, имеющий от 1 до 3 углеродных атомов, R2 представляет алкильный радикал, имеющий от 1 до 7 углеродных атомов, x представляет число от 3 до 16, А представляет алкиленовый радикал, имеющий число атомов углерода в интервале от 2 до 4, у представляет число от 1 до 9, где общее число углеродных атомов в алкоксилате алканола, исключая А, составляет от 9 до 24; которые используются в моющих композициях.

Изобретение относится к способу получения гликолевых эфиров, применяемых в качестве активных растворителей для смол в производстве материалов для нанесений покрытий на поверхности, растворителей в производстве тормозных жидкостей, в качестве антиобледенителей в составе различных топлив на нефтяной основе в нефтеперерабатывающей промышленности, антифризов в автомобильной промышленности, а также в качестве продуктов специального ассортимента для бытового применения.

Изобретение относится к усовершенствованному способу выделения диэтиленгликоля и триэтиленгликоля, которые широко используются в процессах получения полиуретанов и смол, для осушки природного газа, в качестве пластификаторов и компонентов антифризов, вакуумной ректификацией из смеси этиленгликолей, обработанной щелочным алкоголятом полиалкиленгликоля или простого полиэфира на основе оксида алкилена.

Изобретение относится к способу получения безводного медицинского эфира дегидратацией этилового спирта серной кислотой, использующему в качестве источника этилового спирта отходы производства этилового спирта-ректификата из пищевого сырья, которые очищают ректификацией в присутствии 3 - 4% раствора гидроокиси натрия.
Изобретение относится к области технологии эфирных масел и синтетических душистых веществ и может быть использовано при получении анетола из натуральных эфирных масел.

Изобретение относится к простым эфирам, в частности к вьщелению метилаля, полученного взаимодействием параформа с метанолом в присутствии минеральной кислоты в качестве катализатора , который находит применение в качестве растворителя и высокооктановой добавки к топливу.

Изобретение относится к методу определения доли адсорбированного вещества, которое содержится в формованном теле, грануляте или порошке из цеолита, цеолитного соединения или силикагеля в качестве адсорбирующего материала, а также к соответствующему устройству и применению устройства для определения или мониторинга степени насыщения адсорбирующего материала, заложенного на хранение в емкость.

Изобретение относится к технике подготовки углеводородного газа к переработке или транспорту. Установка подготовки углеводородного газа содержит соединенные трубопроводами компрессорную станцию, холодильник газа и сепаратор отделения газа от жидкости.

Изобретение относится к газовой промышленности и может быть использовано для промысловой регенерации насыщенного раствора триэтиленгликоля, который используют в качестве абсорбента для извлечения водяных паров из газа в установках осушки природных газов.
Адсорбент для осушки газов, содержащий пористую матрицу и в порах матрицы активное влагопоглощающее гигроскопическое вещество из группы гидрофосфатов или дигидрофосфатов натрия или калия с размерами частиц 1-10 нм в количестве 40-100 вес.% в расчете на сухое вещество матрицы.
Наверх