Способ контроля расхода и дозирования сыпучих материалов



Способ контроля расхода и дозирования сыпучих материалов
Способ контроля расхода и дозирования сыпучих материалов

 


Владельцы патента RU 2532596:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный аграрный университет" (ФГБОУ ВПО АГАУ) (RU)

Способ контроля расхода и дозирования сыпучего материала включает пропуск материала из транспортера через входной патрубок на потокочувствительную турбинку типа лопастного метателя с горизонтальной осью вращения, приводимую в движение электродвигателем. После соприкосновения с лопастями турбинки частицы сыпучего продукта получают дополнительное количество движения и, отразившись от стенки кожуха, падают вниз на выводное устройство. Общий крутящий момента на валу турбинки равен ударному взаимодействию потока вещества с лопастью (косой удар) и ускорению Кориолиса при последующем скольжении частиц по лопастям из внутренней области турбинки наружу, пропорциональных массовому расходу материала. Возрастание нагрузки на лопастях вызывает снижение угловой скорости вращения ротора. Порционно наращивая массу подаваемого материала и фиксируя величину угловой скорости ротора, строят функциональную зависимость «разность рабочей угловой скорости ротора и угловой скорости ротора холостого хода - масса материала в секунду», фиксируя при этом время нахождения каждого массообъема на лопатках турбинки, после чего запускают непрерывную подачу материала, а необходимую дозу определяют как произведение мгновенной массы материала, установленной из полученной зависимости «разность рабочей угловой скорости ротора и угловой скорости холостого хода ротора - масса материала в секунду», на время действия рабочей угловой скорости ротора, пропорционально заштрихованной области. Технический результат - повышение точности дозирования и контроля расхода сыпучих материалов. 2 ил.

 

Изобретение относится к методам производственного контроля расхода и дозирования сыпучих материалов и может найти применение в отраслях промышленности, перерабатывающих сыпучие материалы.

Известно устройство (патент РФ №2251666), содержащее привод вращения, статорные обмотки вентильного двигателя, размещенные в корпусе со стороны дна посадочного гнезда, и два датчика положения ротора двигателя, выполненные в виде датчиков Холла, расположенных на боковых поверхностях двух соседних статорных обмоток, источник питания, блок коммутации статорных обмоток по сигналам датчиков положения ротора, блок управления коммутацией этих обмоток, регулируемый блок питания статорных обмоток, блок включения привода вращения и его отключения при достижении заданной скорости вращения, цифроаналоговый преобразователь и индикатор оборотов контролируемого узла.

Способ, осуществляемый данным устройством, не может обеспечить необходимую точность контроля вследствие определенной сложности конструктивного исполнения и размещения датчиков в активной зоне двигателя, инерционности и множественности коммутационных процессов.

Известен способ дозирования сыпучих материалов на основе центробежных расходомеров РЦ-5, РЦ-5Г, РЦ-10, РЦГ, РЦ-71, РЦМ-10 (Мерко Н.Т. и др. Разработка и исследование расходомера для зерна и продуктов его размола. Сборник ЦНИИТЭИ Мингаза СССР, 1979, 95 с.), по которому сыпучий материал поступает по патрубку кожуха дозатора на крыльчатки, закрепленные на роторе электродвигателя, и выбрасываются ими наружу. Под действием момента реактивных сил статор поворачивается на некоторый угол, пропорциональный массовому расходу сыпучего продукта. Для измерения угла поворота статора или выходного рычага передаточного механизма применяют электрические и пневматические регистрирующие приборы.

Недостатком расходомеров по этому способу является нестабильность коэффициентов внешнего и внутреннего трения и объемной массы продуктов. Коэффициенты трения входят во все уравнения движения и поэтому влияют на скорость потока, объемную массу и расход, что предопределяет довольно низкую точность дозирования.

Наиболее близким к изобретению по технической сущности является способ контроля расхода и дозирования сыпучих материалов, включающий пропуск материала сквозь канал от входа к выходу расходомера и вращение узла ротора электродвигателя вокруг центральной оси в ответ на энергию, полученную от прохождения материала сквозь канал (патент РФ №2182695 пп.14-17).

По данному способу пропускают материал сквозь каналы от входа к выходу расходомера, осуществляют вращение узла ротора вокруг центральной оси в ответ на энергию, полученную от прохождения материала сквозь каналы, содержащие гибкие элементы с магнитами, которые изгибаются в ответ на силы Кориолиса, формируемые в материале при прохождении его сквозь каналы, при вращении узла ротора вокруг центральной оси, генерируют сигналы, характеризующие величину указанного изгиба, осуществляют функционирование двигателя, соединенного с узлом ротора для вращения узла ротора вокруг оси вращения для увеличения тангенциальной скорости указанного материала, при этом узел ротора реагирует на вращение и увеличение тангенциальной скорости материала для осуществления закачивания материала в каналы и в свою очередь для увеличения потока материала в каналах и повышения производительности Кориолисового расходомера, обрабатывают сигналы для расчета информации о потоке материала.

Устройства, реализующие указанный способ, конструктивно сложны, обладают низкой надежностью в условиях промышленного производства сыпучих материалов при наличии высокой концентрации сора и пыли и вследствие этого имеют низкую точность контроля.

Технической сущностью предлагаемого способа является устранение всех видов датчиков из активной зоны технологического потока, снижение количества коммутационных процессов и, на этой основе, повышение точности дозирования и контроля расхода сыпучих материалов.

Настоящая техническая сущность достигается тем, что в способе непрерывного контроля расхода и дозирования сыпучих материалов, включающем пропуск материала сквозь канал расходомера от входа к выходу и вращение узла ротора электродвигателя вокруг центральной оси в ответ на энергию, полученную от прохождения материала сквозь канал, порционно наращивая массу подаваемого материала фиксируют величину угловой скорости ротора, строят функциональную зависимость «разность рабочей угловой скорости ротора и угловой скорости ротора холостого хода - масса материала в секунду», фиксируя при этом время нахождения каждого массообъема на лопатках турбинки, после чего запускают непрерывную подачу материала, а необходимую дозу определяют как произведение мгновенной массы материала, установленной из полученной зависимости «разность рабочей угловой скорости ротора и угловой скорости холостого хода ротора - масса материала в секунду», на время действия рабочей угловой скорости ротора.

На фиг.1 дано условное изображение конструкции устройства дозатора.

На фиг.2 приведена функциональная зависимость разности рабочей угловой скорости электродвигателя и угловой скорости электродвигателя холостого хода от массы материала, поступающего в дозатор, в минуту.

Устройство, реализующее способ, содержит кронштейн 1 размещенный в опоре 2, патрубок 3, турбинку 4, приводимую во вращение электродвигателем 5, уравновешивающий груз 6.

Способ реализуется следующим образом. Материал из транспортера через входной патрубок 3 подается на потокочувствительную турбинку 4 типа лопастного метателя с горизонтальной осью вращения, приводимую в движение электродвигателем 5 (фиг.1). После соприкосновения с лопастями турбинки 4 частицы сыпучего продукта получают дополнительное количество движения и, отразившись от стенки кожуха, падают вниз на выводное устройство. Общий крутящий момента на валу турбинки равен ударному взаимодействию потока вещества с лопастью (косой удар) и ускорению Кориолиса при последующем скольжении частиц по лопастям из внутренней области турбинки наружу, пропорциональных массовому расходу материала. Возрастание нагрузки на лопастях вызывает снижение угловой скорости вращения ротора. Порционно наращивая массу подаваемого материала и фиксируя величину угловой скорости ротора, строят функциональную зависимость «разность рабочей угловой скорости ротора и угловой скорости ротора холостого хода - масса материала в секунду», фиксируя при этом время нахождения каждого массообъема на лопатках турбинки, после чего запускают непрерывную подачу материала, а необходимую дозу определяют как произведение мгновенной массы материала, установленной из полученной зависимости «разность рабочей угловой скорости ротора и угловой скорости холостого хода ротора - масса материала в секунду», на время действия рабочей угловой скорости ротора пропорционально заштрихованной области (фиг.2).

Пример. Электродвигатель дозатора со скоростью вращения на холостом ходу 1500 об/мин (157 рад/с), после подачи на ротор турбинки в течение 30 минут дозируемого продукта массой 3000 кг, снижает количество оборотов до 1200 об/мин (125,6 рад/с). Произведение разности угловой скорости двигателя 31,4 рад/с на время нагружения 1800 с приводится в соответствие с массой дозируемого продукта 3000 кг. В результате получаем среднюю производительность дозатора (53 г. Вещества, умноженного на угловую скорость в рад/с). Учитывая прямо пропорциональную зависимость снижения количества оборотов двигателя, в рабочем диапазоне от нагрузки, можно определить массообъем дозированного продукта за установленный отрезок времени.

Способ контроля расхода и дозирования сыпучих материалов, включающий пропуск материала сквозь канал расходомера от входа к выходу и вращение узла ротора электродвигателя вокруг центральной оси в ответ на энергию, полученную от прохождения материала сквозь канал, отличающийся тем, что порционно наращивая массу подаваемого материала фиксируют величину угловой скорости ротора, строят функциональную зависимость «разность рабочей угловой скорости ротора и угловой скорости ротора холостого хода - масса материала в секунду», фиксируя при этом время нахождения каждого массообъема на лопатках турбинки, после чего запускают непрерывную подачу материала, а необходимую дозу определяют как произведение мгновенной массы материала, установленной из полученной зависимости «разность рабочей угловой скорости ротора и угловой скорости холостого хода ротора - масса материала в секунду», на время действия рабочей угловой скорости ротора.



 

Похожие патенты:

Способ относится к методам производственного контроля расхода и дозирования сыпучих материалов и может найти применение в отраслях промышленности, перерабатывающих сыпучие материалы.

Изобретение относится к силовой преобразовательной технике и является DC/DC-преобразователем с трансформаторной связью между источником питания и нагрузкой. Технический результат заключается в повышении эффективности и надежности заявленного устройства.

Датчик содержит корпус в виде цилиндра с входным и выходным отверстиями, резонатор, вибратор расходомера и термочувствительный элемент, расположенные внутри корпуса, датчик возбуждения колебаний расходомера, датчик съема колебаний расходомера, датчик возбуждения колебаний плотномера, датчик съема колебаний плотномера, усилитель расходомера, усилитель плотномера, преобразователь, регистратор плотности и температуры и регистратор расхода.

Изобретение относится к области гидрометрии и может быть использовано, в частности, для определения количества воды, прошедшей через бытовой фильтр. .

Изобретение относится к сельскому хозяйству. .

Изобретение относится к измерительной технике и предназначено для определения расхода жидкой и газообразной среды. .

Изобретение относится к области измерительной техники, а именно к измерению расхода природного газа, в частности, добываемого на газоконденсатных месторождениях и содержащего жидкую углеводородную фазу в капельном или парообразном состоянии.

Изобретение относится к области измерительной техники и может быть использовано на продуктивных газоконденсатных скважинах, на установках подготовки газа к транспорту, установках первичной переработки газа для определения расхода газа, расхода жидкости, доли воды и доли конденсата в жидкости без разделения продукта добычи на газообразную и жидкую фазы.

Изобретение относится к области измерительной техники и может быть использовано для измерения уровня жидкости или ее расхода в открытых искусственных каналах типа желобов, лотков произвольного профиля.

Изобретение относится к устройствам для измерения расхода и может быть использовано, в частности, для измерения расхода жидкости или газа. .

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др. Предлагаемый расходомер содержит два расположенных вдоль трубопровода с внешней его стороны чувствительных элемента в виде полых волноводов, каждый из которых имеет общую с трубопроводом упругую торцевую стенку, каждый волновод соединен с соответствующим электронным блоком, блок сравнения информативных параметров чувствительных элементов, имеющий два входа, подключенные соответственно к выходам указанных двух электронных блоков, и выход, соединенный с индикатором. При этом в каждом волноводе элемент возбуждения и элемент съема электромагнитных колебаний расположены у одного и того же конца волновода, а частота возбуждаемых в каждом волноводе электромагнитных волн фиксирована и выбрана ниже частоты возбуждения в нем электромагнитных волн низшего типа. Технический результат - упрощение конструкции устройства. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода воды, бензина, дизельного топлива, керосина. Устройство для измерения расхода жидкой среды содержит трубопровод из диэлектрического материала, постоянные магниты, расположенные по разные стороны от трубопровода, и колебательный контур, состоящий из катушки индуктивности и конденсатора, обкладки которого расположены по обе стороны от трубопровода. В колебательном контуре возбуждают резонансные колебания электромагнитного поля. Жидкая среда, перемещающаяся в постоянном магнитном поле, поляризуется под действием сил Лоренца, вследствие чего изменяется электрическое поле конденсатора колебательного контура, диэлектрическая проницаемость жидкой среды и длительность первого и второго полупериодов резонансных колебаний электромагнитного поля колебательного контура. Расход жидкой среды определяют по изменению длительности первого или второго полупериодов резонансных колебаний электромагнитного поля колебательного контура. Технический результат - повышение точности измерений. 2 н. и 3 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к обработке жидкой среды и главным образом к измерениям технологического потока и управлению им. В частности, изобретение относится к способам измерения для электромагнитных расходомеров. Устройство содержит участок трубопровода для технологического потока, катушку для создания магнитного поля поперек участка трубопровода, источник тока для возбуждения катушки для создания магнитного поля и электрод для обнаружения электродвижущей силы, индуцированной поперек технологического потока с помощью магнитного поля. Источник тока возбуждает катушку на множестве различных частот импульсов. Процессор вычисляет функцию электродвижущей силы на множестве различных частот импульсов и генерирует выходное значение расхода, основанное на функции. Технический результат - улучшение точности измерения потока и защита от неисправностей. 3 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к технике измерения расхода электропроводных жидкостей с помощью электромагнитных расходомеров. Способ измерения расхода электропроводных жидкостей реализуется с помощью первичного преобразователя расхода, на трубопроводе которого расположена магнитная система с обмотками возбуждения и установлены два диаметрально-противоположно расположенных электрода. Запитка обмоток возбуждения осуществляется двухполярным импульсным током от программно-управляемого источника тока. Сигнал с электродов, пропорциональный расходу, поступает на измерительный усилитель, преобразуется в цифровой код в АЦП и подается на процессор. При расходе, соответствующем переходному значению, процессор по определенному алгоритму выдает команду регулятору и управляемому источнику тока на ступенчатое увеличение тока запитки, что приводит к увеличению индукции магнитного поля в первичном преобразователе расхода и, как следствие, к увеличению сигнала с электродов. Процессор формирует выходной сигнал, пропорциональный расходу в цифровом виде. Технический результат - повышение точности измерения расхода и расширение диапазона измерения расхода. 3 ил.

Способ измерения расхода электропроводных жидкостей относится к области приборостроения, а именно к технике измерения расхода электропроводных жидкостей с помощью электромагнитных расходомеров. Способ реализуется посредством трубопровода первичного преобразователя расхода с установленными на нем обмотками возбуждения магнитной системы. В трубопроводе установлены два диаметрально противоположно расположенных электрода. Запитка обмоток возбуждения осуществляется от программно-управляемого источника двухполярного импульсного тока. Сигнал с электродов, пропорциональный расходу, поступает на измерительный усилитель, преобразуется в цифровой код в АЦП и подается в процессор. Процессор по определенному алгоритму посредством регулятора управляет источником тока запитки. Выходной сигнал, пропорциональный току запитки, расходу Q и не зависящий от электрических процессов на электродах, снимается с резистора R, включенного последовательно в цепь запитки, преобразуется в цифровой код в АЦП и поступает в процессор. Процессор формирует сигнал, пропорциональный расходу в цифровом виде. Технический результат - возможность создания электромагнитных расходов с повышенной точностью в широком диапазоне измерения расхода. 3 ил.
Наверх