Способ производства высокопрочной толстолистовой стали


 


Владельцы патента RU 2533244:

Открытое Акционерное Общество "Магнитогорский металлургический комбинат" (RU)

Изобретение относится к металлургии и может быть использовано при получении высокопрочной листовой стали толщиной 8,0-40,0 мм для изготовления платформ грузовых автомобилей, работающих в условиях Крайнего Севера. Слябы отливают из стали содержащей, мас.%: 0,13-0,18 C, 0,40-0,60 Si, 0,7-0,9 Mn, 1,3-1,6 Cr, 0,02-0,07 Al, 0,03-0,06 Nb, 0,01-0,06 Ti, 0,002-0,030 Ca, Ni≤0,30, Cu≤0,30, N≤0,010, Fe и примеси - остальное. Затем отлитые слябы подвергают отжигу при температуре 640-660°C, после чего нагревают и подвергают горячей прокатке в температурном диапазоне от 1200-1260°C и до 870-950°C с последующей закалкой водой и отпуском. Технический результат заключается в повышении комплекса механических свойств и выхода годного. 3 табл.

 

Изобретение относится к металлургии и может быть использовано при получении высокопрочной листовой стали толщиной 8,0-40,0 мм для изготовления платформ и других тяжело нагруженных деталей грузовых автомобилей, работающих в условиях Крайнего Севера.

При изготовлении упомянутых сварных конструкций транспортных и горнодобывающих машин используют термоулучшенный горячекатаный листовой прокат. Горячекатаные листы после термического улучшения должны сочетать высокую прочность, вязкость при отрицательных температурах и стойкость против абразивного износа. Требуемый комплекс свойств горячекатаных листов в состоянии поставки приведен в табл.1.

Известен способ производства высокопрочной низколегированной стали, включающий изготовление слябов, их нагрев до температуры 1000-1180°C, многопроходную горячую прокатку с температурой конца прокатки Ткп=950°C в листы конечной толщины. Горячекатаные листы затем нагревают со скоростью не менее 25°C/мин, закаливают водой и подвергают отпуску [1].

Недостатки известного способа состоят в том, что горячекатаные листы после термического улучшения (закалки с отпуском) имеют низкие вязкостные свойства и недостаточную прочность.

Известен также способ производства высокопрочных листов из низколегированной стали, включающий нагрев слябов до температуры не выше 1150°C и горячую прокатку за несколько проходов с суммарным обжатием не менее 30% и с температурой конца прокатки 900-950°C. Горячекатаные листы нагревают до температуры Ac3÷1000°C и закаливают, после чего подвергают отпуску при температуре 200-400°C и охлаждают водой [2].

Недостатки данного способа состоят в том, что готовые листы имеют низкие вязкостные свойства. Кроме того, колебания содержаний химических элементов в стали оказывают существенное влияние на уровень и стабильность механических свойств, что снижает выход годного.

Наиболее близким аналогом к предлагаемому изобретению является способ производства толстолистового проката из свариваемой хромомарганцевой стали, включающий разливку стали в слябы, их нагрев до 1230°C, многопроходную горячую прокатку в листы в регламентированном температурном диапазоне, закалку водой и отпуск, согласно которому горячую прокатку осуществляют с суммарным относительным обжатием не менее 50% и завершают при температуре 830-950°C, закалку листов осуществляют от температуры 850-940°C, а отпуск ведут при температуре 600-690°C, причем сталь имеет следующий химический состав, мас.%:

Углерод 0,13-0,18
Кремний 0,4-0,7
Марганец 1,2-1,8
Хром 0,4-0,8
Медь 0,20-0,45
Ванадий 0,04-0,08
Алюминий 0,02-0,05
Титан 0,02-0,05
Кальций 0,002-0,030
Ниобий не более 0,06
Церий не более 0,05
Сера не более 0,008
Фосфор не более 0,015
Железо остальное [3]

Недостатки данного способа состоят в том, что толстолистовая сталь имеет низкий и нестабильный комплекс механических свойств, особенно при отрицательных температурах. Это, в свою очередь, приводит к снижению выхода годного.

Техническая задача, решаемая изобретением, состоит в повышении комплекса механических свойств и выхода годного.

Для решения поставленной технической задачи в известном способе производства высокопрочной толстолистовой стали, включающем непрерывную разливку стали в слябы, их нагрев, многопроходную горячую прокатку листов в регламентированном температурном интервале, закалку водой и отпуск, в отличие от ближайшего аналога непрерывной разливке подвергают сталь следующего химического состава, мас.%:

Углерод 0,13-0,18
Кремний 0,40-0,60
Марганец 0,70-0,90
Хром 1,3-1,6
Алюминий 0,02-0,07
Ниобий 0,03-0,06
Титан 0,01-0,06
Кальций 0,002-0,030
Никель не более 0,30
Медь не более 0,30
Азот не более 0,010
Железо и примеси остальное

отлитые слябы дополнительно подвергают отжигу при температуре 640-660°C, после чего производят нагрев до температуры 1200-1260°C и подвергают горячей прокатке, температуру конца чистовой прокатки устанавливают 870-950°C.

Сущность изобретения состоит в следующем. Конечные механические и функциональные свойства листовой стали определяются одновременно ее химическим составом, температурными режимами прокатки, закалки и отпуска. В процессе проведения экспериментальных исследований осуществляли варьирование всех значимых факторов, включая химический состав стали и температурные режимы производства, добиваясь получения заданных и стабильных механических свойств, что увеличивает выход годного. Было установлено следующее.

Углерод упрочняет сталь. При содержании углерода менее 0,13% не достигается требуемая прочность стали, а при его содержании более 0,18% ухудшается ударная вязкость и износостойкость стали.

Кремний раскисляет сталь, повышает ее прочность. При концентрации кремния менее 0,40% прочность стали ниже допустимой, а при концентрации более 0,60% снижается пластичность, сталь не выдерживает испытания на холодный загиб.

Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 0,70% резко снижается износостойкость листовой стали. Увеличение содержания марганца более 0,90% приводит к снижению вязкости при отрицательных температурах, ухудшению пластичности, снижению выхода годного.

Хром повышает прочность, вязкость и износостойкость стали. При его концентрации менее 1,3% прочность, вязкость и износостойкость ниже допустимых значений. Увеличение содержания хрома более 1,6% приводит к потере пластичности из-за роста карбидов, снижению выхода годного листового термоулучшенного проката.

Алюминий дораскисляет сталь и измельчает зерно. При содержании алюминия менее 0,02% его влияние мало, вязкостные свойства стали ухудшаются. Увеличение содержания этого элемента более 0,07% ведет к нестабильности вязкостных свойств и снижению выхода годного листового проката.

Ниобий способствуют измельчению микроструктуры стали по толщине листа, повышению хладостойкости и прочности. Мелкие карбиды ниобия располагаются по границам зерен и субзерен, тормозят движение дислокаций и тем самым упрочняют сталь. Однако, если содержание ниобия будет более 0,06%, произойдет снижение выхода годного, ухудшится свариваемость стали. При снижении содержания ниобия менее 0,03% не достигается высокая ударная вязкость при отрицательных температурах и ухудшается износостойкость листовой стали.

Титан, являясь сильным карбидообразующим элементом, способствует повышению прочностных свойств полос при одновременном повышении ударной вязкости при отрицательных температурах. Снижение содержания титана менее 0,01% приводит к снижению прочностных и вязкостных свойств листов. Увеличение содержания титана более 0,06% приводит к снижению механических свойств и выхода годной листовой стали.

Кальций является модифицирующим элементом. Кроме того, он связывает серу в глобулярные сульфиды, повышая вязкостные свойства стали. При концентрации кальция менее 0,002% его модифицирующее действие проявляется недостаточно. Увеличение концентрации кальция более 0,030% увеличивает количество и размеры неметаллических включений, ухудшает ударную вязкость при отрицательных температурах и снижает выход годного листового проката.

Никель и медь способствуют повышению пластических и вязкостных свойств толстолистовой стали. Однако увеличение содержания никеля более 0,30% или меди более 0,30% приводит к возрастанию в фазовом составе листовой стали после закалки остаточного аустенита, что является причиной ухудшения механических свойств.

Азот в химических соединениях с титаном, ванадием и другими легирующими элементами упрочняет сталь по механизму дисперсионного твердения. Однако увеличение содержания азота более 0,010% снижает пластичность стали и ее вязкостные свойства.

Для выравнивания механических свойств и исключения трещинообразования отлитые слябы подвергают отжигу при 640-660°C. Снижение температуры отжига менее 640°C не исключает наличия трещин в слябах, что снижает выход годного. Повышение температуры отжига выше 660°C не ведет к дальнейшему повышению качества и выхода годной металлопродукции, а лишь увеличивает затраты на производство.

Было также установлено, что при температуре начала прокатки слябов из стали предложенного химического состава 1200-1260°C обеспечивается ее аустенитизация, полное растворение в аустенитной матрице сульфидов, фосфидов, легирующих и примесных соединений, карбидных упрочняющих частиц. При температуре начала прокатки выше 1260°C имеет место интенсивное окисление границ кристаллитов, образование трещин и снижение выхода годного, а при температуре начала прокатки ниже 1200°C ухудшается комплекс механических свойств листов.

Процесс прокатки происходит с непрерывным падением температуры металла, которая к моменту окончания прокатки листов снижается до значения Ткп=870-950°C, что способствует интенсификации выделения упрочняющих карбидных и карбонитридных частиц, измельчению зеренной микроструктуры стали. При Ткп ниже 870°C предложенная сталь приобретает двухфазный состав, неравномерный размер зеренной микроструктуры, толстолистовая сталь сохраняет анизотропию свойств, имеет место ухудшение комплекса механических свойств и снижение выхода годного. При Ткп выше 950°C имеет место интенсивный и неравномерный рост зерен микроструктуры, снижение вязкостных свойств при отрицательных температурах и уменьшение выхода годного.

Примеры реализации способа

Стали различного химического состава выплавляют в кислородном конвертере с использованием металлического лома. В ковше сталь раскисляют ферросилицием, ферромарганцем, легируют феррохромом, ферротитаном, вводят металлические алюминий и ниобий. Кальций вводят в расплав в виде силикокальция, никель и медь попадают в расплав из металлического лома. Выплавленные стали подвергают дегазации путем вакуумирования для удаления водорода и снижения содержания азота до концентраций N≤0,010%. Химический состав выплавленных сталей приведен в табл.2.

Сталь с составом №3 подвергают непрерывной разливке в слябы толщиной 250 мм. Слябы после разливки помещают в ямы-термостаты, где происходит их замедленное охлаждение до температуры ~90°C. Охлажденные слябы вновь подогревают до температуры 300°C и производят зачистку с удалением дефектов. Зачищенные слябы помещают в камерную печь и производят их отжиг при температуре То=650°C.

Отожженные слябы нагревают в методической печи до температуры начала прокатки Tнп=1200°C и прокатывают за 12 проходов на толстолистовом реверсивном стане 5000 в листы толщиной H=20 мм. Во время прокатки (в проходах и паузах между проходами) происходит снижение температуры (остывание) листов. Прокатку в последнем проходе ведут при температуре Tкп=910°C.

Прокатанные листы укладывают в штабель, где они замедленно охлаждаются на воздухе.

Прокатанные листы затем нагревают под закалку до температуры Tз=915°C и подвергают закалке водой в роликовой закалочной машине. Закаленные листы в дальнейшем подвергают отпуску путем нагрева и выдержки при температуре Tотп=650°C.

После термического улучшения от листов отбирают пробы, производят испытания механических свойств и после разбраковки определяют выход годного Q.

Варианты реализации способа производства высокопрочной свариваемой листовой стали и показатели их эффективности приведены в табл.3.

Из таблиц 2 и 3 следует, что предложенные режимы производства высокопрочной толстолистовой стали (варианты №2-4) обеспечивают повышение комплекса механических свойств, благодаря чему достигается максимальный выход годного: Q=98,3-98,8%.

При запредельных значениях концентраций химических элементов в стали, температурных режимов горячей прокатки, закалки и отпуска (варианты №1 и №5) а также использовании способа - ближайшего аналога [3] имеет место снижение комплекса механических свойств готовых листов и выхода годного Q. В этих случаях листовую сталь используют для менее ответственного назначения.

Технико-экономические преимущества предложенного способа состоят в том, что дополнительный гомогенизирующий отжиг непрерывно литых слябов предложенного химического состава при температуре 640-660°C, а также одновременная оптимизация химического состава стали, температурных режимов горячей прокатки, и последующей закалки с отпуском позволяют повысить комплекс механических свойств высокопрочной толстолистовой стали. Благодаря этому увеличивается выход годного.

Источники информации

1. Заявка №61-163210, Япония. МПК C21D 8/00, 1986 г.

2. Заявка №61-223125, Япония. МПК C21D 8/02, C22C 38/54, 1986 г.

3. Патент Российской Федерации №2455105, МПК B22D 11/00, 2012 г.

Таблица 1
Механические свойства листовой стали
σв, Н/мм2 σт, Н/мм2 δ5, % KCU-40, Дж/см2 KCV-40, Дж/см2 HB, ед. Угол загиба, град.
не менее
690 590 14 40 30 340-400 120
Таблица 2
Химический состав высокопрочных толстолистовых сталей
№ состава Содержание химических элементов, мас.%
C Si Mn Cr Al Nb Ti Ca Ni Cr N Fe
1 0,12 0,3 0,6 1,2 0,01 0,02 0,009 0,001 0,10 0,10 0,008 Остальн.
2 0,13 0,4 0,7 1,3 002 0,03 0,010 0,002 0,20 0,10 0,007 -:-
3 0,15 0,5 0,8 1,5 0,05 0,04 0,035 0,016 0,20 0,20 0,006 -:-
4 0,18 0,6 0,9 1,6 0,07 0,06 0,060 0,030 0,30 0,30 0,010 -:-
5 0,19 0,7 1,0 1,7 0,08 0,07 0,070 0,032 0,40 0,40 0,012 -:-
Таблица 3
Режимы производства высокопрочной толстолистовой стали и показатели их эффективности
№ п/п № состава Tо, °C Tнп, °C Tкп, °C Tз, °C Tотп, °C σв, Н/мм2 σт, Н/мм2 δ5, % KSU-40, Дж/см2 KCV-40, Дж/см2 Угол загиба, град. Q, %
1 5 630 900 860 890 620 650 580 19 33 26 89 -
2 2 640 1200 870 900 630 690 590 15 42 31 120 98,7
3 3 650 1230 910 915 650 700 600 18 44 32 130 98,8
4 4 660 1260 950 940 670 710 610 17 42 31 120 98,3
5 1 670 1270 960 950 680 680 585 13 32 29 ПО -

Способ производства высокопрочной толстолистовой стали, включающий непрерывную разливку стали в слябы, их нагрев, многопроходную горячую прокатку листов в регламентированном температурном интервале, закалку водой и отпуск, отличающийся тем, что непрерывной разливке подвергают сталь следующего химического состава, мас.%:

углерод 0,13-0,18
кремний 0,40-0,60
марганец 0,70-0,90
хром 1,3-1,6
алюминий 0,02-0,07
ниобий 0,03-0,06
титан 0,01-0,06
кальций 0,002-0,030
никель не более 0,30
медь не более 0,30
азот не более 0,010
железо и примеси остальное

при этом отлитые слябы перед нагревом подвергают отжигу при температуре 640-660°C, нагрев слябов производят до температуры 1200-1260°C и подвергают горячей прокатке в температурном интервале до 870-950°C.



 

Похожие патенты:

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси.
Изобретение относится к области металлургии, а именно к сталям, используемым для производства магистральных труб. Сталь содержит, мас.%: углерод от 0,11 до менее 0,15, кремний от 0,40 до менее 0,50, марганец 1,30-1,60, хром не более 0,30, никель 0,06-0,20, медь не более 0,30, алюминий не более 0,05, титан не более 0,03, азот не более 0,008, сера не более 0,040, фосфор 0,015-0,030, железо остальное.
Изобретение относится к области металлургии и может быть использовано для получения высокопрочной теплостойкой проволоки различных типоразмеров и листового материала.

Изобретение относится к области металлургии, а именно к фольге из нержавеющей стали, используемой в носителе катализатора устройства очистки выхлопного газа автомобиля.
Изобретение относится к области металлургии, а именно к высокопрочным низкоуглеродистым мартенситным свариваемым сталям, закаливающимся на воздухе, используемым для изготовления термически упрочненных сварных конструкций, крупногабаритных изделий, а также строительных конструкций и деталей нефтяного машиностроения.
Сталь // 2502821
Изобретение относится к области металлургии, а именно к составам низкоуглеродистых сталей, используемых для изготовления гильз патронов автоматического стрелкового оружия калибра 7,62 мм, покрытых сплавом латуни (томпаком) или лаком.
Изобретение относится к области металлургии, а именно к низкоуглеродистым сталям для производства проката, используемого для изготовления сварных нефте- и газопроводов, пригодных к эксплуатации в условиях Крайнего Севера.
Изобретение относится к области металлургии, а именно к изготовлению водоохлаждаемых изложниц для производства центробежно-литых труб. Сталь содержит, в мас.%: углерод 0,16-0,25, кремний 0,10-0,60, марганец 0,60-1,20, хром 1,5-2,50, никель 0,60-1,50, молибден 0,18-0,75, ванадий 0,08-0,15, алюминий 0,001-0,008, медь ≤0,30, сера ≤0,006, фосфор ≤0,008, азот 0,005-0,02, цирконий 0,001-0,004, кальций 0,005-0,02, церий 0,005-0,03, железо - остальное.
Изобретение относится к металлургии, а именно к производству трубных заготовок диаметром от 90 до 110 мм, 140 мм и 150 мм. .

Изобретение относится к термомеханической обработке и может быть использовано при производстве холоднокатаной ленты для изготовления монетной заготовки. .

Изобретение относится к области металлургии, а именно к получению высокопрочного стального листа. Лист выполнен из стали, содержащей, в мас.%: С 0,02-0,07, Si 0,05-0,50, Mn 1,10-1,60, P максимум 0,015, S максимум 0,0030, Nb 0,005-0,030, Ti 0,005-0,020, Al 0,005-0,060, Ca 0,0005-0,0060, N 0,0015-0,0070, по меньшей мере один из таких элементов, как Cu, Ni, Cr и Mo, в общем количестве от более чем 0,1% до менее чем 1,5%, а остальное - Fe и неизбежные примеси.
Изобретение относится к области металлургии, в частности к производству изготовления толстолистовой стали для труб с толщиной стенки до 39 мм. Для обеспечения повышенной хладостойкости, высокого уровня сопротивления протяженному вязкому разрушению используют слябовую заготовку толщиной не менее 250 мм из стали, содержащей, мас.%: 0,05-0,12 С, 1,40-1,75 Mn, Si≤0,35, Ni≤0,3, Mo≤0,25, Cu≤0,3, 0,01-0,03 Ti, 0,02-0,08 Nb, V≤0,08, 0,01-0,05 Al, S≤0,005, P≤0,015, Fe и примеси - остальное, при этом количество сульфидных неметаллических включений не превышает 1,5 балла, а количество остальных неметаллических включений не превышает 3 балла.

Изобретение относится к области металлургии, в частности производству холоднокатаного стального листа для изготовления внешних и внутренних панелей автомобилей.

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к получению высокопрочного холоднокатаного стального листа, используемого в автомобилестроении, строительстве, при изготовлении приборных щитов, бытовых электроприборов.

Высокопрочный с низким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с низким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с низким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с низким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2530199
Изобретение относится к области металлургии, а именно к высокопрочному оцинкованному погружением стальному листу, используемому в автомобилестроении. Лист выполнен из стали, содержащей в мас.%: 0,03-0,20 С, 1,0 или менее Si, от более 1,5 до 3,0 Mn, 0,10 или менее P, 0,05 или менее S, 0,10 или менее Al, 0,010 или менее N, 0,5 или менее Cr и 0,01-0,50 Мо и остальное Fe с неизбежными примесями.
Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане. Для повышения прочностных свойств проката до уровня судостали категории GL-A36, GL-D36, GL-E36 и др.
Изобретение относится к области черной металлургии, конкретнее к технологии прокатки и термической обработки металлов, и может быть использовано при производстве высокопрочной холоднокатаной полосы из углеродистой стали в нагартованном состоянии толщиной 0,8-1,0 мм и массой 17-26 т для получения упаковочной ленты.

Изобретение относится к прокатному производству. Высокопрочный холоднокатаный стальной лист с высокой обрабатываемостью изготовлен из стального сляба с композицией, включающей в мас.%: С 0,05-0,12, включая 0,05 и 0,12, Si 0,5 или менее, Mn 1,8-4,0, включая 1,8 и 4,0, Ti 0,005-0,06, включая 0,005 и 0,06, Nb 0,005-0,1, включая 0,005 и 0,1, Al 0,1 или менее, остальное Fe и неизбежные примеси.

Изобретение относится к способу и стану горячей прокатки сляба (1), в частности стального сляба, и может найти применение в металлургической промышленности. Сляб (1) подвергают по меньшей мере двум стадиям обработки давлением при разных температурах в стане (2) горячей прокатки.

Изобретение относится к металлургии и может быть использовано при получении толстолистовой стали для изготовления деталей транспортных и горнодобывающих машин, обладающих высокой стойкостью против абразивного износа (истирания). Способ включает получение слябов из стали, содержащей, мас.%: 0,14-0,19 C, 0,17-0,37 Si, 1,1-1,6 Mn, 0,06-0,12 V, 0,7-1,1 Cr, 0,5-1,0 Ni, 0,20-0,35 Mo, 0,02-0,06 Al, 0,02-0,05 Ti, 0,001-0,005 B, 0,002-0,030 Ca, S≤0,008, P≤0,015, остальное Fe, их нагрев, многопроходную горячую прокатку листов в регламентированном температурном интервале, закалку водой и отпуск. Горячую прокатку ведут в температурном интервале от 1280°C до 800°C, закалку водой осуществляют за два этапа, вначале от температуры 940-970°C, после чего листы повторно нагревают и закаливают от температуры 840-870°C, отпуск осуществляют при температуре 500-560°C. Технический результат заключается в повышении износостойкости листов и выхода годного. 1 пр., 3 табл.
Наверх