Способ контроля подводного шума плавсредства с помощью забортного гидроакустического средства измерений (варианты)


 


Владельцы патента RU 2533327:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Изобретения относятся к области гидроакустики и могут быть использованы для оперативного контроля подводного шума плавсредства в натурных условиях. Техническим результатом, получаемым от внедрения изобретений, является получение возможности контроля с помощью выбрасываемого забортного гидроакустического средства измерений (РСИ) параметров шума в режиме стабилизации плавсредства без его хода. Для достижения поставленного технического результата в режиме стабилизации плавсредства без его хода выбрасывают за борт РСИ на кабель-тросе и измеряют с его помощью параметры подводного шума самого плавсредства. При этом РСИ выполняют с положительной или отрицательной плавучестью. 2 н. и 12 з.п. ф-лы, 1 ил.

 

Изобретения относятся к области гидроакустики и могут быть использованы для оперативного контроля подводного шума плавсредства в натурных условиях.

Известен способ того же назначения, принятый за прототип, заключающийся в предварительном выбрасывании рабочего средства измерений (РСИ) на кабель-тросе за борт плавсредства и последующем измерении с его помощью параметров подводного шума /Патент РФ №2191399, кл. G01S 3/02, 2002/.

Недостатком прототипа является ограниченность его применения случаем измерения параметров подводного шума в кормовом направлении на ходу плавсредства.

С помощью прототипа невозможно проконтролировать параметры шумоизлучения в режиме стабилизации плавсредства без его хода. Также невозможно проконтролировать с помощью забортного РСИ параметры другого плавсредства.

Техническим результатом, получаемым от внедрения изобретений, является получение возможности контроля с помощью выбрасываемого забортного гидроакустического РСИ параметров шума в режиме стабилизации плавсредства без его хода.

Данный технический результат по первому варианту способа достигают за счет того, что в известном способе контроля подводного шума плавсредства с помощью забортного гидроакустического средства измерений, заключающемся в предварительном выбрасывании гидроакустического средства измерений на кабель-тросе за борт плавсредства и последующем измерении с его помощью параметров подводного шума, выбрасывание гидроакустического средства измерений на кабель-тросе за борт плавсредства проводится в режиме стабилизации плавсредства без его хода, при этом гидроакустическое средство измерений выполняют с положительной плавучестью.

Выбрасывание гидроакустического средства измерений на кабель-тросе проводят из рубки плавсредства.

Положительную плавучесть гидроакустического средства измерений задают в диапазоне (10… 15) кг.

Гидроакустическое средство измерений выполняют на основе двух гидрофонов: широкополосного и низкочастотного.

Гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной вниз.

Гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной вверх.

Гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной параллельно продольной или поперечной осям плавсредства.

Гидроакустическое средство измерений выполняют с равномерной характеристикой направленности.

Технический результат по второму варианту способа достигают за счет того, что в известном способе контроля подводного шума плавсредства с помощью забортного гидроакустического средства измерений, заключающемся в предварительном выбрасывании гидроакустического средства измерений на кабель-тросе за борт плавсредства и последующем измерении с его помощью параметров подводного шума, выбрасывание гидроакустического средства измерений на кабель-тросе за борт плавсредства проводится в режиме стабилизации плавсредства без его хода, при этом гидроакустическое средство измерений выполняют с отрицательной плавучестью.

Выбрасывание гидроакустического средства измерений на кабель-тросе проводят из рубки плавсредства.

Отрицательную плавучесть гидроакустического средства измерений задают в диапазоне (10… 15) кг.

Гидроакустическое средство измерений выполняют на основе двух гидрофонов: широкополосного и низкочастотного.

Гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной вниз.

Гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной вверх.

Гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной параллельно продольной или поперечной оси плавсредства.

Гидроакустическое средство измерений выполняют с равномерной характеристикой направленности.

Изобретения поясняются чертежом, на котором представлена схема для реализации обоих вариантов способа.

В обоих вариантах система содержит забортное устройство и бортовой комплекс управления и обработки информации, связанные между собой кабельной трассой.

В первом варианте забортное устройство выполнено в виде гидроакустического РСИ 1 положительной плавучести, кабельная трасса - в виде кабель-троса 2.

Забортное устройство устанавливается в межбортном пространстве плавсредства 3 в зоне ограждения рубки 4 и обеспечивает перемещение РСИ 1 по глубине.

Во втором варианте РСИ 5 выполнено с отрицательной плавучестью и подвешено на кабель-тросе 6.

В походном состоянии РСИ 1 и РСИ 5 удерживаются в ложементе забортного устройства с помощью захватов (на чертеже не показаны).

При проведении измерений командами с пульта управления (на чертеже не показан) предварительно открываются захваты, а затем производится вытравливание РСИ 1 и (или) РСИ 5 на заданное расстояние от корпуса плавсредства 3 с помощью лебедки забортного устройства (на чертеже не показаны).

Гидроакустические РСИ 1 и РСИ 5 включают в себя два гидрофона:

широкополосный и низкочастотный. Это позволяет проконтролировать параметры шумоизлучения плавсредства во всем информативном спектре.

При выполнении РСИ 1 и РСИ 5 с диаграммами направленности 7 и 8 (ДН7 и ДН8), ориентированными соответственно вниз и вверх, контролируются параметры шумоизлучения самого плавсредства 3. Если ДН5 ориентирована вверх или вбок, то возможен контроль параметров шумоизлучения другого плавсредства (на чертеже не показано).

Если ДН8 направлена вниз и вбок, то возможен контроль параметров шумоизлучения другого плавсредства, находящегося соответственно под плавсредством 3 и справа или слева от него.

Положительная или отрицательная плавучесть, равная (10… 15) кг, обеспечивает устойчивость гидроакустического РСИ 1 в режиме стабилизации плавсредства 3 без его хода.

Этим достигается поставленный выше технический результат.

1. Способ контроля подводного шума плавсредства с помощью забортного гидроакустического средства измерений, заключающийся в предварительном выбрасывании гидроакустического средства измерений на кабель-тросе за борт плавсредства и последующем измерении с его помощью параметров подводного шума, отличающийся тем, что выбрасывание гидроакустического средства измерений на кабель-тросе за борт плавсредства проводится в режиме стабилизации плавсредства без его хода, при этом гидроакустическое средство измерений выполняют с положительной плавучестью (10…15) кг.

2. Способ по п.1, отличающийся тем, что выбрасывание гидроакустического средства измерений на кабель-тросе проводят из рубки плавсредства.

3. Способ по п.1, отличающийся тем, что гидроакустическое средство измерений выполняют на основе двух гидрофонов: широкополосного и низкочастотного.

4. Способ по п.1, отличающийся тем, что гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной вниз.

5. Способ по п.1, отличающийся тем, что гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной вверх.

6. Способ по п.1, отличающийся тем, что гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной параллельно продольной или поперечной осям плавсредства.

7. Способ по п.1, отличающийся тем, что гидроакустическое средство измерений выполняют с равномерной характеристикой направленности.

8. Способ контроля подводного шума плавсредства с помощью забортного гидроакустического средства измерений, заключающийся в предварительном выбрасывании средства измерений на кабель-тросе за борт плавсредства и последующем измерении с его помощью параметров подводного шума, отличающийся тем, что выбрасывание гидроакустического средства измерений на кабель-тросе за борт плавсредства проводится в режиме стабилизации плавсредства без его хода, при этом гидроакустическое средство измерений выполняют с отрицательной плавучестью (10…15) кг.

9. Способ по п.8, отличающийся тем, что выбрасывание гидроакустического средства измерений на кабель-тросе проводят из рубки плавсредства.

10. Способ по п.8, отличающийся тем, что гидроакустическое средство измерений выполняют на основе двух гидрофонов: широкополосного и низкочастотного.

11. Способ по п.8, отличающийся тем, что гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной вниз.

12. Способ по п.8, отличающийся тем, что гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной вверх.

13. Способ по п.8, отличающийся тем, что гидроакустическое средство измерений выполняют с диаграммой направленности, ориентированной параллельно продольной или поперечной осям плавсредства.

14. Способ по п.8, отличающийся тем, что гидроакустическое средство измерений выполняют с равномерной характеристикой направленности.



 

Похожие патенты:

Изобретение предназначено для использования в пилотажно-навигационных системах ориентации летательного аппарата при заходе на посадку по приборам. Способ измерения угла тангажа и радионавигационная система для его реализации заключаются в том, что из точки с известными координатами излучают горизонтально линейно-поляризованные электромагнитные волны, вектор напряженности электрического поля которых находится в горизонтальной плоскости.

Группа изобретений относится к радиопеленгации и может использоваться для определения пеленга источника (источников) радиоизлучения (ИРИ). Достигаемый технический результат - повышение точности определения пеленга за счет уменьшения влияния импульсных помех и моментов переключения абонентов.

Изобретение может быть использовано в комплексах определения местоположения источников радиоизлучения. Достигаемый технический результат - обеспечение возможности пеленгования слабых сигналов.

Изобретение относится к радионавигации и может использоваться в радионавигационных системах для измерения угловых координат подвижных объектов в азимутальной или угломестной плоскостях относительно задаваемого наземным радиомаяком направления.

Изобретение может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как самостоятельное устройство. Заявленный радиопеленгатор содержит пять антенн, усилитель высокой частоты, два перестраиваемых гетеродина, направленный ответвитель, контрольный генератор, пять смесителей высокой частоты, пять предварительных усилителей промежуточной частоты, шесть полосно-пропускающих фильтров промежуточной частоты, четыре смесителя промежуточной частоты, четыре полосовых фильтра второй промежуточной частоты, четыре усилителя промежуточной частоты с ограничением по радиовходу и с логарифмической характеристикой по видеовыходу, два квадратурных фазовых детектора, частотный дискриминатор, цифровую схему управления, электрически программируемое постоянное запоминающее устройство, аналоговый сумматор, блок аналого-цифровых преобразователей, пороговое устройство и вычислитель пеленгов, определенным образом соединенные между собой.

Триангуляционно-гиперболический способ определения координат радиоизлучающих воздушных объектов (РВО) в пространстве относится к области пассивной локации и может быть использован для решения задач определения координат РВО и траекторий их движения в пространстве при использовании базово-корреляционного метода.

Изобретение относится к измерительной технике, в частности к пеленгаторам, и предназначено для обеспечения возможности сканирования диапазона частот, селекции мешающих источников сигналов по амплитуде и ширине излучаемого спектра, режекции мешающих сигналов и определения направления на полезный сигнал в диапазоне частот с удаленными частотами мешающих сигналов.

Изобретение относится к измерительной технике, в частности к пеленгаторам. .

Изобретение относится к сфере научных и технических проблем, изучаемых в радиоастрономии, астрофизике, астрометрии, геодезии и навигации, для привязки радионеба к оптическому небу для создания фундаментального каталога опорных радиоисточников высокой плотности, имеющих оптические отождествления, для целей космической навигации, для исследования природы небесных объектов в широком диапазоне длин волн, для изучения радиорефракции в космическом пространстве и уточнения ранее полученных сведений о космических объектах в радиодиапазоне для исследования характеристик Межзвездной и Межгалактической сред (МЗС, МГС).

Изобретение относится к радиотехнике и может быть использовано в комплексах определения местоположения источников радиоизлучения (ИРИ). .

Изобретение относится к измерительной технике, в частности к пеленгаторам. Технический результат - обеспечение частотной и пространственной селекции источников сигналов. Для этого устройство содержит первую магнитную антенну, ориентированную в направлении Север-Юг, вторую магнитную антенну, ориентированную в направлении Запад-Восток, третью магнитную антенну с круговой диаграммой направленности, электрическую антенну, формирователь, первый, второй, третий и четвертый усилители, первый, второй, третий, четвертый и пятый АЦП, ПЭВМ, блок системы единого времени (GPS или Глонасс), блок связи с абонентами, первый, второй, третий, четвертый и пятый коммутаторы, первый, второй, третий и четвертый ЦАП, первый, второй, третий, четвертый и пятый управляемые фильтры, первый и второй смесители, гониометр, ротор гониометра, привод ротора, первую и вторую полевые обмотки, n искательных обмоток. 1 ил.

Изобретения относятся к технике радиомониторинга радиоэлектронного оборудования в контролируемой зоне и может использоваться для выявления местоположения несанкционированно установленных в этой зоне радиоэлектронных устройств (НУОЭУ). Технический результат состоит в разработке способов обнаружения НУОЭУ, обеспечивающих повышение точности определения местоположения НУОЭУ при отсутствии предварительных данных о параметрах электромагнитных сигналов радиоэлектронных средств, в том числе установленных в пределах контролируемой зоны (КЗ). Для этого создают комбинированную пеленгационную сеть, где используются как радиопередающие, так и радиоприемные средства. 3 н. и 1 з.п. ф-лы, 4 ил.

Использование: изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. Сущность: с самого плавсредства в режиме стабилизации плавсредства без его хода за борт плавсредства вытравливают на заданное расстояние РСИ на кабель-тросе, снабженном упругой подвеской. После этого проводят измерения параметров гидроакустического шума плавсредства с самого плавсредства. Упругая подвеска на кабель-тросе позволяет избавиться от гидродинамических помех. Технический результат: возможность контроля с помощью выбрасываемого забортного РСИ параметров шума в режиме стабилизации плавсредства без его хода, а также устранение влияния гидроакустических вибраций кабель-троса РСИ на результаты измерений параметров шума плавсредства. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к радиопеленгации и может использоваться для определения пеленга источников радиоизлучения (ИРИ) сложных сигналов в условиях наклона антенны относительно плоскости пеленгования. Достигаемый технический результат - повышение точности определения пеленга. Указанный результат достигается за счет того, что изобретения основаны на использовании дифференциально-фазового метода. Указанный результат достигается за счет того, что пеленг формируют из фазы (α) модулирующего колебания. Из угловых значений тангажа (θ) и крена (γ) воздушного судна (ВС) формируют параметр наклона антенны радиопеленгатора [cos(γ)] относительно плоскости пеленгования и угол (φ) направления малой оси эллипса, ее проекции на плоскость пеленгации, относительно курса ВС, который вычитают из значения фазы. Из полученной разности формируют значения функций косинуса {cos(α-φ)} и синуса {sin(α-φ)}, затем функцию синуса умножают на параметр наклона {cos(γ)·sin(α-φ)}, после чего вычисляют функцию двойного арктангенса. Значение функции суммируют с ранее вычтенным угловым значением направления малой оси эллипса (φ) относительно курса в плоскости пеленгации {atan2[cos(α-φ), cos(γ)·sin(α-φ)]+φ}, при этом результат суммирования является искомым пеленгом. Радиопеленгатор, реализующий способ, содержит антенну, состоящую из N диполей, расположенных по окружности, коммутатор, два приемника, фазовращатель на π/2, компенсатор наклона антенны и преобразователь координат пространственной ориентации, соединенные между собой определенным образом. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. С самого плавсредства в режиме стабилизации и без хода плавсредства за борт вытравливают на заданное расстояние РСИ на кабель-тросе, снабженном упругой подвеской. После этого проводят измерения параметров гидроакустического шума плавсредства с самого плавсредства. Упругая подвеска на кабель-тросе позволяет избавиться от гидродинамических помех. Технический результат - получение возможности контроля с помощью выбрасываемого забортного РСИ параметров шума в режиме стабилизации плавсредства без его хода, а также устранение гидроакустических вибраций кабель-троса РСИ на результаты измерений параметров шума плавсредства. 1 з.п. ф-лы, 1 ил.

Изобретение относится к радиолокации и может быть использовано в информационно-измерительных средствах и системах, работающих в режимах активной пеленгации локализованных объектов, на фоне распределенных в пространстве помех. Достигаемый технический результат - повышение вероятности и точности пеленгации локализованного слабоконтрастного объекта на фоне распределенной в пространстве помехи и обеспечение запреградного действия по локализованному объекту для широкой номенклатуры преград. Указанный результат достигается за счет того, что в радиолокационный измеритель местоположения запреградного объекта, содержащий канал из приемопередающего модуля с генератором сигнала, соединенного с передающей и приемной антеннами, выход которого соединен с блоком цифровой обработки данных, соединенный с модулем отображения информации, вводят второй канал для формирования сверхкороткого импульса в частотном диапазоне, отличном от частотного диапазона первого канала, состоящий из второго приемопередающего модуля, соединенного с вторыми передающей и приемной антеннами, второго блока цифровой обработки, при этом передающие и приемные антенны выполнены в виде сверхширокополосных антенн Вивальди, генератор сигнала приемопередающих модулей выполнен в виде генератора сверхкороткого импульсного сигнала, причем выход второго приемопередающего модуля соединен с входом второго блока цифровой обработки данных, выход которого подключен к входу модуля отображения информации. 1 ил.
Наверх